Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,062)

Search Parameters:
Keywords = energy and electronic materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1898 KB  
Article
Spectra–Stability Relationships in Organic Electron Acceptors: Excited-State Analysis
by Yezi Yang, Xuesong Zhai, Yang Jiang, Jinshan Wang and Chuang Yao
Molecules 2025, 30(22), 4392; https://doi.org/10.3390/molecules30224392 (registering DOI) - 13 Nov 2025
Abstract
The operational stability of organic solar cells critically depends on the excited-state characteristics of electron acceptor materials. Through systematic quantum chemical calculations on four representative acceptors (PCBM, ITIC, Y6, and TBT-26), this study reveals fundamental spectra–stability relationships. Non-fullerene acceptors demonstrate superior light-harvesting with [...] Read more.
The operational stability of organic solar cells critically depends on the excited-state characteristics of electron acceptor materials. Through systematic quantum chemical calculations on four representative acceptors (PCBM, ITIC, Y6, and TBT-26), this study reveals fundamental spectra–stability relationships. Non-fullerene acceptors demonstrate superior light-harvesting with systematically tuned energy levels and significantly lower exciton binding energies (2.05–2.12 eV) compared to PCBM (2.97 eV), facilitating efficient charge separation. Structural dynamics analysis uncovers distinct stability mechanisms: ITIC maintains exceptional structural integrity (anionic RMSD = 0.023, S1 RMSD = 0.134) with superior bond preservation, ensuring balanced performance–stability. Y6 exhibits substantial structural relaxation in excited states (S1 RMSD = 0.307, T1 RMSD = 0.262) despite its low exciton binding energy, indicating significant non-radiative losses. TBT-26 employs selective bond stabilization, preserving acceptor–proximal bonding despite considerable anionic flexibility. These findings establish that optimal molecular design requires both favorable electronic properties and structural preservation in photoactive states, providing crucial guidance for developing efficient and stable organic photovoltaics. Full article
Show Figures

Figure 1

20 pages, 16078 KB  
Article
Shielding Gas Effect on Dendrite-Reinforced Composite Bronze Coatings via WAAM Cladding: Minimizing Defects and Intergranular Bronze Penetration into 09G2S Steel
by Artem Okulov, Yulia Khlebnikova, Olga Iusupova, Lada Egorova, Teona Suaridze, Yury Korobov, Boris Potekhin, Michael Sholokhov, Tushar Sonar, Majid Naseri, Tao He and Zaijiu Li
Technologies 2025, 13(11), 525; https://doi.org/10.3390/technologies13110525 (registering DOI) - 13 Nov 2025
Abstract
Bronze materials are indispensable across numerous industries for enhancing the durability and performance of components, primarily due to their excellent tribological properties, corrosion resistance, and machinability. This study investigates the impact of different atmospheric conditions on the properties of WAAM (wire arc additive [...] Read more.
Bronze materials are indispensable across numerous industries for enhancing the durability and performance of components, primarily due to their excellent tribological properties, corrosion resistance, and machinability. This study investigates the impact of different atmospheric conditions on the properties of WAAM (wire arc additive manufacturing) cladded bronze coatings on 09G2S steel substrate. Specifically, the research examines how varying atmospheres—including ambient air (N2/O2, no shielding gas), pure argon (Ar), carbon dioxide (CO2), and 82% Ar + 18% CO2 (Ar/CO2) mixture—influence coating defectiveness (porosity, cracks, non-uniformity), wettability (manifested as uniform layer formation and strong adhesion), and the extent of intergranular penetration (IGP), leading to the formation of characteristic infiltrated cracks or “bronze whiskers”. Modern investigative techniques such as optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were employed for comprehensive material characterization. Microhardness testing was also carried out to evaluate and confirm the homogeneity of the coating structure. The findings revealed that the bronze coatings primarily consisted of a dominant, highly textured FCC α-Cu phase and a minor BCC α-Fe phase, with Rietveld refinement quantifying a α-Fe volume fraction of ~5%, lattice parameters of a = 0.3616 nm for α-Cu and a = 0.2869 nm for α-Fe, and a modest microstrain of 0.001. The bronze coating deposited under a pure Ar atmosphere exhibited superior performance, characterized by excellent wettability, a uniform, near-defect-free structure with minimal porosity and cracks, and significantly suppressed formation of bronze whiskers, both in quantity and size. Conversely, the coating deposited without a protective atmosphere demonstrated the highest degree of defectiveness, including agglomerated pores and cracks, leading to an uneven interface and extensive whisker growth of varied morphologies. Microhardness tests confirmed that while the Ar-atmosphere coating displayed the lowest hardness (~130 HV0.1), it maintained consistent values across the entire analyzed area, indicating structural homogeneity. These results underscore the critical role of atmosphere selection in WAAM processing for achieving high-quality bronze coatings with enhanced interfacial integrity and functional performance. Full article
Show Figures

Graphical abstract

17 pages, 4760 KB  
Article
Microstructure and Mechanical Properties of CoCrFeNiTax High-Entropy Alloy Prepared by Hot-Pressing Sintering
by Aiyun Jiang, Yajun Zhou, Bo Ren, Jianxiu Liu, Changlin Li and Jiaqiang Qiao
Metals 2025, 15(11), 1244; https://doi.org/10.3390/met15111244 (registering DOI) - 13 Nov 2025
Abstract
Aiming at the drawbacks of the classic CoCrFeNi high-entropy alloy (HEA)—low room-temperature strength and softening above 600 °C, which fail to meet strict material requirements in high-end fields like aerospace—this study used the vacuum hot-pressing sintering process to prepare CoCrFeNiTax HEAs (x [...] Read more.
Aiming at the drawbacks of the classic CoCrFeNi high-entropy alloy (HEA)—low room-temperature strength and softening above 600 °C, which fail to meet strict material requirements in high-end fields like aerospace—this study used the vacuum hot-pressing sintering process to prepare CoCrFeNiTax HEAs (x = 0, 0.5, 1.0, 1.5, 2.0 atom, designated as H4, Ta0.5, Ta1.0, Ta1.5, Ta2.0, respectively). This process effectively inhibits Ta segregation (a key issue in casting) and facilitates the presence uniform microstructures with relative density ≥ 96%, while this study systematically investigates a broader Ta content range (x = 0–2.0 atom) to quantify phase–property evolution, differing from prior works focusing on limited Ta content or casting/spark plasma sintering (SPS). Via X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive spectroscopy (SEM-EDS), microhardness testing, and room-temperature compression experiments, Ta’s regulatory effect on the alloy’s microstructure and mechanical properties was systematically explored. Results show all alloys have a relative density ≥ 96%, verifying the preparation process’s effectiveness. H4 exhibits a single face-centered cubic (FCC) phase. Ta addition transforms it into a “FCC + hexagonal close-packed (HCP) Laves phase” dual-phase system. Mechanically, the alloy’s inner hardness (reflecting the intrinsic property of the material) increases from 280 HV to 1080 HV, the yield strength from 760 MPa to 1750 MPa, and maximum fracture strength reaches 2280 MPa, while plasticity drops to 12%. Its strengthening mainly comes from the combined action of Ta’s solid-solution strengthening (via lattice distortion hindering dislocation motion) and the Laves phase’s second-phase strengthening (further inhibiting dislocation slip). Full article
Show Figures

Figure 1

31 pages, 8504 KB  
Article
Comparative Analysis of Single-Particle Radiation Sensitivity of AlN, Diamond and β-Ga2O3 Semiconductors Exposed to Terrestrial Sea Level Neutrons
by Daniela Munteanu and Jean-Luc Autran
Crystals 2025, 15(11), 975; https://doi.org/10.3390/cryst15110975 (registering DOI) - 12 Nov 2025
Abstract
Aluminum nitride (AlN), diamond, and β-phase gallium oxide (β-Ga2O3) belong to the family of ultra-wide bandgap (UWBG) semiconductors and exhibit remarkable properties for future power and optoelectronic applications. Compared to conventional wide bandgap (WBG) materials such as silicon carbide [...] Read more.
Aluminum nitride (AlN), diamond, and β-phase gallium oxide (β-Ga2O3) belong to the family of ultra-wide bandgap (UWBG) semiconductors and exhibit remarkable properties for future power and optoelectronic applications. Compared to conventional wide bandgap (WBG) materials such as silicon carbide (SiC) and gallium nitride (GaN), they demonstrate clear advantages in terms of high-voltage, high-temperature, and high-frequency operation, as well as extremely high breakdown fields. In this work, numerical simulations are performed to evaluate and compare the radiative responses of AlN, diamond, and β-Ga2O3 when exposed to neutron irradiation covering the full atmospheric spectrum at sea level, from 1 meV to 10 GeV. The Geant4 simulation framework is used to model neutron interactions with the three materials, focusing on single-particle events that may be triggered. A detailed comparison is conducted, particularly concerning the generation of secondary charged particles and their distributions in energy, linear energy transfer (LET), and range given by SRIM. The contribution of the 14N(n,p)14C reaction in AlN is also specifically investigated. In addition, the study examines the consequences of these interactions in terms of electron-hole pair generation and charge deposition, and discusses the implications for the radiation sensitivity of these materials when exposed to atmospheric neutrons. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 3122 KB  
Article
Environmentally Friendly Silk Fibroin/Polyethyleneimine High-Performance Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
by Ziyi Guo, Xinrong Xu, Yue Shen, Menglong Wang, Youzhuo Zhai, Haiyan Zheng and Jiqiang Cao
Coatings 2025, 15(11), 1323; https://doi.org/10.3390/coatings15111323 - 12 Nov 2025
Abstract
Due to the large emissions of greenhouse gases from the burning of fossil fuels and people’s demand for green materials and energy, the development of environmentally friendly triboelectric nanogenerators (TENGs) is becoming increasingly significant. Silk fibroin (SF) is considered an ideal biopolymer candidate [...] Read more.
Due to the large emissions of greenhouse gases from the burning of fossil fuels and people’s demand for green materials and energy, the development of environmentally friendly triboelectric nanogenerators (TENGs) is becoming increasingly significant. Silk fibroin (SF) is considered an ideal biopolymer candidate for fabricating green TENGs due to its biodegradability and renewability. However, its intrinsic brittleness and relatively weak triboelectric performance severely limit its practical applications. In this study, SF was physically blended with poly(ethylenimine) (PEI), a polymer rich in amino groups, to fabricate SF/PEI composite films. The resulting films were employed as tribopositive layers and paired with a poly(tetrafluoroethylene) (PTFE) tribonegative layer to assemble high-performance TENGs. Experimental results revealed that the incorporation of PEI markedly enhanced the flexibility and electron-donating capability of composite films. By optimizing the material composition, the SF/PEI-based TENG achieved an open-circuit voltage as high as 275 V and a short-circuit current of 850 nA, with a maximum output power density of 13.68 μW/cm2. Application tests demonstrated that the device could serve as an efficient self-powered energy source, capable of lighting up 66 LEDs effortlessly through simple hand tapping and driving small electronic components such as timers. In addition, the device can function as a highly sensitive self-powered sensor, capable of generating rapid and distinguishable electrical responses to various human motions. This work not only provides an effective strategy to overcome the intrinsic limitations of SF-based materials but also opens up new avenues for the development of high-performance and environmentally friendly technologies for energy harvesting and sensing. Full article
Show Figures

Figure 1

24 pages, 14785 KB  
Article
Characteristics of the Novel Electron Beam Hardening Technology for Submicron Bainitic Steels in the Context of Its Application in the Production of Gears and Comparison with the Competitive Laser Beam Technology
by Piotr Śliwiński, Andrzej N. Wieczorek, Emilia Skołek, Marciniak Szymon, Arkadiusz Pawlikowski, Paweł Nuckowski, Łukasz Reimann, Marek S. Węglowski, Jerzy Dworak and Paweł Pogorzelski
Coatings 2025, 15(11), 1321; https://doi.org/10.3390/coatings15111321 - 12 Nov 2025
Abstract
The objective of this study was to investigate electron beam hardening (EBH) technology and compare its performance with laser beam hardening (LBH) in the context of manufacturing components such as gears, which increasingly employ submicron bainitic steels. Given the stringent demands for durability [...] Read more.
The objective of this study was to investigate electron beam hardening (EBH) technology and compare its performance with laser beam hardening (LBH) in the context of manufacturing components such as gears, which increasingly employ submicron bainitic steels. Given the stringent demands for durability and fatigue resistance of gear teeth, identifying an optimal surface hardening method is essential for extending service life. Comprehensive analyses, including light and electron microscopy, hardness testing, tribocorrosion testing, and X-ray diffraction for phase composition, were conducted. The EBH-treated layer exhibited a slightly higher hardness (by 26 HV) compared to the LBH-treated layer (average 654 HV), while the base material measured 393 HV. The EBH process produced a uniform hardness distribution with a subsurface zone of reduced hardness. In contrast, LBH resulted in a surface oxide layer absent in EBH due to its vacuum environment. Both techniques reduced the residual austenite content in the surface layer from 22.5% to approximately 1.3%–1.4%. Notably, EBH achieved comparable hardening effects with nearly half the energy input of LBH, demonstrating superior energy efficiency and industrial feasibility. Application of the developed EBH process to an actual gear component confirmed its practical potential for modern gear manufacturing. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

17 pages, 3862 KB  
Article
Study of Heat Transfer Characteristics of PCMs Melting Inside Aluminum Foams
by Farjad Shahid Hasan Khan and Andrea Diani
Materials 2025, 18(22), 5130; https://doi.org/10.3390/ma18225130 - 11 Nov 2025
Abstract
This study examines the thermal performance of phase change material (PCM)–metal foam composites under base heating, a configuration more relevant to compact thermal energy storage (TES) and electronics-cooling applications, compared to the widely studied side-heated case. Metal foams with pore densities of 10, [...] Read more.
This study examines the thermal performance of phase change material (PCM)–metal foam composites under base heating, a configuration more relevant to compact thermal energy storage (TES) and electronics-cooling applications, compared to the widely studied side-heated case. Metal foams with pore densities of 10, 20, and 40 PPI, but identical porosity (volumetric value), were impregnated with two PCMs (paraffin RT55 and RT64HC) and tested under varying heat fluxes. The thermophysical properties of three PCMs (RT42, RT55, and RT64HC) were first characterized using the T-history method. A control case consisting of pure PCM revealed significant thermal lag between the heater and the PCM, whereas the inclusion of a metal foam improved temperature uniformity and accelerated melting. The results showed that PPI variation had little influence on melting completion time, while PCM type, viz., melting temperature, strongly affected duration. Heat flux was the dominant parameter: higher input power substantially reduced melting times, although diminishing returns were observed at elevated heat fluxes. An empirical correlation from the literature, originally developed for side-heated foams, was applied to the base-heated configuration and reproduced the main melting trends, though it consistently underpredicted completion times at high fluxes. Overall, embedding PCMs in metal foams enhances heat transfer, mitigates localized overheating, and enables more compact and efficient TES systems. Future work should focus on developing correlations for non-adiabatic cases, exploring advanced foam architecture, and scaling the approach for practical energy storage and cooling applications. Full article
(This article belongs to the Special Issue Advances in Porous Lightweight Materials and Lattice Structures)
Show Figures

Graphical abstract

21 pages, 3086 KB  
Review
Polymer-Based Artificial Solid Electrolyte Interphase Layers for Li- and Zn-Metal Anodes: From Molecular Engineering to Operando Visualization
by Jae-Hee Han and Joonho Bae
Polymers 2025, 17(22), 2999; https://doi.org/10.3390/polym17222999 - 11 Nov 2025
Abstract
Metal anodes promise improvements in energy density and cost; however, their performance is determined within the first several nanometers at the interface. This review reports on how polymer-based artificial solid electrolyte interphases (SEIs) are engineered to stabilize Li and aqueous-Zn anodes, and how [...] Read more.
Metal anodes promise improvements in energy density and cost; however, their performance is determined within the first several nanometers at the interface. This review reports on how polymer-based artificial solid electrolyte interphases (SEIs) are engineered to stabilize Li and aqueous-Zn anodes, and how these designs are now evaluated against operando readouts rather than post-mortem snapshots. We group the related molecular strategies into three classes: (i) side-chain/ionomer chemistry (salt-philic, fluorinated, zwitterionic) to increase cation selectivity and manage local solvation; (ii) dynamic or covalently cross-linked networks to absorb microcracks and maintain coverage during plating/stripping; and (iii) polymer–ceramic hybrids that balance modulus, wetting, and ionic transport characteristics. We then benchmark these choices against metal-specific constraints—high reductive potential and inactive Li accumulation for Li, and pH, water activity, corrosion, and hydrogen evolution reaction (HER) for Zn—showing why a universal preparation method is unlikely. A central element is a system of design parameters and operando metrics that links material parameters to readouts collected under bias, including the nucleation overpotential (ηnuc), interfacial impedance (charge transfer resistance (Rct)/SEI resistance (RSEI)), morphology/roughness statistics from liquid-cell or cryogenic electron microscopy (Cryo-EM), stack swelling, and (for Li) inactive-Li inventory. By contrast, planar plating/stripping and HER suppression are primary success metrics for Zn. Finally, we outline parameters affecting these systems, including the use of lean electrolytes, the N/P ratio, high areal capacity/current density, and pouch-cell pressure uniformity, and discuss closed-loop workflows that couple molecular design with multimodal operando diagnostics. In this view, polymer artificial SEIs evolve from curated “recipes” into predictive, transferable interfaces, paving a path from coin-cell to prototype-level Li- and Zn-metal batteries. Full article
(This article belongs to the Special Issue Advanced Preparation and Characterization of Polymer-Based Thin Films)
Show Figures

Figure 1

11 pages, 5414 KB  
Article
Characterization of Cobalt-Based Composite Multilayer Laser-Cladded Coatings
by Iasmina-Mădălina Anghel, Alexandru Pascu, Iosif Hulka, Dino Horst Woelk, Ion-Dragoș Uțu and Gabriela Mărginean
Crystals 2025, 15(11), 970; https://doi.org/10.3390/cryst15110970 - 11 Nov 2025
Abstract
Laser cladding is an essential method for strengthening and restoring component surfaces. To increase its efficacy and provide a reliable surface treatment technique, it is necessary to optimize process parameters, enhance material adhesion, and guarantee high-quality, reliable coatings. These measures help to extend [...] Read more.
Laser cladding is an essential method for strengthening and restoring component surfaces. To increase its efficacy and provide a reliable surface treatment technique, it is necessary to optimize process parameters, enhance material adhesion, and guarantee high-quality, reliable coatings. These measures help to extend the lifespan of components. In this study, the surfaces of AISI 904L stainless steel samples were cladded to prepare various Co-based composite coatings with single and multiple layers reinforced with WC–CoCr–Ni powder. The phases within the newly developed layers were investigated using X-ray Diffraction (XRD), while the microstructure was examined using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX). Further tests were performed to assess the hardness, wear resistance and corrosion performance of the deposited coatings. Analyzing and comparing the coatings, it was observed that the coating performance increased with increasing thickness and generally due to a lower amount of Fe present within the microstructure. Full article
(This article belongs to the Special Issue Crystallization of High Performance Metallic Materials (2nd Edition))
Show Figures

Figure 1

19 pages, 3974 KB  
Article
First-Principles Investigation of Structural, Electronic, Thermoelectric, and Hydrogen Storage Properties of MgXH3 (X = Cr, Mn, Fe, Co, Ni, Cu) Perovskite Hydrides
by Ayoub Koufi, Younes Ziat and Hamza Belkhanchi
Hydrogen 2025, 6(4), 106; https://doi.org/10.3390/hydrogen6040106 - 11 Nov 2025
Viewed by 27
Abstract
This paper is based on the BoltzTrap package implemented in the Wien2k code to theoretically analyze and predict the structural, electronic, thermoelectric, and hydrogen storage properties of MgXH3 hydride perovskites (X = Cr, Mn, Fe, Co, Ni, and Cu). The [...] Read more.
This paper is based on the BoltzTrap package implemented in the Wien2k code to theoretically analyze and predict the structural, electronic, thermoelectric, and hydrogen storage properties of MgXH3 hydride perovskites (X = Cr, Mn, Fe, Co, Ni, and Cu). The study explores the dual functional potential of these compounds, highlighting how their hydrogen storage capability relates to their temperature-dependent thermoelectric performance. Analysis of band structures and densities of electronic states (DOS) reveals that all the compounds studied exhibit metallic behavior, characterized by an overlap between the valence band and the conduction band, indicating a zero electronic gap. Thermal properties show great variability depending on the transition metal involved. In particular, electrical conductivity and thermal conductivity evolve differently with temperature, directly influencing the figure of merit (Zt) of thermoelectric materials. The results suggest that although most MgXH3 compounds are not promising candidates for thermoelectric applications due to their high thermal conductivity and low density of states near the EF, MgNiH3 and MgCuH3 stand out with attractive thermoelectric potential. These properties make them attractive for energy conversion, waste heat recovery and solid-state cooling applications. This theoretical study highlights the potential of magnesium-based perovskite hydrides in energy conversion technologies, including thermoelectricity and hydrogen storage. Full article
(This article belongs to the Special Issue Advances in Solid-State Hydrogen and Energy Storage)
Show Figures

Figure 1

13 pages, 1345 KB  
Article
Structural, Mechanical, and Electronic Properties of High-Hardness Silicon Tetranitride
by Lulu Liu, Jiacheng Qi, Chi Ding, Dinghui Wang and Shoutao Zhang
Molecules 2025, 30(22), 4357; https://doi.org/10.3390/molecules30224357 - 11 Nov 2025
Viewed by 44
Abstract
Materials with high hardness are critical for industrial and aerospace applications, prompting the search for novel compounds with robust covalent networks. Using a first-principles structure prediction method, we systematically explored the phase stability of Si–N compounds under high pressure. We identified two thermodynamically [...] Read more.
Materials with high hardness are critical for industrial and aerospace applications, prompting the search for novel compounds with robust covalent networks. Using a first-principles structure prediction method, we systematically explored the phase stability of Si–N compounds under high pressure. We identified two thermodynamically stable phases: Si6N with P-1 symmetry and SiN4 with space group R-3c. Phonon spectra and ab initio molecular dynamics simulations confirm the dynamical and thermal stability of R-3c SiN4 at ambient pressure and up to 2000 K. Notably, R-3c SiN4 exhibits exceptional mechanical properties with a Vickers hardness of 31 GPa, a bulk modulus of 259.53 GPa, and a Young’s modulus of 485.38 GPa. Furthermore, SiN4 possesses a high energy density (1.1 kJ·g−1) and outstanding detonation pressure and velocity (228 kbar, 7.11 km·s−1), both exceeding those of TNT, making it a potential high-energy-density materials. In addition, electronic structure analysis reveals SiN4 has a band gap of 2.5 eV, confirming its nonmetallic characteristics and strongly covalent nature. These findings provide theoretical guidance for the future synthesis of Si–N phases and establish a foundation for designing novel materials that combine high hardness with high-energy density performance. Full article
Show Figures

Graphical abstract

40 pages, 29928 KB  
Article
Enhancing the Printability of Laser Powder Bed Fusion-Processed Aluminum 7xxx Series Alloys Using Grain Refinement and Eutectic Solidification Strategies
by Chukwudalu Uchenna Uba, Huan Ding, Yehong Chen, Shengmin Guo and Jonathan Richard Raush
Materials 2025, 18(22), 5089; https://doi.org/10.3390/ma18225089 - 9 Nov 2025
Viewed by 368
Abstract
As the most commercially developed metal additive process, laser powder bed fusion (LPBF) is vital to advancing several industry sectors, enabling high-precision part production across aerospace, biomedical, and manufacturing industries. Al 7075 alloy offers low density and high-specific strength yet faces LPBF challenges [...] Read more.
As the most commercially developed metal additive process, laser powder bed fusion (LPBF) is vital to advancing several industry sectors, enabling high-precision part production across aerospace, biomedical, and manufacturing industries. Al 7075 alloy offers low density and high-specific strength yet faces LPBF challenges such as hot cracking and porosity due to rapid solidification, thermal gradients, and a wide freezing range. To address these challenges, this study proposes an integrated computational and experimental framework to enhance the LPBF processability of Al 7xxx alloys by compositional modification. Using the Calculation of Phase Diagram approach, printable Al 7xxx compositions were designed by adding grain refiners (V and/or Ti) and a eutectic solidification enhancer (Mg) to Al 7075 alloy to enable grain refinement and eutectic solidification. Subsequent LPBF experiments and characterization tests, such as metallography (scanning electron microscopy), energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray micro-computed tomography, confirmed the production of refined microstructures with reduced defects. This study contributes to existing approaches for producing high-quality Al 7xxx alloy parts without significant compositional deviations using an integrated computational and experimental approach. Finally, aligning with the Materials Genome Initiative, this study contributes to the development and industrial adoption of advanced materials. Full article
Show Figures

Figure 1

15 pages, 3641 KB  
Article
Magnetic Properties of Nitrogen-Doped Graphene Induced by Dopant Configurations
by Madhuparna Chakraborty, Gregory Jensen, David C. Ingram, Eric Stinaff and Wojciech M. Jadwisienczak
Nanomaterials 2025, 15(22), 1694; https://doi.org/10.3390/nano15221694 - 9 Nov 2025
Viewed by 182
Abstract
In this study, we experimentally demonstrate that the magnetic properties of nitrogen-doped graphene (NG) are influenced by the configuration of nitrogen dopants, namely graphitic, pyridinic, and pyrrolic, along with the overall nitrogen concentration. The NG materials were prepared via a two-step thermal treatment [...] Read more.
In this study, we experimentally demonstrate that the magnetic properties of nitrogen-doped graphene (NG) are influenced by the configuration of nitrogen dopants, namely graphitic, pyridinic, and pyrrolic, along with the overall nitrogen concentration. The NG materials were prepared via a two-step thermal treatment process. The first step involved heating in ammonia at 400 °C, followed by a second post-annealing step at 600 °C. Scanning Electron Microscopy–Energy Dispersive X-ray Spectroscopy (SEM–EDS) analysis performed at 25 μm resolution confirmed uniform elemental distribution across the samples. X-ray photoelectron spectroscopy (XPS) revealed that while the total nitrogen content decreased from 11.9 at.% in NG to 5.5 at.% in the post-annealed sample, the ratio of graphitic to pyrrolic nitrogen increased from 0.4% to 3.8% and the ratio of graphitic to pyridinic nitrogen increased from 0.8% to 2.5%. Raman spectroscopy confirmed the presence of prominent D and G bands at ~1352 cm−1 and ~1589 cm−1, respectively, along with a 2D band at ~2692 cm−1, indicating the presence of few-layered graphene and defect-related features. The IDIG ratio increased from 1.12 to 1.27 in the post-annealed sample, indicating increased disorder after annealing. Magnetic characterization showed a marked enhancement in the magnetic properties with increased graphitic nitrogen content. The saturation magnetization (Ms) reached 0.13 emu g−1, ~42% higher than that of the material heated in ammonia, with the coercivity increasing from 40 Oe to 750 Oe. These results emphasize the pivotal role of nitrogen configuration in the graphene host, specifically the promotion of graphitic nitrogen species, in tailoring the ferromagnetic response of NG. Full article
Show Figures

Figure 1

29 pages, 8337 KB  
Article
Lime and Nano-Limestone Composite-Based Pretreatment and Adsorption Strategies for Olive Mill Wastewater Treatment: Toward Efficient and Sustainable Solutions
by Abeer Al Bawab, Razan Afaneh, Muna A. Abu-Dalo, Fadwa Odeh, Mustafa Al Kuisi and Nathir A. F. Al-Rawashdeh
J. Compos. Sci. 2025, 9(11), 618; https://doi.org/10.3390/jcs9110618 - 9 Nov 2025
Viewed by 230
Abstract
The treatment of olive mill wastewater (OMW) remains a major environmental challenge due to its high organic load and phenolic content. This study investigates a combined approach using lime pretreatment and limestone (LS)-based adsorption for cost-effective and sustainable OMW remediation. Locally sourced limestone [...] Read more.
The treatment of olive mill wastewater (OMW) remains a major environmental challenge due to its high organic load and phenolic content. This study investigates a combined approach using lime pretreatment and limestone (LS)-based adsorption for cost-effective and sustainable OMW remediation. Locally sourced limestone was used in both micro- and nanoscale forms, while lime (CaO) was produced by calcination. The materials were characterized using X-ray Diffraction pattern (XRD), Scanning Electron Microscopy (SEM), Brunauer–Emmett–Teller (BET), and Point of Zero Charge (pHPZC) analyses to evaluate surface properties relevant to adsorption. Lime pretreatment achieved notable reductions in total suspended solids (TSS, 99%), chemical oxygen demand (COD, 43%), and total phenolic content (TPC, 48%). Subsequent adsorption with nano-limestone (particles obtained through high-energy ball milling, followed by sieving, with a size distribution 400–500 nm) further enhanced pollutant removal, achieving up to 72% COD and 89% TPC reduction in batch experiments. Column studies confirmed the synergistic effect of mixed particle sizes, yielding 65% COD and 76% TPC removal. The combined process demonstrates the potential of lime–limestone composites as locally available and eco-friendly materials for OMW treatment. While promising, the results represent laboratory-scale findings; further optimization and long-term assessments are recommended for field applications. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution, 2nd Edition)
Show Figures

Graphical abstract

29 pages, 10757 KB  
Article
Chitosan Composites Functionalized with Green-Synthesized Silver Nanoparticles from Manacá-da-Serra Flowers for the Disinfection of Industrial Wastewater
by Axel John Pascal Jacquot, Wellington Vieira de Souza, Giovanna Machado, Mariana Roesch-Ely, Janaina da Silva Crespo, Jordana Bortoluz and Marcelo Giovanela
Processes 2025, 13(11), 3622; https://doi.org/10.3390/pr13113622 - 8 Nov 2025
Viewed by 178
Abstract
Green silver nanoparticles (AgNPs) have been increasingly recognized for their antimicrobial properties and environmental compatibility. In this study, AgNPs were synthesized using an aqueous extract of Manacá-da-Serra (Pleroma sellowianum) flowers as a natural reducing and stabilizing agent and subsequently incorporated into [...] Read more.
Green silver nanoparticles (AgNPs) have been increasingly recognized for their antimicrobial properties and environmental compatibility. In this study, AgNPs were synthesized using an aqueous extract of Manacá-da-Serra (Pleroma sellowianum) flowers as a natural reducing and stabilizing agent and subsequently incorporated into a chitosan matrix to produce functionalized composites for industrial wastewater disinfection. Optimal synthesis conditions were achieved at pH 12.0, 25 °C, and 0.01 mol/L AgNO3, yielding uniformly dispersed spherical NPs (20–30 nm) with moderate colloidal stability (zeta potential ≈ −14 mV) and a minimum inhibitory concentration of 5 μL/mL against Escherichia coli and Staphylococcus aureus. The effective integration of AgNPs into the biopolymer was verified by Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS). The interaction between AgNPs and chitosan was confirmed by the data, while successful NP incorporation was further supported by homogeneous Ag distribution and improved thermal stability. Inhibition zones of 11 ± 1 mm (S. aureus) and 9 ± 1 mm (E. coli) were revealed by antimicrobial assays. For industrial wastewater disinfection, a total coliform reduction of >99.9% was achieved within 180 min, with Ag release remaining at 0.01 mg/L, below the regulatory threshold. The synergistic effect between chitosan and green-synthesized AgNPs was highlighted by these findings, demonstrating the potential of this environmentally friendly material for efficient, safe, and sustainable wastewater disinfection and reuse. Full article
(This article belongs to the Special Issue Advances in Water Resource Pollution Mitigation Processes)
Show Figures

Figure 1

Back to TopTop