Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (258)

Search Parameters:
Keywords = endoplasmic reticulum chaperone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7055 KiB  
Article
Cardiopulmonary Bypass-Induced IL-17A Aggravates Caspase-12-Dependent Neuronal Apoptosis Through the Act1-IRE1-JNK1 Pathway
by Ruixue Zhao, Yajun Ma, Shujuan Li and Junfa Li
Biomolecules 2025, 15(8), 1134; https://doi.org/10.3390/biom15081134 - 6 Aug 2025
Abstract
Cardiopulmonary bypass (CPB) is associated with significant neurological complications, yet the mechanisms underlying brain injury remain unclear. This study investigated the role of interleukin-17A (IL-17A) in exacerbating CPB-induced neuronal apoptosis and identified vulnerable brain regions. Utilizing a rat CPB model and an oxygen–glucose [...] Read more.
Cardiopulmonary bypass (CPB) is associated with significant neurological complications, yet the mechanisms underlying brain injury remain unclear. This study investigated the role of interleukin-17A (IL-17A) in exacerbating CPB-induced neuronal apoptosis and identified vulnerable brain regions. Utilizing a rat CPB model and an oxygen–glucose deprivation/reoxygenation (OGD/R) cellular model, we demonstrated that IL-17A levels were markedly elevated in the hippocampus post-CPB, correlating with endoplasmic reticulum stress (ERS)-mediated apoptosis. Transcriptomic analysis revealed the enrichment of IL-17 signaling and apoptosis-related pathways. IL-17A-Neutralizing monoclonal antibody (mAb) and the ERS inhibitor 4-phenylbutyric acid (4-PBA) significantly attenuated neurological deficits and hippocampal neuronal damage. Mechanistically, IL-17A activated the Act1-IRE1-JNK1 axis, wherein heat shock protein 90 (Hsp90) competitively regulated Act1-IRE1 interactions. Co-immunoprecipitation confirmed the enhanced Hsp90-Act1 binding post-CPB, promoting IRE1 phosphorylation and downstream caspase-12 activation. In vitro, IL-17A exacerbated OGD/R-induced apoptosis via IRE1-JNK1 signaling, reversible by IRE1 inhibition. These findings identify the hippocampus as a key vulnerable region and delineate a novel IL-17A/Act1-IRE1-JNK1 pathway driving ERS-dependent apoptosis. Targeting IL-17A or Hsp90-mediated chaperone switching represents a promising therapeutic strategy for CPB-associated neuroprotection. This study provides critical insights into the molecular crosstalk between systemic inflammation and neuronal stress responses during cardiac surgery. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

33 pages, 2423 KiB  
Review
Chaperone-Mediated Responses and Mitochondrial–Endoplasmic Reticulum Coupling: Emerging Insight into Alzheimer’s Disease
by Manish Kumar Singh, Minghao Fu, Sunhee Han, Jyotsna S. Ranbhise, Wonchae Choe, Sung Soo Kim and Insug Kang
Cells 2025, 14(15), 1179; https://doi.org/10.3390/cells14151179 - 31 Jul 2025
Viewed by 431
Abstract
Alzheimer’s disease (AD) is increasingly recognized as a multifactorial disorder driven by a combination of disruptions in proteostasis and organelle communication. The 2020 Lancet commission reported that approximately 10 million people worldwide were affected by AD in the mid-20th century. AD is the [...] Read more.
Alzheimer’s disease (AD) is increasingly recognized as a multifactorial disorder driven by a combination of disruptions in proteostasis and organelle communication. The 2020 Lancet commission reported that approximately 10 million people worldwide were affected by AD in the mid-20th century. AD is the most prevalent cause of dementia. By early 2030, the global cost of dementia is projected to rise by USD 2 trillion per year, with up to 85% of that cost attributed to daily patient care. Several factors have been implicated in the progression of neurodegeneration, including increased oxidative stress, the accumulation of misfolded proteins, the formation of amyloid plaques and aggregates, the unfolded protein response (UPR), and mitochondrial–endoplasmic reticulum (ER) calcium homeostasis. However, the exact triggers that initiate these pathological processes remain unclear, in part because clinical symptoms often emerge gradually and subtly, complicating early diagnosis. Among the early hallmarks of neurodegeneration, elevated levels of reactive oxygen species (ROS) and the buildup of misfolded proteins are believed to play pivotal roles in disrupting proteostasis, leading to cognitive deficits and neuronal cell death. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles is a characteristic feature of AD. These features contribute to chronic neuroinflammation, which is marked by the release of pro-inflammatory cytokines and chemokines that exacerbate oxidative stress. Given these interconnected mechanisms, targeting stress-related signaling pathways, such as oxidative stress (ROS) generated in the mitochondria and ER, ER stress, UPR, and cytosolic chaperones, represents a promising strategy for therapeutic intervention. This review focuses on the relationship between stress chaperone responses and organelle function, particularly the interaction between mitochondria and the ER, in the development of new therapies for AD and related neurodegenerative disorders. Full article
Show Figures

Figure 1

26 pages, 5665 KiB  
Article
A New GlyT2 Variant Associated with Hyperekplexia
by Jorge Sarmiento-Jiménez, Raquel Felipe, Enrique Núñez, Alejandro Ferrando-Muñoz, Cristina Benito-Muñoz, Federico Gago, Jesús Vázquez, Emilio Camafeita, Emma Clement, Brian Wilson and Beatriz López-Corcuera
Int. J. Mol. Sci. 2025, 26(14), 6753; https://doi.org/10.3390/ijms26146753 - 14 Jul 2025
Viewed by 245
Abstract
Hyperekplexia (OMIM 149400), a sensorimotor syndrome of perinatal clinical relevance, causes newborns to display an energic startle reflex in response to certain trivial stimuli. This condition can be lethal due to apnea episodes. The disease is caused by a blockade of glycinergic neurotransmission. [...] Read more.
Hyperekplexia (OMIM 149400), a sensorimotor syndrome of perinatal clinical relevance, causes newborns to display an energic startle reflex in response to certain trivial stimuli. This condition can be lethal due to apnea episodes. The disease is caused by a blockade of glycinergic neurotransmission. Glycinergic interneurons preserve their identity by the activity of the surface glycine transporter GlyT2, which supplies glycine to presynaptic terminals to maintain glycine content in synaptic vesicles. Loss-of-function mutations in the GlyT2 gene (SLC6A5) cause a presynaptic form of human hyperekplexia. Here, we describe a new GlyT2 variant found in an infantile patient diagnosed with hyperekplexia. A missense mutation in the open reading frame of the GlyT2 gene inherited in homozygosity caused the substitution G449E in a residue highly conserved across the phylogenetic scale. The sequences of the glycine receptor genes GLRA1 and GLRB did not show abnormalities. We expressed the recombinant GlyT2 variant in heterologous cells and analyzed its pathogenic mechanism. The transporter was totally inactive, behaving as a bona fide loss-of-function mutant. Furthermore, the mutation promoted the abnormal insertion of the protein into the membrane, leading to its large incorporation into lipid rafts. However, there was no apparent alteration of wild-type trafficking upon mutant coexpression, as the mutant was prematurely degraded from the endoplasmic reticulum. Rescue with chemical chaperones was not possible for this mutant. Proteomics demonstrated that the expression of the mutant induced the unfolded protein response and interfered with raft-dependent processes. Therefore, the new variant causes a loss of function regarding GlyT2 activity but a gain of function as a cell proteostasis disturber. Full article
(This article belongs to the Special Issue Genetic and Genomic Diagnostics for Rare Diseases)
Show Figures

Graphical abstract

35 pages, 1216 KiB  
Review
Modulation of Endoplasmic Reticulum Stress in Experimental Anti-Cancer Therapy
by Natalia Ivanovna Agalakova
Int. J. Mol. Sci. 2025, 26(13), 6407; https://doi.org/10.3390/ijms26136407 - 3 Jul 2025
Viewed by 588
Abstract
The growth of tumor cells is accompanied by an increased rate of endoplasmic reticulum stress (ERS), the accumulation of misfolded proteins, and the activation of a network of adaptive signaling pathways known as the unfolded protein response (UPR). Although the UPR is an [...] Read more.
The growth of tumor cells is accompanied by an increased rate of endoplasmic reticulum stress (ERS), the accumulation of misfolded proteins, and the activation of a network of adaptive signaling pathways known as the unfolded protein response (UPR). Although the UPR is an adaptive reaction aiming to restore ER proteostasis, prolonged and severe ERS leads to cell death. Taking into account that the components of the ERS/UPR machinery in cancers of different types can be overexpressed or downregulated, both the induction of excessive ERS and suppression of UPR have been proposed as therapeutic strategies to sensitize cells to conventional chemotherapy. This narrative review presents a several examples of using natural and synthetic compounds that can either induce persistent ERS by selectively blocking ER Ca2+ pumps (SERCA) to disrupt ER Ca2+ homeostasis, or altering the activity of UPR chaperones and sensors (GRP78, PERK, IRE1α, and ATF6) to impair protein degradation signaling. The molecular alterations induced by miscellaneous inhibitors of ERS/UPR effectors are described as well. These agents showed promising therapeutic effects as a part of combination therapy in preclinical experimental settings; however, the number of clinical trials is still limited, while their results are inconsistent. Multiple side effects, high toxicity to normal cells, or poor bioavailability also hampers their clinical application. Since the pharmacological modulation of ERS/UPR is a valuable approach to sensitize cancer cells to standard chemotherapy, the search for more selective agents with better stability and low toxicity, as well as the development of more efficient delivery systems that can increase their therapeutic specificity, are highly required goals for future studies. Full article
Show Figures

Figure 1

22 pages, 4917 KiB  
Article
FVIII Trafficking Dynamics Across Subcellular Organelles Using CRISPR/Cas9 Specific Gene Knockouts
by Salime El Hazzouri, Rawya Al-Rifai, Nicole Surges, Melanie Rath, Heike Singer, Johannes Oldenburg and Osman El-Maarri
Int. J. Mol. Sci. 2025, 26(13), 6349; https://doi.org/10.3390/ijms26136349 - 1 Jul 2025
Viewed by 525
Abstract
Factor VIII (FVIII) interacts with Endoplasmic Reticulum (ER) chaperones Calnexin (CANX) and Calreticulin (CALR) and with ER-Golgi Intermediate Compartment (ERGIC) transporters, Lectin, mannose-binding 1 (LMAN1) and Multiple Coagulation Deficiency 2 (MCFD2). We previously reported that the Gamma-aminobutyric Acid Receptor-associated proteins (GABARAPs) also influence [...] Read more.
Factor VIII (FVIII) interacts with Endoplasmic Reticulum (ER) chaperones Calnexin (CANX) and Calreticulin (CALR) and with ER-Golgi Intermediate Compartment (ERGIC) transporters, Lectin, mannose-binding 1 (LMAN1) and Multiple Coagulation Deficiency 2 (MCFD2). We previously reported that the Gamma-aminobutyric Acid Receptor-associated proteins (GABARAPs) also influence FVIII secretion. Here, we further investigated the intracellular dynamics of FVIII using single and double CRISPR/Cas9 Knockout (KO) models of the abovementioned chaperones as well as the GABARAP proteins in HEK293 cells expressing FVIII. Cellular pathways were manipulated by Brefeldin A (BFA), Chloroquine (CQ), a Rab7 inhibitor, and subjected to glucose starvation. The effect of each KO on FVIII secretion and organelle distribution was assessed by a two-stage chromogenic assay and immunofluorescence (IF) microscopy, prior and upon cell treatments. Using these approaches, we first observed distinct effects of each studied protein on FVIII trafficking. Notably, intracellular localization patterns revealed clustering of FVIII phenotypes in GABARAPKO, CANXKO, and CALRKO cells together under both basal and treated conditions, an observation that was also reflected in their respective double KO combinations. Besides, a clear involvement of additional components of the endomembrane system was evident, specifically at the trans-Golgi space, as marked by FVIII colocalization with the Ras-like proteins in brain (Rab8 and Rab7) and with the Vesicle-Associated Membrane Protein (VAMP8), along with the observed impact of the selected cell treatments on FVIII phenotypes. These outcomes enhance our understanding of the molecular mechanisms regulating FVIII and pave the way for new perspectives, which could be further projected into FVIII replacement, cell and gene therapies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

43 pages, 4090 KiB  
Review
Activation of Unfolded Protein Response Pathway in Malignancies: Interplay with Extracellular Matrix and Targeting Perspectives
by Eleftherios N. Athanasopoulos, Angeliki Natsiou, Maria Kyriazopoulou, Dimitra Manou, Achilleas D. Theocharis and Vassiliki T. Labropoulou
Cancers 2025, 17(12), 1972; https://doi.org/10.3390/cancers17121972 - 13 Jun 2025
Viewed by 958
Abstract
Malignant cells exhibit elevated rates of protein synthesis and secretion to facilitate tumor growth, proliferation, and tumorigenesis. Upon malignant transformation, the endoplasmic reticulum (ER) experiences stress due to the accumulation of unfolded or misfolded proteins in the ER lumen, lack of nutrient availability [...] Read more.
Malignant cells exhibit elevated rates of protein synthesis and secretion to facilitate tumor growth, proliferation, and tumorigenesis. Upon malignant transformation, the endoplasmic reticulum (ER) experiences stress due to the accumulation of unfolded or misfolded proteins in the ER lumen, lack of nutrient availability and overall hostile tumor microenvironment conditions. The demand for regulated protein turnover and proteostasis reinstatement results in the activation of the unfolded protein response (UPR) pathway for cellular adaptation and survival. The UPR machinery utilizes the BiP chaperone and three ER-bound sensors, PERK, IRE1, and ATF6, to substantiate signal transduction and orchestrate gene expression associated with protein folding, degradation and recycling, inflammation, autophagy, and programmed cell death. The pleiotropic function of UPR emerges as a central mediator for tumor progression, especially in multiple myeloma and glioblastoma pathologies. Numerous studies have recently pointed out that communication of the extracellular matrix (ECM) with surrounding tumor cells dictates in part UPR activity and vice versa. In the context of this dynamic interplay, ER stress and UPR mechanisms have been proposed as potential targets to elicit novel and effective therapeutic approaches in clinical trials. Full article
(This article belongs to the Collection Molecular Signaling Pathways and Networks in Cancer)
Show Figures

Figure 1

22 pages, 3118 KiB  
Review
Pharmacological and Pathological Implications of Sigma-1 Receptor in Neurodegenerative Diseases
by Noah Drewes, Xiangwei Fang, Nikhil Gupta and Daotai Nie
Biomedicines 2025, 13(6), 1409; https://doi.org/10.3390/biomedicines13061409 - 8 Jun 2025
Viewed by 2493
Abstract
Originally identified as a potential receptor for opioids, the sigma-1 receptor is now recognized as an intracellular chaperone protein associated with mitochondria-associated membranes at the endoplasmic reticulum (ER). Over the past two decades, extensive research has revealed that the sigma-1 receptor regulates many [...] Read more.
Originally identified as a potential receptor for opioids, the sigma-1 receptor is now recognized as an intracellular chaperone protein associated with mitochondria-associated membranes at the endoplasmic reticulum (ER). Over the past two decades, extensive research has revealed that the sigma-1 receptor regulates many cellular processes, such as calcium homeostasis, oxidative stress responses, protein folding, and mitochondrial function. The various functions of the sigma-1 receptor highlight its role as a central modulator of neuronal health and may be a promising pharmacological target across multiple neurodegenerative conditions. Herein, we provide an overview of the current pharmacological understanding of the sigma-1 receptor with an emphasis on the signaling mechanisms involved. We examine its pathological implications in common neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and multiple sclerosis. We then highlight how sigma-1 receptor modulation may influence disease progression as well as potential pharmacological mechanisms to alter disease outcomes. The translational potential of sigma-1 receptor therapies is discussed, as well as the most up-to-date results of ongoing clinical trials. This review aims to clarify the therapeutic potential of the sigma-1 receptor in neurodegeneration and guide future research in these diseases. Full article
(This article belongs to the Special Issue Cell Signaling and Molecular Regulation in Neurodegenerative Disease)
Show Figures

Figure 1

17 pages, 3465 KiB  
Article
Cell-Based Small-Molecule Screening Identifying Proteostasis Regulators Enhancing Factor VIII Missense Mutant Secretion
by Vishal Srivastava, Zhigang Liu, Wei Wei, Yuan Zhang, James C. Paton, Adrienne W. Paton, Tingwei Mu and Bin Zhang
Biomolecules 2025, 15(4), 458; https://doi.org/10.3390/biom15040458 - 21 Mar 2025
Viewed by 705
Abstract
Missense mutations are the most prevalent alterations in genetic disorders such as hemophilia A (HA), which results from coagulation factor VIII (FVIII) deficiencies. These mutations disrupt protein biosynthesis, folding, secretion, and function. Current treatments for HA are extremely expensive and inconvenient for patients. [...] Read more.
Missense mutations are the most prevalent alterations in genetic disorders such as hemophilia A (HA), which results from coagulation factor VIII (FVIII) deficiencies. These mutations disrupt protein biosynthesis, folding, secretion, and function. Current treatments for HA are extremely expensive and inconvenient for patients. Small molecule drugs offer a promising alternative or adjunctive strategy due to their lower cost and ease of administration, enhancing accessibility and patient compliance. By screening drug/chemical libraries with cells stably expressing FVIII–Gaussia luciferase fusion proteins, we identified compounds that enhance FVIII secretion and activity. Among these, suberoylanilide hydroxamic acid (SAHA) improved the secretion and activity of wild-type FVIII and common HA-associated missense mutants, especially mild and moderate ones. SAHA increased FVIII interaction with the endoplasmic reticulum chaperone BiP/GRP78 but not with calreticulin. Lowering cellular BiP levels decreased SAHA-induced FVIII secretion and enhancing BiP expression increased FVIII secretion. SAHA also enhanced secretion and BiP interactions with individual domains of FVIII. In vivo, treating mice with SAHA or a BiP activator boosted endogenous FVIII activity. These findings suggest that SAHA serves as a proteostasis regulator, providing a novel therapeutic approach to improve the secretion and functionality of FVIII missense mutants prone to misfolding. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

19 pages, 11999 KiB  
Article
Cannabinoids Activate Endoplasmic Reticulum Stress Response and Promote the Death of Avian Retinal Müller Cells in Culture
by Ana Lúcia Marques Ventura, Thayane Martins Silva and Guilherme Rapozeiro França
Brain Sci. 2025, 15(3), 291; https://doi.org/10.3390/brainsci15030291 - 10 Mar 2025
Cited by 1 | Viewed by 966
Abstract
Background/Objectives: Activation of cannabinoid CB1 or CB2 receptors induces the death of glial progenitors from the chick retina in culture. Here, by using an enriched retinal glial cell culture, we characterized some mechanisms underlying glial death promoted by cannabinoids. Methods and Results: Retinal [...] Read more.
Background/Objectives: Activation of cannabinoid CB1 or CB2 receptors induces the death of glial progenitors from the chick retina in culture. Here, by using an enriched retinal glial cell culture, we characterized some mechanisms underlying glial death promoted by cannabinoids. Methods and Results: Retinal cultures obtained from 8-day-old (E8) chick embryos and maintained for 12–15 days (C12–15) were used. MTT assays revealed that the CB1/CB2 agonist WIN 55,212-2 (WIN) decreased cell viability in the cultures in a time-dependent manner, with a concomitant increase in extracellular LDH activity, suggesting membrane integrity loss. Cell death was also dose-dependently induced by cannabidiol (CBD), Δ9-tetrahydrocannabinol (THC), and CP55940, another CB1/CB2 agonist. In contrast to WIN-induced cell death that was not blocked by either antagonist, the deleterious effect of CBD was blocked by the CB2 receptor antagonist SR144528, but not by PF514273, a CB1 receptor antagonist. WIN-treated cultures showed glial cells with large vacuoles in cytoplasm that were absent in cultures incubated with WIN plus 4-phenyl-butyrate (PBA), a chemical chaperone. Since cannabinoids induced the phosphorylation of eukaryotic initiation factor 2-alfa (eIF2α), these results suggest a process of endoplasmic reticulum (ER) swelling and stress. Incubation of the cultures with WIN for 4 h induced a ~five-fold increase in the number of cells labeled with the ROS indicator CM-H2DCFDA. WIN induced the phosphorylation of JNK but not of p38 in the cultures, and also induced an increase in the number of glial cells expressing cleaved-caspase 3 (c-CASP3). The decrease in cell viability and the expression of c-CASP3 was blocked by salubrinal, an inhibitor of eIF2α dephosphorylation. Conclusions: These data suggest that cannabinoids induce the apoptosis of glial cells in culture by promoting ROS production, ER stress, JNK phosphorylation, and caspase-3 processing. The graphical abstract was created at Biorender.com. Full article
(This article belongs to the Special Issue Retinal Neurochemistry and Development)
Show Figures

Graphical abstract

25 pages, 6489 KiB  
Article
The PERK-eIF2α-ATF4 Axis Is Involved in Mediating ER-Stress-Induced Ferroptosis via DDIT4-mTORC1 Inhibition and Acetaminophen-Induced Hepatotoxicity
by Thu-Hang Thi Nghiem, Kim Anh Nguyen, Fedho Kusuma, Soyoung Park, Jeongmin Park, Yeonsoo Joe, Jaeseok Han and Hun Taeg Chung
Antioxidants 2025, 14(3), 307; https://doi.org/10.3390/antiox14030307 - 3 Mar 2025
Cited by 1 | Viewed by 1920
Abstract
Ferroptosis, a regulated form of cell death characterized by lipid peroxidation and iron accumulation, is increasingly recognized for its role in disease pathogenesis. The unfolded protein response (UPR) has been implicated in both endoplasmic reticulum (ER) stress and ferroptosis-mediated cell fate decisions; yet, [...] Read more.
Ferroptosis, a regulated form of cell death characterized by lipid peroxidation and iron accumulation, is increasingly recognized for its role in disease pathogenesis. The unfolded protein response (UPR) has been implicated in both endoplasmic reticulum (ER) stress and ferroptosis-mediated cell fate decisions; yet, the specific mechanism remains poorly understood. In this study, we demonstrated that ER stress induced by tunicamycin and ferroptosis triggered by erastin both activate the UPR, leading to the induction of ferroptotic cell death. This cell death was mitigated by the application of chemical chaperones and a ferroptosis inhibitor. Among the three arms of the UPR, the PERK-eIF2α-ATF4 signaling axis was identified as a crucial mediator in this process. Mechanistically, the ATF4-driven induction of DDIT4 plays a pivotal role, facilitating ferroptosis via the inhibition of the mTORC1 pathway. Furthermore, acetaminophen (APAP)-induced hepatotoxicity was investigated as a model of eIF2α-ATF4-mediated ferroptosis. Our findings reveal that the inhibition of eIF2α-ATF4 or ferroptosis protects against APAP-induced liver damage, underscoring the therapeutic potential of targeting these pathways. Overall, this study not only clarifies the intricate role of the PERK-eIF2α-ATF4 axis in ER-stress-and erastin-induced ferroptosis but also extends these findings to a clinically relevant model, providing a foundation for potential therapeutic interventions in conditions characterized by dysregulated ferroptosis and ER stress. Full article
(This article belongs to the Special Issue Oxidative Stress in Hepatic Diseases)
Show Figures

Figure 1

21 pages, 315 KiB  
Review
Unraveling the Role of Proteinopathies in Parasitic Infections
by Mikołaj Hurła, Damian Pikor, Natalia Banaszek-Hurła, Alicja Drelichowska, Jolanta Dorszewska, Wojciech Kozubski, Elżbieta Kacprzak and Małgorzata Paul
Biomedicines 2025, 13(3), 610; https://doi.org/10.3390/biomedicines13030610 - 3 Mar 2025
Viewed by 1287
Abstract
Proteinopathies, characterized by the misfolding, aggregation, and deposition of proteins, are hallmarks of various neurodegenerative and systemic diseases. Increasingly, research has highlighted the role of protein misfolding in parasitic infections, unveiling intricate interactions between host and parasite that exacerbate disease pathology and contribute [...] Read more.
Proteinopathies, characterized by the misfolding, aggregation, and deposition of proteins, are hallmarks of various neurodegenerative and systemic diseases. Increasingly, research has highlighted the role of protein misfolding in parasitic infections, unveiling intricate interactions between host and parasite that exacerbate disease pathology and contribute to chronic outcomes. The life cycles of parasitic protozoa, including Plasmodium, Toxoplasmosis, and Leishmania species, are complicated and involve frequent changes between host and vector environments. Their proteomes are severely stressed during these transitions, which calls for highly specialized protein quality control systems. In order to survive harsh intracellular conditions during infection, these parasites have been demonstrated to display unique adaptations in the unfolded protein response, a crucial pathway controlling endoplasmic reticulum stress. In addition to improving parasite survival, these adaptations affect host cell signaling and metabolism, which may jeopardize cellular homeostasis. By causing oxidative stress, persistent inflammation, and disturbance of cellular proteostasis, host–parasite interactions also contribute to proteinopathy. For instance, Plasmodium falciparum disrupts normal protein homeostasis and encourages the accumulation of misfolded proteins by influencing host redox systems involved in protein folding. In addition to interfering with host chaperone systems, the parasitic secretion of effector proteins exacerbates protein misfolding and aggregate formation. Autophagy, apoptosis regulation, organelle integrity, and other vital cellular processes are all disrupted by these pathological protein aggregates. Long-term misfolding and aggregation can cause irreversible tissue damage, which can worsen the clinical course of illnesses like visceral leishmaniasis, cerebral malaria, and toxoplasmosis. Treating parasite-induced proteinopathies is a potentially fruitful area of therapy. According to recent research, autophagy modulators, proteasome enhancers, and small-molecule chaperones may be repurposed to lessen these effects. Pharmacological agents that target the UPR, for example, have demonstrated the ability to decrease parasite survival while also reestablishing host protein homeostasis. Targeting the proteins secreted by parasites that disrupt host proteostasis may also offer a novel way to stop tissue damage caused by proteinopathies. In conclusion, the intersection of protein misfolding and parasitic infections represents a rapidly advancing field of research. Dissecting the molecular pathways underpinning these processes offers unprecedented opportunities for developing innovative therapies. These insights could not only transform the management of parasitic diseases but also contribute to a broader understanding of proteinopathies in infectious and non-infectious diseases alike. Full article
(This article belongs to the Special Issue Advanced Research in Proteinopathies)
22 pages, 9731 KiB  
Article
The Effect of Heat Stress on Wheat Flag Leaves Revealed by Metabolome and Transcriptome Analyses During the Reproductive Stage
by Shuonan Duan, Xiangzhao Meng, Huaning Zhang, Xiaotong Wang, Xu Kang, Zihui Liu, Zhenyu Ma, Guoliang Li and Xiulin Guo
Int. J. Mol. Sci. 2025, 26(4), 1468; https://doi.org/10.3390/ijms26041468 - 10 Feb 2025
Viewed by 1180
Abstract
In this study, we were dedicated to investigating the effect caused by heat stress on wheat flag leaves. Metabolome and transcriptome analysis were introduced to identify some key biological processes. As a result, 182 and 214 metabolites were significantly changed at the anthesis [...] Read more.
In this study, we were dedicated to investigating the effect caused by heat stress on wheat flag leaves. Metabolome and transcriptome analysis were introduced to identify some key biological processes. As a result, 182 and 214 metabolites were significantly changed at the anthesis and post-anthesis stages, respectively; most of them were lipids, amino acids and derivatives, phenolic acids, and alkaloids. Aminoacyl-tRNA biosynthesis was the most significantly enriched pathway by metabolites at both two stages, each of which included 13 types of amino acid, and 12 of them were shared and up-regulated. Therefore, we further measured 22 kinds of amino acid content in ten different wheat genotypes at the post-anthesis stage. Based on the average content of each amino acid, 17 kinds of them were significantly increased after heat stress, and 4 types were significantly decreased. Both the metabolism analysis and the transcriptome analysis had a higher number of significantly changed metabolites or differential expressed genes at the post-anthesis stage, which indicated that the post-anthesis stage is more sensitive to heat stress, with 21,361 and 17,130 differential expressed genes, respectively. Two pathways, protein processing in endoplasmic reticulum and ABC transporters, were significantly enriched at two stages. The differential expressed genes in processing in endoplasmic reticulum pathway mainly encoded various types of molecular chaperones; among them, the HSP20 family was the most predominant and intensively up-regulated. The ABC transporter gene family is another pathway that is deeply involved in heat-stress response, which could be classified into five subfamilies; among them, subfamilies B and G were the most active. In summary, this study revealed the heat response pattern of amino acids, HSPs, and ABC transporter which may play a vital role during the wheat reproductive stage. Full article
(This article belongs to the Special Issue Genetic Engineering of Plants for Stress Tolerance, Second Edition)
Show Figures

Figure 1

26 pages, 6284 KiB  
Article
Proteomic Analysis of Plants with Binding Immunoglobulin Protein Overexpression Reveals Mechanisms Related to Defense Against Moniliophthora perniciosa
by Grazielle da Mota Alcântara, Gláucia Carvalho Barbosa Silva, Irma Yuliana Mora Ocampo, Amanda Araújo Kroger, Rafaelle Souza de Oliveira, Karina Peres Gramacho, Carlos Priminho Pirovani and Fátima Cerqueira Alvim
Plants 2025, 14(4), 503; https://doi.org/10.3390/plants14040503 - 7 Feb 2025
Viewed by 1034
Abstract
Moniliophthora perniciosa is one of the main pathogens affecting cocoa, and controlling it generally involves planting resistant genotypes followed by phytosanitary pruning. The identification of plant genes related to defense mechanisms is crucial to unravel the molecular basis of plant–pathogen interactions. Among the [...] Read more.
Moniliophthora perniciosa is one of the main pathogens affecting cocoa, and controlling it generally involves planting resistant genotypes followed by phytosanitary pruning. The identification of plant genes related to defense mechanisms is crucial to unravel the molecular basis of plant–pathogen interactions. Among the candidate genes, BiP stands out as a molecular chaperone located in the endoplasmic reticulum that facilitates protein folding and is induced under stress conditions, such as pathogen attacks. In this study, the SoyBiPD gene was expressed in Solanum lycopersicum plants and the plants were challenged with M. perniciosa. The control plants exhibited severe symptoms of witches’ broom disease, whereas the transgenic lines showed no or mild symptoms. Gel-free proteomics revealed significant changes in the protein profile associated with BiP overexpression. Inoculated transgenic plants had a higher abundance of resistance-related proteins, such as PR2, PR3, and PR10, along with increased activity of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase, and fungal cell wall-degrading enzymes (glucanases). Additionally, transgenic plants accumulated less H2O2, indicating more efficient control of reactive oxygen species (ROS). The interaction network analysis highlighted the activation of defense-associated signaling and metabolic pathways, conferring a state of defensive readiness even in the absence of pathogens. These results demonstrate that BiP overexpression increases the abundance of defense proteins, enhances antioxidant capacity, and confers greater tolerance to biotic stress. This study demonstrates the biotechnological potential of the BiP gene for genetic engineering crops with increased resistance to economically important diseases, such as witches’ broom in cocoa. Full article
Show Figures

Figure 1

20 pages, 1501 KiB  
Review
GRP78 in Glioma Progression and Therapy: Implications for Targeted Approaches
by Yue Yang, Wen Li, Yu Zhao, Minxuan Sun, Feifei Xing, Jiao Yang and Yuanshuai Zhou
Biomedicines 2025, 13(2), 382; https://doi.org/10.3390/biomedicines13020382 - 6 Feb 2025
Viewed by 1622
Abstract
Glioma is the most common primary malignant brain tumor, accounting for the majority of brain cancer-related deaths. Considering the limited efficacy of conventional therapies, novel molecular targeted therapies have been developed to improve outcomes and minimize toxicity. Glucose-regulated protein 78 (GRP78), a molecular [...] Read more.
Glioma is the most common primary malignant brain tumor, accounting for the majority of brain cancer-related deaths. Considering the limited efficacy of conventional therapies, novel molecular targeted therapies have been developed to improve outcomes and minimize toxicity. Glucose-regulated protein 78 (GRP78), a molecular chaperone primarily localized in the endoplasmic reticulum (ER), has received increasing attention for its role in glioma progression and resistance to conventional therapies. Overexpressed in gliomas, GRP78 supports tumor growth, survival, and therapeutic resistance by maintaining cellular homeostasis and regulating multiple signaling pathways. Its aberrant expression correlates with higher tumor grades and poorer patient prognosis. Beyond its intracellular functions, GRP78’s presence on the cell surface and its role in the tumor microenvironment underscore its potential as a therapeutic target. Recent studies have explored innovative strategies to target GRP78, including small molecule inhibitors, monoclonal antibodies, and chimeric antigen receptor (CAR) T cell therapy, showing significant potential in glioma treatment. This review explores the biological characteristics of GRP78, its role in glioma pathophysiology, and the potential of GRP78-targeted therapy as a novel strategy to overcome treatment resistance and improve clinical outcomes. GRP78-targeted therapy, either alone or in combination with conventional treatments, could be a novel and attractive strategy for future glioma treatment. Full article
(This article belongs to the Special Issue Gliomas: Signaling Pathways, Molecular Mechanisms and Novel Therapies)
Show Figures

Figure 1

20 pages, 7684 KiB  
Article
Genome-Wide Analysis of Heat Shock Protein Family and Identification of Their Functions in Rice Quality and Yield
by Hong Wang, Sidra Charagh, Nannan Dong, Feifei Lu, Yixin Wang, Ruijie Cao, Liuyang Ma, Shiwen Wang, Guiai Jiao, Lihong Xie, Gaoneng Shao, Zhonghua Sheng, Shikai Hu, Fengli Zhao, Shaoqing Tang, Long Chen, Peisong Hu and Xiangjin Wei
Int. J. Mol. Sci. 2024, 25(22), 11931; https://doi.org/10.3390/ijms252211931 - 6 Nov 2024
Cited by 4 | Viewed by 2294
Abstract
Heat shock proteins (Hsps), acting as molecular chaperones, play a pivotal role in plant responses to environmental stress. In this study, we found a total of 192 genes encoding Hsps, which are distributed across all 12 chromosomes, with higher concentrations on chromosomes 1, [...] Read more.
Heat shock proteins (Hsps), acting as molecular chaperones, play a pivotal role in plant responses to environmental stress. In this study, we found a total of 192 genes encoding Hsps, which are distributed across all 12 chromosomes, with higher concentrations on chromosomes 1, 2, 3, and 5. These Hsps can be divided into six subfamilies (sHsp, Hsp40, Hsp60, Hsp70, Hsp90, and Hsp100) based on molecular weight and homology. Expression pattern data indicated that these Hsp genes can be categorized into three groups: generally high expression in almost all tissues, high tissue-specific expression, and low expression in all tissues. Further analysis of 15 representative genes found that the expression of 14 Hsp genes was upregulated by high temperatures. Subcellular localization analysis revealed seven proteins localized to the endoplasmic reticulum, while others localized to the mitochondria, chloroplasts, and nucleus. We successfully obtained the knockout mutants of above 15 Hsps by the CRISPR/Cas9 gene editing system. Under natural high-temperature conditions, the mutants of eight Hsps showed reduced yield mainly due to the seed setting rate or grain weight. Moreover, the rice quality of most of these mutants also changed, including increased grain chalkiness, decreased amylose content, and elevated total protein content, and the expressions of starch metabolism-related genes in the endosperm of these mutants were disturbed compared to the wild type under natural high-temperature conditions. In conclusion, our study provided new insights into the HSP gene family and found that it plays an important role in the formation of rice quality and yield. Full article
(This article belongs to the Special Issue Gene Mining and Germplasm Innovation for the Important Traits in Rice)
Show Figures

Figure 1

Back to TopTop