Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,975)

Search Parameters:
Keywords = energy and heating consumption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5831 KiB  
Article
Cure Kinetics-Driven Compression Molding of CFRP for Fast and Low-Cost Manufacturing
by Xintong Wu, Ming Zhang, Zhongling Liu, Xin Fu, Haonan Liu, Yuchen Zhang and Xiaobo Yang
Polymers 2025, 17(15), 2154; https://doi.org/10.3390/polym17152154 - 6 Aug 2025
Abstract
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, [...] Read more.
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, involves prolonged curing times and high energy consumption. To overcome these limitations, this study proposes an efficient and adaptable method to determine the optimal curing cycle. The effects of varying heating rates on resin dynamic and isothermal–exothermic behavior were characterized via reaction kinetics analysis using differential scanning calorimetry (DSC) and rheological measurements. The activation energy of the reaction system was substituted into the modified Sun–Gang model, and the parameters were estimated using a particle swarm optimization algorithm. Based on the curing kinetic behavior of the resin, CFRP compression molding process orthogonal experiments were conducted. A weighted scoring system incorporating strength, energy consumption, and cycle time enabled multidimensional evaluation of optimized solutions. Applying this curing cycle optimization method to a commercial epoxy resin increased efficiency by 247.22% and reduced energy consumption by 35.7% while meeting general product performance requirements. These results confirm the method’s reliability and its significance for improving production efficiency. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymer Materials, 2nd Edition)
Show Figures

Figure 1

21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

21 pages, 3452 KiB  
Article
Features of Ash and Slag Formation During Incomplete Combustion of Coal from the Karazhyra Deposit in Small- and Medium-Scale Power Plants
by Natalya Seraya, Vadim Litvinov, Gulzhan Daumova, Maksat Shaikhov, Raigul Ramazanova and Roza Aubakirova
Processes 2025, 13(8), 2467; https://doi.org/10.3390/pr13082467 - 4 Aug 2025
Abstract
The study presents a comprehensive assessment of the combustion efficiency of low-grade coal from the Karazhyra deposit in small- and medium-capacity boiler units of the energy workshops operated by Vostokenergo LLP (East Kazakhstan Region, Kazakhstan). It was found that the average annual thermal [...] Read more.
The study presents a comprehensive assessment of the combustion efficiency of low-grade coal from the Karazhyra deposit in small- and medium-capacity boiler units of the energy workshops operated by Vostokenergo LLP (East Kazakhstan Region, Kazakhstan). It was found that the average annual thermal energy output amounts to 2,387,348.85 GJ with a coal consumption of 164,328.5 tons. Based on operational data from 2016 to 2017, the average thermal efficiency (boiler efficiency) was 66.03%, with a maximum value of 75% recorded at the Zhezkent energy workshop. The average lower heating value (LHV) of the coal was 19.41 MJ/kg, which is below the design value of 20.52 MJ/kg, indicating the use of coal with reduced energy characteristics and elevated ash content (21.4%). The unburned carbon content in the ash and slag waste (ASW) was determined to be between 14 and 35%, indicating incomplete combustion. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed the presence of microspheres, porous granules, and coal residues, with silicon and aluminum oxides dominating the composition (up to 70.49%). Differences in the pollutant potential of ash from different boiler units were identified. Recommendations were substantiated regarding the adjustment of the air–fuel regime, modernization of combustion control systems, and utilization of ASW. The results may be used to develop measures aimed at improving the energy efficiency and environmental safety of coal-fired boiler plants. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

16 pages, 3766 KiB  
Article
Evaluation of Energy and CO2 Reduction Through Envelope Retrofitting: A Case Study of a Public Building in South Korea Conducted Using Utility Billing Data
by Hansol Lee and Gyeong-Seok Choi
Energies 2025, 18(15), 4129; https://doi.org/10.3390/en18154129 - 4 Aug 2025
Abstract
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility [...] Read more.
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility billing data collected over one pre-retrofit year (2019) and two post-retrofit years (2023–2024). The retrofit included improvements to exterior walls, roofs, and windows, aiming to enhance thermal insulation and airtightness. The analysis revealed that monthly electricity consumption was reduced by 14.7% in 2023 and 8.0% in 2024 compared to that in the baseline year, with corresponding decreases in electricity costs and carbon dioxide emissions. Seasonal variations were evident: energy savings were significant in the winter due to reduced heating demand, while cooling energy use slightly increased in the summer, likely due to diminished solar heat gains resulting from improved insulation. By addressing both heating and cooling impacts, this study offers practical insights into the trade-offs of envelope retrofitting. The findings contribute to the body of knowledge by demonstrating the real-world performance of retrofit technologies and providing data-driven evidence that can inform policies and strategies for improving energy efficiency in public buildings. Full article
Show Figures

Figure 1

18 pages, 7997 KiB  
Article
Cryogenic Tensile Strength of 1.6 GPa in a Precipitation-Hardened (NiCoCr)99.25C0.75 Medium-Entropy Alloy Fabricated via Laser Powder Bed Fusion
by So-Yeon Park, Young-Kyun Kim, Hyoung Seop Kim and Kee-Ahn Lee
Materials 2025, 18(15), 3656; https://doi.org/10.3390/ma18153656 - 4 Aug 2025
Viewed by 66
Abstract
A (NiCoCr)99.25C0.75 medium entropy alloy (MEA) was developed via laser powder bed fusion (LPBF) using pre-alloyed powder feedstock containing 0.75 at%C, followed by a precipitation heat treatment. The as-built alloy exhibited high density (>99.9%), columnar grains, fine substructures, and strong [...] Read more.
A (NiCoCr)99.25C0.75 medium entropy alloy (MEA) was developed via laser powder bed fusion (LPBF) using pre-alloyed powder feedstock containing 0.75 at%C, followed by a precipitation heat treatment. The as-built alloy exhibited high density (>99.9%), columnar grains, fine substructures, and strong <111> texture. Heat treatment at 700 °C for 1 h promoted the precipitation of Cr-rich carbides (Cr23C6) along grain and substructure boundaries, which stabilized the microstructure through Zener pinning and the consumption of carbon from the matrix. The heat-treated alloy achieved excellent cryogenic tensile properties at 77 K, with a yield strength of 1230 MPa and an ultimate tensile strength of 1.6 GPa. Compared to previously reported LPBF-built NiCoCr-based MEAs, this alloy exhibited superior strength at both room and cryogenic temperatures, indicating its potential for structural applications in extreme environments. Deformation mechanisms at cryogenic temperature revealed abundant deformation twinning, stacking faults, and strong dislocation–precipitate interactions. These features contributed to dislocation locking, resulting in a work hardening rate higher than that observed at room temperature. This study demonstrates that carbon addition and heat treatment can effectively tune the stacking fault energy and stabilize substructures, leading to enhanced cryogenic mechanical performance of LPBF-built NiCoCr MEAs. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Synthesis, Characterization, and Applications)
Show Figures

Graphical abstract

14 pages, 2058 KiB  
Article
Integration of Daylight in Building Design as a Way to Improve the Energy Efficiency of Buildings
by Adrian Trząski and Joanna Rucińska
Energies 2025, 18(15), 4113; https://doi.org/10.3390/en18154113 - 2 Aug 2025
Viewed by 216
Abstract
According to the United Nations Environment Programme reports, buildings are responsible for nearly 40% of energy-related emissions; therefore, energy-optimized building design is crucial to reduce the reliance on non-renewable energy sources as well as greenhouse gas emissions. The OECD reports indicate the use [...] Read more.
According to the United Nations Environment Programme reports, buildings are responsible for nearly 40% of energy-related emissions; therefore, energy-optimized building design is crucial to reduce the reliance on non-renewable energy sources as well as greenhouse gas emissions. The OECD reports indicate the use of Building Information Modelling (BIM) as one of the effective strategies for decarbonization of buildings, since a 3D digital representation of both physical and functional characteristics of a building can help to design a more efficient infrastructure. An efficient integration of solar energy in building design can be vital for the enhancement of energy performance in terms of heating, cooling, and lighting demand. This paper presents results of an analysis of how factors related to the use of daylight, such as automatic control of artificial lighting, external shading, or the visual absorptance of internal surfaces, influence the energy efficiency within an example room in two different climatic zones. The simulation was conducted using Design Builder software, with predefined occupancy schedules and internal heat gains, and standard EPW weather files for Warsaw and Genua climate zones. The study indicates that for the examined room, when no automatic sunshades or a lighting control system is utilized, most of the final energy demand is for cooling purposes (45–54%), followed by lighting (42–43%), with only 3–12% for heating purposes. The introduction of sunshades and/or the use of daylight allowed for a reduction of the total demand by up to half. Moreover, it was pointed out that often neglected factors, like the colour of the internal surfaces, can have a significant effect on the final energy consumption. In variants with light interior, the total energy consumption was lower by about 3–4% of the baseline demand, compared to their corresponding ones with dark surfaces. These results are consistent with previous studies on daylighting strategies and highlight the importance of considering both visual and thermal impacts when evaluating energy performance. Similarly, possible side effects of certain actions were highlighted, such as an increase in heat demand resulting from a reduced need for artificial lighting. The results of the analysis highlight the potential of a simulation-based design approach in optimizing daylight use, contributing to the broader goals of building decarbonization. Full article
Show Figures

Figure 1

16 pages, 1541 KiB  
Article
Economic Dispatch Strategy for Power Grids Considering Waste Heat Utilization in High-Energy-Consuming Enterprises
by Lei Zhou, Ping He, Siru Wang, Cailian Ma, Yiming Zhou, Can Cai and Hongbo Zou
Processes 2025, 13(8), 2450; https://doi.org/10.3390/pr13082450 - 2 Aug 2025
Viewed by 231
Abstract
Under the construction background of carbon peak and carbon neutrality, high-energy-consuming enterprises, represented by the electrolytic aluminum industry, have become important carriers for energy conservation and emission reduction. These enterprises are characterized by significant energy consumption and high carbon emissions, greatly impacting the [...] Read more.
Under the construction background of carbon peak and carbon neutrality, high-energy-consuming enterprises, represented by the electrolytic aluminum industry, have become important carriers for energy conservation and emission reduction. These enterprises are characterized by significant energy consumption and high carbon emissions, greatly impacting the economic and environmental benefits of regional power grids. Existing research often focuses on grid revenue, leaving high-energy-consuming enterprises in a passive regulatory position. To address this, this paper constructs an economic dispatch strategy for power grids that considers waste heat utilization in high-energy-consuming enterprises. A typical representative, electrolytic aluminum load and its waste heat utilization model, for the entire production process of high-energy-consuming loads, is established. Using a tiered carbon trading calculation formula, a low-carbon production scheme for high-energy-consuming enterprises is developed. On the grid side, considering local load levels, the uncertainty of wind power output, and the energy demands of aluminum production, a robust day-ahead economic dispatch model is established. Case analysis based on the modified IEEE-30 node system demonstrates that the proposed method balances economic efficiency and low-carbon performance while reducing the conservatism of traditional optimization approaches. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

34 pages, 9378 KiB  
Article
Contribution of Glazed Additions as Passive Elements of the Reduction in Energy Consumption in Detached Houses
by Hristina Krstić, Dušan Ranđelović, Vladan Jovanović, Marko Mančić and Branislava Stoiljković
Buildings 2025, 15(15), 2715; https://doi.org/10.3390/buildings15152715 - 1 Aug 2025
Viewed by 125
Abstract
If implemented properly in architectural design, passive measures can contribute to achieving the desired comfort in a building while reducing its energy consumption. Glazed additions in the form of sunspaces or greenhouses can influence the improvement of building energy efficiency and, at the [...] Read more.
If implemented properly in architectural design, passive measures can contribute to achieving the desired comfort in a building while reducing its energy consumption. Glazed additions in the form of sunspaces or greenhouses can influence the improvement of building energy efficiency and, at the same time, create appealing and pleasant building extensions. Through energy simulations performed using EnergyPlus software, this study aims to analyze the potential contribution of glazed additions to a detached house to reducing energy consumption and creating additional space for living. Research was performed as a case study at the following locations: Niš (Serbia), Berlin (Germany), and Tromsø (Norway). For the purposes of this study, five models (M0–M4) were developed and subjected to analysis across two different scenarios. The results of the conducted research showed that the integration of glazed elements can significantly contribute to energy savings: maximum total annual savings regarding heating and cooling go from 21% for Tromsø, up to 32% for Berlin and 40% for Niš, depending on whether the building to which the glazed element(s) is/are attached is insulated or not and the number and the position of glazed elements. Although glazed additions can create a pleasant microclimate around the house, the overheating observed in the study indicates that proper ventilation and shading are mandatory, especially in more southern locations. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

37 pages, 7429 KiB  
Article
Study on the Influence of Window Size on the Thermal Comfort of Traditional One-Seal Dwellings (Yikeyin) in Kunming Under Natural Wind
by Yaoning Yang, Junfeng Yin, Jixiang Cai, Xinping Wang and Juncheng Zeng
Buildings 2025, 15(15), 2714; https://doi.org/10.3390/buildings15152714 - 1 Aug 2025
Viewed by 174
Abstract
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio [...] Read more.
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio (WWR), serving as a core parameter in building envelope design, directly influences building energy consumption, with its optimized design playing a decisive role in balancing natural daylighting, ventilation efficiency, and thermal comfort. This study focuses on the traditional One-Seal dwellings (Yikeyin) in Kunming, China, establishing a dynamic wind field-thermal environment coupled analysis framework to investigate the impact mechanism of window dimensions (WWR and aspect ratio) on indoor thermal comfort under natural wind conditions in transitional climate zones. Utilizing the Grasshopper platform integrated with Ladybug, Honeybee, and Butterfly plugins, we developed parametric models incorporating Kunming’s Energy Plus Weather meteorological data. EnergyPlus and OpenFOAM were employed, respectively, for building heat-moisture balance calculations and Computational Fluid Dynamic (CFD) simulations, with particular emphasis on analyzing the effects of varying WWR (0.05–0.20) on temperature-humidity, air velocity, and ventilation efficiency during typical winter and summer weeks. Key findings include, (1) in summer, the baseline scenario with WWR = 0.1 achieves a dynamic thermal-humidity balance (20.89–24.27 °C, 65.35–74.22%) through a “air-permeable but non-ventilative” strategy, though wing rooms show humidity-heat accumulation risks; increasing WWR to 0.15–0.2 enhances ventilation efficiency (2–3 times higher air changes) but causes a 4.5% humidity surge; (2) winter conditions with WWR ≥ 0.15 reduce wing room temperatures to 17.32 °C, approaching cold thresholds, while WWR = 0.05 mitigates heat loss but exacerbates humidity accumulation; (3) a symmetrical layout structurally constrains central ventilation, maintaining main halls air changes below one Air Change per Hour (ACH). The study proposes an optimized WWR range of 0.1–0.15 combined with asymmetric window opening strategies, providing quantitative guidance for validating the scientific value of vernacular architectural wisdom in low-energy design. Full article
Show Figures

Figure 1

19 pages, 2806 KiB  
Article
Operating Solutions to Improve the Direct Reduction of Iron Ore by Hydrogen in a Shaft Furnace
by Antoine Marsigny, Olivier Mirgaux and Fabrice Patisson
Metals 2025, 15(8), 862; https://doi.org/10.3390/met15080862 (registering DOI) - 1 Aug 2025
Viewed by 252
Abstract
The production of iron and steel plays a significant role in the anthropogenic carbon footprint, accounting for 7% of global GHG emissions. In the context of CO2 mitigation, the steelmaking industry is looking to potentially replace traditional carbon-based ironmaking processes with hydrogen-based [...] Read more.
The production of iron and steel plays a significant role in the anthropogenic carbon footprint, accounting for 7% of global GHG emissions. In the context of CO2 mitigation, the steelmaking industry is looking to potentially replace traditional carbon-based ironmaking processes with hydrogen-based direct reduction of iron ore in shaft furnaces. Before industrialization, detailed modeling and parametric studies were needed to determine the proper operating parameters of this promising technology. The modeling approach selected here was to complement REDUCTOR, a detailed finite-volume model of the shaft furnace, which can simulate the gas and solid flows, heat transfers and reaction kinetics throughout the reactor, with an extension that describes the whole gas circuit of the direct reduction plant, including the top gas recycling set up and the fresh hydrogen production. Innovative strategies (such as the redirection of part of the bustle gas to a cooling inlet, the use of high nitrogen content in the gas, and the introduction of a hot solid burden) were investigated, and their effects on furnace operation (gas utilization degree and total energy consumption) were studied with a constant metallization target of 94%. It has also been demonstrated that complete metallization can be achieved at little expense. These strategies can improve the thermochemical state of the furnace and lead to different energy requirements. Full article
(This article belongs to the Special Issue Recent Developments and Research on Ironmaking and Steelmaking)
Show Figures

Graphical abstract

29 pages, 5343 KiB  
Article
Optimizing Electric Bus Efficiency: Evaluating Seasonal Performance in a Southern USA Transit System
by MD Rezwan Hossain, Arjun Babuji, Md. Hasibul Hasan, Haofei Yu, Amr Oloufa and Hatem Abou-Senna
Future Transp. 2025, 5(3), 92; https://doi.org/10.3390/futuretransp5030092 (registering DOI) - 1 Aug 2025
Viewed by 136
Abstract
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced [...] Read more.
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced battery performance, this study presents a contrasting perspective based on a three-year longitudinal analysis of the LYMMO fleet in Orlando, Florida—a subtropical U.S. region. The findings reveal that summer is the most energy-intensive season, primarily due to sustained HVAC usage driven by high ambient temperatures—a seasonal pattern rarely reported in the current literature and a key regional contribution. Additionally, idling time exceeds driving time across all seasons, with HVAC usage during idling emerging as the dominant contributor to total energy consumption. To mitigate these inefficiencies, a proxy-based HVAC energy estimation method and an optimization model were developed, incorporating ambient temperature and peak passenger load. This approach achieved up to 24% energy savings without compromising thermal comfort. Results validated through non-parametric statistical testing support operational strategies such as idling reduction, HVAC control, and seasonally adaptive scheduling, offering practical pathways to improve EB efficiency in warm-weather transit systems. Full article
Show Figures

Figure 1

29 pages, 1858 KiB  
Article
Securing a Renewable Energy Supply for a Single-Family House Using a Photovoltaic Micro-Installation and a Pellet Boiler
by Jakub Stolarski, Ewelina Olba-Zięty, Michał Krzyżaniak and Mariusz Jerzy Stolarski
Energies 2025, 18(15), 4072; https://doi.org/10.3390/en18154072 - 31 Jul 2025
Viewed by 207
Abstract
Photovoltaic (PV) micro-installations producing renewable electricity and automatic pellet boilers producing renewable heat energy are promising solutions for single-family houses. A single-family house equipped with a prosumer 7.56 kWp PV micro-installation and a 26 kW pellet boiler was analyzed. This study aimed to [...] Read more.
Photovoltaic (PV) micro-installations producing renewable electricity and automatic pellet boilers producing renewable heat energy are promising solutions for single-family houses. A single-family house equipped with a prosumer 7.56 kWp PV micro-installation and a 26 kW pellet boiler was analyzed. This study aimed to analyze the production and use of electricity and heat over three successive years (from 1 January 2021 to 31 December 2023) and to identify opportunities for securing renewable energy supply for the house. Electricity production by the PV was, on average, 6481 kWh year−1; the amount of energy fed into the grid was 4907 kWh year−1; and the electricity consumption by the house was 4606 kWh year−1. The electricity supply for the house was secured by drawing an average of 34.2% of energy directly from the PV and 85.2% from the grid. Based on mathematical modeling, it was determined that if the PV installation had been located to the south (azimuth 180°) in the analyzed period, the maximum average production would have been 6897 kWh. Total annual heat and electricity consumption by the house over three years amounted, on average, to 39,059 kWh year−1. Heat energy accounted for a dominant proportion of 88.2%. From a year-round perspective, a properly selected small multi-energy installation can ensure energy self-sufficiency and provide renewable energy to a single-family house. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

20 pages, 8878 KiB  
Article
Identification Method for Resistance Coefficients in Heating Networks Based on an Improved Differential Evolution Algorithm
by Enze Zhou, Yaning Liu, Minjia Du, Junli Yu and Wenxiao Xu
Buildings 2025, 15(15), 2701; https://doi.org/10.3390/buildings15152701 - 31 Jul 2025
Viewed by 159
Abstract
The intelligent upgrade of heating systems faces the challenge of accurately identifying high-dimensional pipe-network resistance coefficients; difficulties in accomplishing this can lead to hydraulic imbalance and redundant energy consumption. To address the limitations of traditional Differential Evolution (DE) algorithms under high-dimensional operating conditions, [...] Read more.
The intelligent upgrade of heating systems faces the challenge of accurately identifying high-dimensional pipe-network resistance coefficients; difficulties in accomplishing this can lead to hydraulic imbalance and redundant energy consumption. To address the limitations of traditional Differential Evolution (DE) algorithms under high-dimensional operating conditions, this paper proposes an Improved Differential Evolution Algorithm (SDEIA) incorporating chaotic mapping, adaptive mutation and crossover strategies, and an immune mechanism. Furthermore, a multi-constrained identification model is constructed based on Kirchhoff’s laws. Validation with actual engineering data demonstrates that the proposed method achieves a lower average relative error in resistance coefficients and exhibits a more concentrated error distribution. SDEIA provides a high-precision tool for multi-heat-source networking and dynamic regulation in heating systems, facilitating low-carbon and intelligent upgrades. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

21 pages, 296 KiB  
Opinion
Populations in the Anthropocene: Is Fertility the Problem?
by Simon Szreter
Populations 2025, 1(3), 17; https://doi.org/10.3390/populations1030017 - 30 Jul 2025
Viewed by 205
Abstract
The article addresses the question of the relative importance of human population size and growth in relation to the environmental problems of planetary heating and biodiversity loss in the current, Anthropocene era. To what extent could policies to encourage lower fertility be justified, [...] Read more.
The article addresses the question of the relative importance of human population size and growth in relation to the environmental problems of planetary heating and biodiversity loss in the current, Anthropocene era. To what extent could policies to encourage lower fertility be justified, while observing that this subject is an inherently contested one. It is proposed that a helpful distinction can be made between specific threats to habitats and biodiversity, as opposed to those related to global energy use and warming. Pressures of over-population can be important in relation to the former. But with regard to the latter—rising per capita energy usage—reduced fertility has historically been positively, not negatively correlated. A case can be made that the high-fertility nations of sub-Saharan Africa could benefit from culturally respectful fertility reduction policies. However, where planetary heating is concerned, it is the hydrocarbon-based, per capita energy-consumption patterns of already low-fertility populations on the other five inhabited continents that is rather more critical. While it will be helpful to stabilise global human population, this cannot be viewed as a solution to the climate crisis problem of this century. That requires relentless focus on reducing hydrocarbon use and confronting the rising inequality since c.1980 that has been exacerbating competitive materialist consumerism. This involves the ideological negotiation of values to promote a culture change that understands and politically embraces a new economics of both human and planetary balance, equity, and distribution. Students of populations can contribute by re-assessing what can be the appropriate demographic units and measures for policies engaging with the challenges of the Anthropocene. Full article
21 pages, 6272 KiB  
Article
Numerical Study of Gas Dynamics and Condensate Removal in Energy-Efficient Recirculation Modes in Train Cabins
by Ivan Panfilov, Alexey N. Beskopylny, Besarion Meskhi and Sergei F. Podust
Fluids 2025, 10(8), 197; https://doi.org/10.3390/fluids10080197 - 29 Jul 2025
Viewed by 175
Abstract
Maintaining the required relative humidity values in the vehicle cabin is an important HVAC task, along with considerations related to the temperature, velocity, air pressure and noise. Deviation from the optimal values worsens the psycho-physiological state of the driver and affects the energy [...] Read more.
Maintaining the required relative humidity values in the vehicle cabin is an important HVAC task, along with considerations related to the temperature, velocity, air pressure and noise. Deviation from the optimal values worsens the psycho-physiological state of the driver and affects the energy efficiency of the train. In this study, a model of liquid film formation on and removal from various cabin surfaces was constructed using the fundamental Navier–Stokes hydrodynamic equations. A special transport model based on the liquid vapor diffusion equation was used to simulate the air environment inside the cabin. The evaporation and condensation of surface films were simulated using the Euler film model, which directly considers liquid–gas and gas–liquid transitions. Numerical results were obtained using the RANS equations and a turbulence model by means of the finite volume method in Ansys CFD. Conjugate fields of temperature, velocity and moisture concentration were constructed for various time intervals, and the dependence values for the film thicknesses on various surfaces relative to time were determined. The verification was conducted in comparison with the experimental data, based on the protocol for measuring the microclimate indicators in workplaces, as applied to the train cabin: the average ranges encompassed temperature changes from 11% to 18%, and relative humidity ranges from 16% to 26%. Comparison with the results of other studies, without considering the phase transition and condensation, shows that, for the warm mode, the average air temperature in the cabin with condensation is 12.5% lower than without condensation, which is related to the process of liquid evaporation from the heated walls. The difference in temperature values for the model with and without condensation ranged from −12.5% to +4.9%. We demonstrate that, with an effective mode of removing condensate film from the window surface, including recirculation modes, the energy consumption of the climate control system improves significantly, but this requires a more accurate consideration of thermodynamic parameters and relative humidity. Thus, considering the moisture condensation model reveals that this variable can significantly affect other parameters of the microclimate in cabins: in particular, the temperature. This means that it should be considered in the numerical modeling, along with the basic heat transfer equations. Full article
Show Figures

Figure 1

Back to TopTop