Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,552)

Search Parameters:
Keywords = energy technology plan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 767 KiB  
Article
The Economic Effects of the Green Transition of the Greek Economy: An Input–Output Analysis
by Theocharis Marinos, Maria Markaki, Yannis Sarafidis, Elena Georgopoulou and Sevastianos Mirasgedis
Energies 2025, 18(15), 4177; https://doi.org/10.3390/en18154177 - 6 Aug 2025
Abstract
Decarbonization of the Greek economy requires significant investments in clean technologies. This will boost demand for goods and services and will create multiplier effects on output value added and employment, though reliance on imported technologies might increase the trade deficit. This study employs [...] Read more.
Decarbonization of the Greek economy requires significant investments in clean technologies. This will boost demand for goods and services and will create multiplier effects on output value added and employment, though reliance on imported technologies might increase the trade deficit. This study employs input–output analysis to estimate the direct, indirect, and multiplier effects of green transition investments on Greek output, value added, employment, and imports across five-year intervals from 2025 to 2050. Two scenarios are considered: the former is based on the National Energy and Climate Plan (NECP), driven by a large-scale exploitation of RES and technologies promoting electrification of final demand, while the latter (developed in the context of the CLEVER project) prioritizes energy sufficiency and efficiency interventions to reduce final energy demand. In the NECP scenario, GDP increases by 3–10% (relative to 2023), and employment increases by 4–11%. The CLEVER scenario yields smaller direct effects—owing to lower investment levels—but larger induced impacts, since energy savings boost household disposable income. The consideration of three sub-scenarios adopting different levels of import-substitution rates in key manufacturing sectors exhibits pronounced divergence, indicating that targeted industrial policies can significantly amplify the domestic economic benefits of the green transition. Full article
Show Figures

Figure 1

21 pages, 826 KiB  
Article
Socio-Economic and Environmental Trade-Offs of Sustainable Energy Transition in Kentucky
by Sydney Oluoch, Nirmal Pandit and Cecelia Harner
Sustainability 2025, 17(15), 7133; https://doi.org/10.3390/su17157133 - 6 Aug 2025
Abstract
A just and sustainable energy transition in historically coal-dependent regions like Kentucky requires more than the adoption of new technologies and market-based solutions. This study uses a stated preferences approach to evaluate public support for various attributes of energy transition programs, revealing broad [...] Read more.
A just and sustainable energy transition in historically coal-dependent regions like Kentucky requires more than the adoption of new technologies and market-based solutions. This study uses a stated preferences approach to evaluate public support for various attributes of energy transition programs, revealing broad backing for moving away from coal, as indicated by a negative willingness to pay (WTP) for the status quo (–USD 4.63). Key findings show strong bipartisan support for solar energy, with Democrats showing the highest WTP at USD 8.29, followed closely by Independents/Others at USD 8.22, and Republicans at USD 8.08. Wind energy also garnered support, particularly among Republicans (USD 4.04), who may view it as more industry-compatible and less ideologically polarizing. Job creation was a dominant priority across political affiliations, especially for Independents (USD 9.07), indicating a preference for tangible, near-term economic benefits. Similarly, preserving cultural values tied to coal received support among Independents/Others (USD 4.98), emphasizing the importance of place-based identity in shaping preferences. In contrast, social support programs (e.g., job retraining) and certain post-mining land uses (e.g., recreation and conservation) were less favored, possibly due to their abstract nature, delayed benefits, and political framing. Findings from Kentucky offer insights for other coal-reliant states like Wyoming, West Virginia, Pennsylvania, Indiana, and Illinois. Ultimately, equitable transitions must integrate local voices, address cultural and economic realities, and ensure community-driven planning and investment. Full article
(This article belongs to the Special Issue Energy, Environmental Policy and Sustainable Development)
51 pages, 4099 KiB  
Review
Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration
by Seyed Saeed Madani, Yasmin Shabeer, Michael Fowler, Satyam Panchal, Hicham Chaoui, Saad Mekhilef, Shi Xue Dou and Khay See
Batteries 2025, 11(8), 298; https://doi.org/10.3390/batteries11080298 - 5 Aug 2025
Abstract
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery [...] Read more.
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery Management Systems (BMS). This review paper explores how artificial intelligence (AI) and digital twin (DT) technologies can be integrated to enable the intelligent BMS of the future. It investigates how powerful data approaches such as deep learning, ensembles, and models that rely on physics improve the accuracy of predicting state of charge (SOC), state of health (SOH), and remaining useful life (RUL). Additionally, the paper reviews progress in AI features for cooling, fast charging, fault detection, and intelligible AI models. Working together, cloud and edge computing technology with DTs means better diagnostics, predictive support, and improved management for any use of EVs, stored energy, and recycling. The review underlines recent successes in AI-driven material research, renewable battery production, and plans for used systems, along with new problems in cybersecurity, combining data and mass rollout. We spotlight important research themes, existing problems, and future drawbacks following careful analysis of different up-to-date approaches and systems. Uniting physical modeling with AI-based analytics on cloud-edge-DT platforms supports the development of tough, intelligent, and ecologically responsible batteries that line up with future mobility and wider use of renewable energy. Full article
Show Figures

Figure 1

27 pages, 14684 KiB  
Article
SDT4Solar: A Spatial Digital Twin Framework for Scalable Rooftop PV Planning in Urban Environments
by Athenee Teofilo, Qian (Chayn) Sun and Marco Amati
Smart Cities 2025, 8(4), 128; https://doi.org/10.3390/smartcities8040128 - 4 Aug 2025
Abstract
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. [...] Read more.
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. However, their application in solar energy planning remains underexplored. This study introduces SDT4Solar, a novel SDT-based framework designed to integrate city-scale rooftop solar planning through 3D building semantisation, solar modelling, and a unified geospatial database. By leveraging advanced spatial modelling and Internet of Things (IoT) technologies, SDT4Solar facilitates high-resolution 3D solar potential simulations, improving the accuracy and equity of solar infrastructure deployment. We demonstrate the framework through a proof-of-concept implementation in Ballarat East, Victoria, Australia, structured in four key stages: (a) spatial representation of the urban built environment, (b) integration of multi-source datasets into a unified geospatial database, (c) rooftop solar potential modelling using 3D simulation tools, and (d) dynamic visualization and analysis in a testbed environment. Results highlight SDT4Solar’s effectiveness in enabling data-driven, spatially explicit decision-making for rooftop PV deployment. This work advances the role of SDTs in urban energy transitions, demonstrating their potential to optimise efficiency in solar infrastructure planning. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

33 pages, 8443 KiB  
Article
Model for Planning and Optimization of Train Crew Rosters for Sustainable Railway Transport
by Zdenka Bulková, Juraj Čamaj and Jozef Gašparík
Sustainability 2025, 17(15), 7069; https://doi.org/10.3390/su17157069 - 4 Aug 2025
Abstract
Efficient planning of train crew rosters is a key factor in ensuring operational reliability and promoting long-term sustainability in railway transport, both economically and socially. This article presents a systematic approach to developing a crew rostering model in passenger rail transport, with a [...] Read more.
Efficient planning of train crew rosters is a key factor in ensuring operational reliability and promoting long-term sustainability in railway transport, both economically and socially. This article presents a systematic approach to developing a crew rostering model in passenger rail transport, with a focus on the operational setting of the train crew depot in Česká Třebová, a city in the Czech Republic. The seven-step methodology includes identifying available train shifts, defining scheduling constraints, creating roster variants, and calculating personnel and time requirements for each option. The proposed roster reduced staffing needs by two employees, increased the average shift duration to 9 h and 42 min, and decreased non-productive time by 384 h annually. These improvements enhance sustainability by optimizing human resource use, lowering unnecessary energy consumption, and improving employees’ work–life balance. The model also provides a quantitative assessment of operational feasibility and economic efficiency. Compared to existing rosters, the proposed model offers clear advantages and remains applicable even in settings with limited technological support. The findings show that a well-designed rostering system can contribute not only to cost savings and personnel stabilization, but also to broader objectives in sustainable public transport, supporting resilient and resource-efficient rail operations. Full article
Show Figures

Figure 1

25 pages, 1183 KiB  
Article
A Novel Data-Driven Multi-Branch LSTM Architecture with Attention Mechanisms for Forecasting Electric Vehicle Adoption
by Md Mizanur Rahaman, Md Rashedul Islam, Mia Md Tofayel Gonee Manik, Md Munna Aziz, Inshad Rahman Noman, Mohammad Muzahidur Rahman Bhuiyan, Kanchon Kumar Bishnu and Joy Chakra Bortty
World Electr. Veh. J. 2025, 16(8), 432; https://doi.org/10.3390/wevj16080432 - 1 Aug 2025
Viewed by 134
Abstract
Accurately predicting how quickly people will adopt electric vehicles (EVs) is vital for planning charging stations, managing supply chains, and shaping climate policy. We present a forecasting model that uses three separate Long Short-Term Memory (LSTM) branches—one for past EV sales, one for [...] Read more.
Accurately predicting how quickly people will adopt electric vehicles (EVs) is vital for planning charging stations, managing supply chains, and shaping climate policy. We present a forecasting model that uses three separate Long Short-Term Memory (LSTM) branches—one for past EV sales, one for infrastructure and policy signals, and one for economic trends. An attention mechanism first highlights the most important weeks in each branch, then decides which branch matters most at any point in time. Trained end-to-end on publicly available data, the model beats traditional statistical methods and newer deep learning baselines while remaining small enough to run efficiently. An ablation study shows that every branch and both attention steps improve accuracy, and that adding policy and economic data helps more than relying on EV history alone. Because the network is modular and its attention weights are easy to interpret, it can be extended to produce confidence intervals, include physical constraints, or forecast adoption of other clean-energy technologies. Full article
Show Figures

Figure 1

25 pages, 15607 KiB  
Article
A Multi-Objective Optimization Method for Carbon–REC Trading in an Integrated Energy System of High-Speed Railways
by Wei-Na Zhang, Zhe Xu, Ying-Yi Hong, Fang-Yu Liu and Zhong-Qin Bi
Appl. Sci. 2025, 15(15), 8462; https://doi.org/10.3390/app15158462 - 30 Jul 2025
Viewed by 138
Abstract
The significant energy intensity of high-speed railway necessitates integrating renewable technologies to enhance grid resilience and decarbonize transport. This study establishes a coordinated carbon–green certificate market mechanism for railway power systems and develops a tri-source planning model (grid/solar/energy storage) that comprehensively considers the [...] Read more.
The significant energy intensity of high-speed railway necessitates integrating renewable technologies to enhance grid resilience and decarbonize transport. This study establishes a coordinated carbon–green certificate market mechanism for railway power systems and develops a tri-source planning model (grid/solar/energy storage) that comprehensively considers the full lifecycle carbon emissions of these assets while minimizing lifecycle costs and CO2 emissions. The proposed EDMOA algorithm optimizes storage configurations across multiple operational climatic regimes. Benchmark analysis demonstrates superior economic–environmental synergy, achieving a 23.90% cost reduction (USD 923,152 annual savings) and 24.02% lower emissions (693,452.5 kg CO2 reduction) versus conventional systems. These results validate the synergistic integration of hybrid power systems with the carbon–green certificate market mechanism as a quantifiable pathway towards decarbonization in rail infrastructure. Full article
Show Figures

Figure 1

40 pages, 7941 KiB  
Article
Synergistic Hierarchical AI Framework for USV Navigation: Closing the Loop Between Swin-Transformer Perception, T-ASTAR Planning, and Energy-Aware TD3 Control
by Haonan Ye, Hongjun Tian, Qingyun Wu, Yihong Xue, Jiayu Xiao, Guijie Liu and Yang Xiong
Sensors 2025, 25(15), 4699; https://doi.org/10.3390/s25154699 - 30 Jul 2025
Viewed by 402
Abstract
Autonomous Unmanned Surface Vehicle (USV) operations in complex ocean engineering scenarios necessitate robust navigation, guidance, and control technologies. These systems require reliable sensor-based object detection and efficient, safe, and energy-aware path planning. To address these multifaceted challenges, this paper proposes a novel synergistic [...] Read more.
Autonomous Unmanned Surface Vehicle (USV) operations in complex ocean engineering scenarios necessitate robust navigation, guidance, and control technologies. These systems require reliable sensor-based object detection and efficient, safe, and energy-aware path planning. To address these multifaceted challenges, this paper proposes a novel synergistic AI framework. The framework integrates (1) a novel adaptation of the Swin-Transformer to generate a dense, semantic risk map from raw visual data, enabling the system to interpret ambiguous marine conditions like sun glare and choppy water, enabling real-time environmental understanding crucial for guidance; (2) a Transformer-enhanced A-star (T-ASTAR) algorithm with spatio-temporal attentional guidance to generate globally near-optimal and energy-aware static paths; (3) a domain-adapted TD3 agent featuring a novel energy-aware reward function that optimizes for USV hydrodynamic constraints, making it suitable for long-endurance missions tailored for USVs to perform dynamic local path optimization and real-time obstacle avoidance, forming a key control element; and (4) CUDA acceleration to meet the computational demands of real-time ocean engineering applications. Simulations and real-world data verify the framework’s superiority over benchmarks like A* and RRT, achieving 30% shorter routes, 70% fewer turns, 64.7% fewer dynamic collisions, and a 215-fold speed improvement in map generation via CUDA acceleration. This research underscores the importance of integrating powerful AI components within a hierarchical synergy, encompassing AI-based perception, hierarchical decision planning for guidance, and multi-stage optimal search algorithms for control. The proposed solution significantly advances USV autonomy, addressing critical ocean engineering challenges such as navigation in dynamic environments, object avoidance, and energy-constrained operations for unmanned maritime systems. Full article
Show Figures

Figure 1

29 pages, 1682 KiB  
Article
Polish Farmers′ Perceptions of the Benefits and Risks of Investing in Biogas Plants and the Role of GISs in Site Selection
by Anna Kochanek, Józef Ciuła, Mariusz Cembruch-Nowakowski and Tomasz Zacłona
Energies 2025, 18(15), 3981; https://doi.org/10.3390/en18153981 - 25 Jul 2025
Viewed by 262
Abstract
In the past decade, agricultural biogas plants have become one of the key tools driving the energy transition in rural areas. Nevertheless, their development in Poland still lags behind that in Western European countries, suggesting the existence of barriers that go beyond technological [...] Read more.
In the past decade, agricultural biogas plants have become one of the key tools driving the energy transition in rural areas. Nevertheless, their development in Poland still lags behind that in Western European countries, suggesting the existence of barriers that go beyond technological or regulatory issues. This study aims to examine how Polish farmers perceive the risks and expected benefits associated with investing in biogas plants and which of these perceptions influence their willingness to invest. The research was conducted in the second quarter of 2025 among farmers planning to build micro biogas plants as well as owners of existing biogas facilities. Geographic Information System (GIS) tools were also used in selecting respondents and identifying potential investment sites, helping to pinpoint areas with favorable spatial and environmental conditions. The findings show that both current and prospective biogas plant operators view complex legal requirements, social risk, and financial uncertainty as the main obstacles. However, both groups are primarily motivated by the desire for on-farm energy self-sufficiency and the environmental benefits of improved agricultural waste management. Owners of operational installations—particularly small and medium-sized ones—tend to rate all categories of risk significantly lower than prospective investors, suggesting that practical experience and knowledge-sharing can effectively alleviate perceived risks related to renewable energy investments. Full article
(This article belongs to the Special Issue Green Additive for Biofuel Energy Production)
Show Figures

Figure 1

23 pages, 2295 KiB  
Article
A Two-Stage Sustainable Optimal Scheduling Strategy for Multi-Contract Collaborative Distributed Resource Aggregators
by Lei Su, Wanli Feng, Cao Kan, Mingjiang Wei, Rui Su, Pan Yu and Ning Zhang
Sustainability 2025, 17(15), 6767; https://doi.org/10.3390/su17156767 - 25 Jul 2025
Viewed by 264
Abstract
To address the challenges posed by the instability of renewable energy output and load fluctuations on grid operations and to support the low-carbon sustainable development of the energy system, this paper integrates artificial intelligence technology to establish an economic stability dispatch framework for [...] Read more.
To address the challenges posed by the instability of renewable energy output and load fluctuations on grid operations and to support the low-carbon sustainable development of the energy system, this paper integrates artificial intelligence technology to establish an economic stability dispatch framework for distributed resource aggregators. A phased multi-contract collaborative scheduling model oriented toward sustainable development is proposed. Through intelligent algorithms, the model dynamically optimises decisions across the day-ahead and intraday phases: During the day-ahead scheduling phase, intelligent algorithms predict load demand and energy output, and combine with elastic performance-based response contracts to construct a user-side electricity consumption behaviour intelligent control model. Under the premise of ensuring user comfort, the model generates a 24 h scheduling plan with the objectives of minimising operational costs and efficiently integrating renewable energy. In the intraday scheduling phase, a rolling optimisation mechanism is used to activate energy storage capacity contracts and dynamic frequency stability contracts in real time based on day-ahead prediction deviations. This efficiently coordinates the intelligent frequency regulation strategies of energy storage devices and electric vehicle aggregators to quickly mitigate power fluctuations and achieve coordinated control of primary and secondary frequency regulation. Case study results indicate that the intelligent optimisation-driven multi-contract scheduling model significantly improves system operational efficiency and stability, reduces system operational costs by 30.49%, and decreases power purchase fluctuations by 12.41%, providing a feasible path for constructing a low-carbon, resilient grid under high renewable energy penetration. Full article
Show Figures

Figure 1

26 pages, 2204 KiB  
Article
A Qualitative Methodology for Identifying Governance Challenges and Advancements in Positive Energy District Labs
by Silvia Soutullo, Oscar Seco, María Nuria Sánchez, Ricardo Lima, Fabio Maria Montagnino, Gloria Pignatta, Ghazal Etminan, Viktor Bukovszki, Touraj Ashrafian, Maria Beatrice Andreucci and Daniele Vettorato
Urban Sci. 2025, 9(8), 288; https://doi.org/10.3390/urbansci9080288 - 23 Jul 2025
Viewed by 385
Abstract
Governance challenges, success factors, and stakeholder dynamics are central to the implementation of Positive Energy District (PED) Labs, which aim to develop energy-positive and sustainable urban areas. In this paper, a qualitative analysis combining expert surveys, participatory workshops with practitioners from the COST [...] Read more.
Governance challenges, success factors, and stakeholder dynamics are central to the implementation of Positive Energy District (PED) Labs, which aim to develop energy-positive and sustainable urban areas. In this paper, a qualitative analysis combining expert surveys, participatory workshops with practitioners from the COST Action PED-EU-NET network, and comparative case studies across Europe identifies key barriers, drivers, and stakeholder roles throughout the implementation process. Findings reveal that fragmented regulations, social inertia, and limited financial mechanisms are the main barriers to PED Lab development, while climate change mitigation goals, strong local networks, and supportive policy frameworks are critical drivers. The analysis maps stakeholder engagement across six development phases, showing how leadership shifts between governments, industry, planners, and local communities. PED Labs require intangible assets such as inclusive governance frameworks, education, and trust-building in the early phases, while tangible infrastructures become more relevant in later stages. The conclusions emphasize that robust, inclusive governance is not merely supportive but a key driver of PED Lab success. Adaptive planning, participatory decision-making, and digital coordination tools are essential for overcoming systemic barriers. Scaling PED Labs effectively requires regulatory harmonization and the integration of social and technological innovation to accelerate the transition toward energy-positive, climate-resilient cities. Full article
(This article belongs to the Collection Urban Agenda)
Show Figures

Figure 1

22 pages, 4620 KiB  
Article
Spatial Strategies for the Renewable Energy Transition: Integrating Solar Photovoltaics into Barcelona’s Urban Morphology
by Maryam Roodneshin, Adrian Muros Alcojor and Torsten Masseck
Solar 2025, 5(3), 34; https://doi.org/10.3390/solar5030034 - 23 Jul 2025
Viewed by 491
Abstract
This study investigates strategies for urban-scale renewable energy integration through a photovoltaic-centric approach, with a case study of a district in Barcelona. The methodology integrates spatial and morphological data using a geographic information system (GIS)-based and clustering framework to address challenges of CO [...] Read more.
This study investigates strategies for urban-scale renewable energy integration through a photovoltaic-centric approach, with a case study of a district in Barcelona. The methodology integrates spatial and morphological data using a geographic information system (GIS)-based and clustering framework to address challenges of CO2 emissions, air pollution, and energy inefficiency. Rooftop availability and photovoltaic (PV) design constraints are analysed under current urban regulations. The spatial analysis incorporates building geometry and solar exposure, while an evolutionary optimisation algorithm in Grasshopper refines shading analysis, energy yield, and financial performance. Clustering methods (K-means and 3D proximity) group PV panels by solar irradiance uniformity and spatial coherence to enhance system efficiency. Eight PV deployment scenarios are evaluated, incorporating submodule integrated converter technology under a solar power purchase agreement model. Results show distinct trade-offs among PV scenarios. The standard fixed tilted (31.5° tilt, south-facing) scenario offers a top environmental and performance ratio (PR) = 66.81% but limited financial returns. In contrast, large- and huge-sized modules offer peak financial returns, aligning with private-sector priorities but with moderate energy efficiency. Medium- and large-size scenarios provide balanced outcomes, while a small module and its optimised rotated version scenarios maximise energy output yet suffer from high capital costs. A hybrid strategy combining standard fixed tilted with medium and large modules balances environmental and economic goals. The district’s morphology supports “solar neighbourhoods” and demonstrates how multi-scenario evaluation can guide resilient PV planning in Mediterranean cities. Full article
Show Figures

Figure 1

26 pages, 3954 KiB  
Article
Bi-Level Planning of Grid-Forming Energy Storage–Hydrogen Storage System Considering Inertia Response and Frequency Parameter Optimization
by Dongqi Huang, Pengwei Sun, Wenfeng Yao, Chang Liu, Hefeng Zhai and Yehao Gao
Energies 2025, 18(15), 3915; https://doi.org/10.3390/en18153915 - 23 Jul 2025
Viewed by 276
Abstract
Energy storage plays an essential role in stabilizing fluctuations in renewable energy sources such as wind and solar, enabling surplus electricity retention, and delivering dynamic frequency regulation. However, relying solely on a single form of storage often proves insufficient due to constraints in [...] Read more.
Energy storage plays an essential role in stabilizing fluctuations in renewable energy sources such as wind and solar, enabling surplus electricity retention, and delivering dynamic frequency regulation. However, relying solely on a single form of storage often proves insufficient due to constraints in performance, capacity, and cost-effectiveness. To tackle frequency regulation challenges in remote desert-based renewable energy hubs—where traditional power infrastructure is unavailable—this study introduces a planning framework for an electro-hydrogen energy storage system with grid-forming capabilities, designed to supply both inertia and frequency response. At the system design stage, a direct current (DC) transmission network is modeled, integrating battery and hydrogen storage technologies. Using this configuration, the capacity settings for both grid-forming batteries and hydrogen units are optimized. This study then explores how hydrogen systems—comprising electrolyzers, storage tanks, and fuel cells—and grid-forming batteries contribute to inertial support. Virtual inertia models are established for each technology, enabling precise estimation of the total synthetic inertia provided. At the operational level, this study addresses stability concerns stemming from renewable generation variability by introducing three security indices. A joint optimization is performed for virtual inertia constants, which define the virtual inertia provided by energy storage systems to assist in frequency regulation, and primary frequency response parameters within the proposed storage scheme are optimized in this model. This enhances the frequency modulation potential of both systems and confirms the robustness of the proposed approach. Lastly, a real-world case study involving a 13 GW renewable energy base in Northwest China, connected via a ±10 GW HVDC export corridor, demonstrates the practical effectiveness of the optimization strategy and system configuration. Full article
(This article belongs to the Special Issue Advanced Battery Management Strategies)
Show Figures

Figure 1

17 pages, 6432 KiB  
Article
Intelligent Battery-Designed System for Edge-Computing-Based Farmland Pest Monitoring System
by Chung-Wen Hung, Chun-Chieh Wang, Zheng-Jie Liao, Yu-Hsing Su and Chun-Liang Liu
Electronics 2025, 14(15), 2927; https://doi.org/10.3390/electronics14152927 - 22 Jul 2025
Viewed by 232
Abstract
Cruciferous vegetables are popular in Asian dishes. However, striped flea beetles prefer to feed on leaves, which can damage the appearance of crops and reduce their economic value. Due to the lack of pest monitoring, the occurrence of pests is often irregular and [...] Read more.
Cruciferous vegetables are popular in Asian dishes. However, striped flea beetles prefer to feed on leaves, which can damage the appearance of crops and reduce their economic value. Due to the lack of pest monitoring, the occurrence of pests is often irregular and unpredictable. Regular and quantitative spraying of pesticides for pest control is an alternative method. Nevertheless, this requires manual execution and is inefficient. This paper presents a system powered by solar energy, utilizing batteries and supercapacitors for energy storage to support the implementation of edge AI devices in outdoor environments. Raspberry Pi is utilized for artificial intelligence image recognition and the Internet of Things (IoT). YOLOv5 is implemented on the edge device, Raspberry Pi, for detecting striped flea beetles, and StyleGAN3 is also utilized for data augmentation in the proposed system. The recognition accuracy reaches 85.4%, and the results are transmitted to the server through a 4G network. The experimental results indicate that the system can operate effectively for an extended period. This system enhances sustainability and reliability and greatly improves the practicality of deploying smart pest detection technology in remote or resource-limited agricultural areas. In subsequent applications, drones can plan routes for pesticide spraying based on the distribution of pests. Full article
(This article belongs to the Special Issue Battery Health Management for Cyber-Physical Energy Storage Systems)
Show Figures

Figure 1

87 pages, 5171 KiB  
Review
Toward Secure Smart Grid Systems: Risks, Threats, Challenges, and Future Directions
by Jean Paul A. Yaacoub, Hassan N. Noura, Ola Salman and Khaled Chahine
Future Internet 2025, 17(7), 318; https://doi.org/10.3390/fi17070318 - 21 Jul 2025
Viewed by 522
Abstract
The evolution of electrical power systems into smart grids has brought about significant advancements in electricity generation, transmission, and utilization. These cutting-edge grids have shown potential as an effective way to maximize energy efficiency, manage resources effectively, and enhance overall reliability and sustainability. [...] Read more.
The evolution of electrical power systems into smart grids has brought about significant advancements in electricity generation, transmission, and utilization. These cutting-edge grids have shown potential as an effective way to maximize energy efficiency, manage resources effectively, and enhance overall reliability and sustainability. However, with the integration of complex technologies and interconnected systems inherent to smart grids comes a new set of safety and security challenges that must be addressed. First, this paper provides an in-depth review of the key considerations surrounding safety and security in smart grid environments, identifying potential risks, vulnerabilities, and challenges associated with deploying smart grid infrastructure within the context of the Internet of Things (IoT). In response, we explore both cryptographic and non-cryptographic countermeasures, emphasizing the need for adaptive, lightweight, and proactive security mechanisms. As a key contribution, we introduce a layered classification framework that maps smart grid attacks to affected components and defense types, providing a clearer structure for analyzing the impact of threats and responses. In addition, we identify current gaps in the literature, particularly in real-time anomaly detection, interoperability, and post-quantum cryptographic protocols, thus offering forward-looking recommendations to guide future research. Finally, we present the Multi-Layer Threat-Defense Alignment Framework, a unique addition that provides a methodical and strategic approach to cybersecurity planning by aligning smart grid threats and defenses across architectural layers. Full article
(This article belongs to the Special Issue Secure Integration of IoT and Cloud Computing)
Show Figures

Figure 1

Back to TopTop