Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (82)

Search Parameters:
Keywords = endoplasmic reticulum associated degradation (ERAD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 17673 KiB  
Article
ATPase Valosin-Containing Protein (VCP) Is Involved During the Replication and Egress of Sialodacryoadenitis Virus (SDAV) in Neurons
by Michalina Bartak, Weronika D. Krahel, Marcin Chodkowski, Hubert Grel, Jarosław Walczak, Adithya Pallepati, Michał Komorowski and Joanna Cymerys
Int. J. Mol. Sci. 2024, 25(21), 11633; https://doi.org/10.3390/ijms252111633 - 29 Oct 2024
Cited by 1 | Viewed by 1512
Abstract
Sialodacryoadenitis virus (SDAV) has been identified as the etiological agent responsible for the respiratory system and salivary gland infections in rats. The existing literature on SDAV infections is insufficient to address the topic adequately, particularly in relation to the central nervous system. In [...] Read more.
Sialodacryoadenitis virus (SDAV) has been identified as the etiological agent responsible for the respiratory system and salivary gland infections in rats. The existing literature on SDAV infections is insufficient to address the topic adequately, particularly in relation to the central nervous system. In order to ascertain how SDAV gains access to neuronal cells and subsequently exits, our attention was focused on the small molecule valosin-containing protein (VCP), which is an ATPase. VCP is acknowledged for its function in the ubiquitin-mediated proteasomal degradation of proteins, including those of viral origin. To ascertain the potential influence of VCP on SDAV replication and egress, high-content screening was employed to determine the viral titer and protein content. Western blot analysis was employed to ascertain the relative expression of VCP. Real-time imaging of SDAV-infected cells and confocal imaging for qualitative morphological analysis were conducted. The Eeyarestatin I (EerI) inhibitor was employed to disrupt VCP involvement in the endoplasmic reticulum-associated protein degradation pathway (ERAD) in both pre- and post-incubation systems, with concentrations of 5 μM/mL and 25 μM/mL, respectively. We demonstrated for the first time that SDAV productively replicates in cultured primary neurons. VCP expression is markedly elevated during SDAV infection. The application of 5 μM/mL EerI in the post-treatment system yielded a statistically significant inhibition of the SDAV yield. It is likely that this modulates the efficacy of virion assembly by arresting viral proteins in the submembrane area. Full article
(This article belongs to the Special Issue Viral Infection and Virology Methods)
Show Figures

Figure 1

23 pages, 2217 KiB  
Review
Valosin-Containing Protein (VCP): A Review of Its Diverse Molecular Functions and Clinical Phenotypes
by Carly S. Pontifex, Mashiat Zaman, Roberto D. Fanganiello, Timothy E. Shutt and Gerald Pfeffer
Int. J. Mol. Sci. 2024, 25(11), 5633; https://doi.org/10.3390/ijms25115633 - 22 May 2024
Cited by 6 | Viewed by 4077
Abstract
In this review we examine the functionally diverse ATPase associated with various cellular activities (AAA-ATPase), valosin-containing protein (VCP/p97), its molecular functions, the mutational landscape of VCP and the phenotypic manifestation of VCP disease. VCP is crucial to a multitude of cellular functions including [...] Read more.
In this review we examine the functionally diverse ATPase associated with various cellular activities (AAA-ATPase), valosin-containing protein (VCP/p97), its molecular functions, the mutational landscape of VCP and the phenotypic manifestation of VCP disease. VCP is crucial to a multitude of cellular functions including protein quality control, endoplasmic reticulum-associated degradation (ERAD), autophagy, mitophagy, lysophagy, stress granule formation and clearance, DNA replication and mitosis, DNA damage response including nucleotide excision repair, ATM- and ATR-mediated damage response, homologous repair and non-homologous end joining. VCP variants cause multisystem proteinopathy, and pathology can arise in several tissue types such as skeletal muscle, bone, brain, motor neurons, sensory neurons and possibly cardiac muscle, with the disease course being challenging to predict. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2024)
Show Figures

Figure 1

23 pages, 7534 KiB  
Review
Insights into the Activation of Unfolded Protein Response Mechanism during Coronavirus Infection
by Panagiotis Keramidas, Maria Pitou, Eleni Papachristou and Theodora Choli-Papadopoulou
Curr. Issues Mol. Biol. 2024, 46(5), 4286-4308; https://doi.org/10.3390/cimb46050261 - 5 May 2024
Cited by 3 | Viewed by 2410
Abstract
Coronaviruses represent a significant class of viruses that affect both animals and humans. Their replication cycle is strongly associated with the endoplasmic reticulum (ER), which, upon virus invasion, triggers ER stress responses. The activation of the unfolded protein response (UPR) within infected cells [...] Read more.
Coronaviruses represent a significant class of viruses that affect both animals and humans. Their replication cycle is strongly associated with the endoplasmic reticulum (ER), which, upon virus invasion, triggers ER stress responses. The activation of the unfolded protein response (UPR) within infected cells is performed from three transmembrane receptors, IRE1, PERK, and ATF6, and results in a reduction in protein production, a boost in the ER’s ability to fold proteins properly, and the initiation of ER-associated degradation (ERAD) to remove misfolded or unfolded proteins. However, in cases of prolonged and severe ER stress, the UPR can also instigate apoptotic cell death and inflammation. Herein, we discuss the ER-triggered host responses after coronavirus infection, as well as the pharmaceutical targeting of the UPR as a potential antiviral strategy. Full article
(This article belongs to the Special Issue Research on Virus-Induced Cellular and Molecular Responses)
Show Figures

Graphical abstract

21 pages, 7214 KiB  
Article
Modulating Endoplasmic Reticulum Chaperones and Mutant Protein Degradation in GABRG2(Q390X) Associated with Genetic Epilepsy with Febrile Seizures Plus and Dravet Syndrome
by Sarah Poliquin, Gerald Nwosu, Karishma Randhave, Wangzhen Shen, Carson Flamm and Jing-Qiong Kang
Int. J. Mol. Sci. 2024, 25(9), 4601; https://doi.org/10.3390/ijms25094601 - 23 Apr 2024
Cited by 5 | Viewed by 2301
Abstract
A significant number of patients with genetic epilepsy do not obtain seizure freedom, despite developments in new antiseizure drugs, suggesting a need for novel therapeutic approaches. Many genetic epilepsies are associated with misfolded mutant proteins, including GABRG2(Q390X)-associated Dravet syndrome, which we have [...] Read more.
A significant number of patients with genetic epilepsy do not obtain seizure freedom, despite developments in new antiseizure drugs, suggesting a need for novel therapeutic approaches. Many genetic epilepsies are associated with misfolded mutant proteins, including GABRG2(Q390X)-associated Dravet syndrome, which we have previously shown to result in intracellular accumulation of mutant GABAA receptor γ2(Q390X) subunit protein. Thus, a potentially promising therapeutic approach is modulation of proteostasis, such as increasing endoplasmic reticulum (ER)-associated degradation (ERAD). To that end, we have here identified an ERAD-associated E3 ubiquitin ligase, HRD1, among other ubiquitin ligases, as a strong modulator of wildtype and mutant γ2 subunit expression. Overexpressing HRD1 dose-dependently reduced the γ2(Q390X) subunit. Additionally, we show that zonisamide (ZNS)—an antiseizure drug reported to upregulate HRD1—reduces seizures in the Gabrg2+/Q390X mouse. We propose that a possible mechanism for this effect is a partial rescue of surface trafficking of GABAA receptors, which are otherwise sequestered in the ER due to the dominant-negative effect of the γ2(Q390X) subunit. Furthermore, this partial rescue was not due to changes in ER chaperones BiP and calnexin, as total expression of these chaperones was unchanged in γ2(Q390X) models. Our results here suggest that leveraging the endogenous ERAD pathway may present a potential method to degrade neurotoxic mutant proteins like the γ2(Q390X) subunit. We also demonstrate a pharmacological means of regulating proteostasis, as ZNS alters protein trafficking, providing further support for the use of proteostasis regulators for the treatment of genetic epilepsies. Full article
(This article belongs to the Special Issue Epilepsy: From Molecular Basis to Therapy)
Show Figures

Figure 1

17 pages, 1286 KiB  
Review
Endoplasmic Reticulum Stress in Gliomas: Exploiting a Dual-Effect Dysfunction through Chemical Pharmaceutical Compounds and Natural Derivatives for Therapeutical Uses
by Daniel García-López, Montserrat Zaragoza-Ojeda, Pilar Eguía-Aguilar and Francisco Arenas-Huertero
Int. J. Mol. Sci. 2024, 25(7), 4078; https://doi.org/10.3390/ijms25074078 - 6 Apr 2024
Cited by 4 | Viewed by 2257
Abstract
The endoplasmic reticulum maintains proteostasis, which can be disrupted by oxidative stress, nutrient deprivation, hypoxia, lack of ATP, and toxicity caused by xenobiotic compounds, all of which can result in the accumulation of misfolded proteins. These stressors activate the unfolded protein response (UPR), [...] Read more.
The endoplasmic reticulum maintains proteostasis, which can be disrupted by oxidative stress, nutrient deprivation, hypoxia, lack of ATP, and toxicity caused by xenobiotic compounds, all of which can result in the accumulation of misfolded proteins. These stressors activate the unfolded protein response (UPR), which aims to restore proteostasis and avoid cell death. However, endoplasmic response-associated degradation (ERAD) is sometimes triggered to degrade the misfolded and unassembled proteins instead. If stress persists, cells activate three sensors: PERK, IRE-1, and ATF6. Glioma cells can use these sensors to remain unresponsive to chemotherapeutic treatments. In such cases, the activation of ATF4 via PERK and some proteins via IRE-1 can promote several types of cell death. The search for new antitumor compounds that can successfully and directly induce an endoplasmic reticulum stress response ranges from ligands to oxygen-dependent metabolic pathways in the cell capable of activating cell death pathways. Herein, we discuss the importance of the ER stress mechanism in glioma and likely therapeutic targets within the UPR pathway, as well as chemicals, pharmaceutical compounds, and natural derivatives of potential use against gliomas. Full article
Show Figures

Figure 1

14 pages, 1381 KiB  
Review
Impact of Obesity-Related Endoplasmic Reticulum Stress on Cancer and Associated Molecular Targets
by Joud AlBashtawi, Hend Al-Jaber, Sara Ahmed and Layla Al-Mansoori
Biomedicines 2024, 12(4), 793; https://doi.org/10.3390/biomedicines12040793 - 3 Apr 2024
Cited by 8 | Viewed by 3249
Abstract
Obesity, characterized by excessive body fat, is closely linked to endoplasmic reticulum (ER) stress, leading to insulin resistance and type 2 diabetes. Inflammatory pathways like c-Jun N-terminal kinase (JNK) worsen insulin resistance, impacting insulin signaling. Moreover, ER stress plays a substantial role in [...] Read more.
Obesity, characterized by excessive body fat, is closely linked to endoplasmic reticulum (ER) stress, leading to insulin resistance and type 2 diabetes. Inflammatory pathways like c-Jun N-terminal kinase (JNK) worsen insulin resistance, impacting insulin signaling. Moreover, ER stress plays a substantial role in cancer, influencing tumor cell survival and growth by releasing factors like vascular endothelial growth factor (VEGF). The unfolded protein response (UPR) is pivotal in this process, offering both pro-survival and apoptotic pathways. This review offers an extensive exploration of the sophisticated connection between ER stress provoked by obesity and its role in both the onset and advancement of cancer. It delves into the intricate interplay between oncogenic signaling and the pathways associated with ER stress in individuals who are obese. Furthermore, this review sheds light on potential therapeutic strategies aimed at managing ER stress induced by obesity, with a focus on addressing cancer initiation and progression. The potential to alleviate ER stress through therapeutic interventions, which may encompass the use of small molecules, FDA-approved medications, and gene therapy, holds great promise. A more in-depth examination of pathways such as UPR, ER-associated protein degradation (ERAD), autophagy, and epigenetic regulation has the potential to uncover innovative therapeutic approaches and the identification of predictive biomarkers. Full article
(This article belongs to the Special Issue Adipose Tissue in Health and Diseases)
Show Figures

Figure 1

18 pages, 5663 KiB  
Article
AUP1 Regulates the Endoplasmic Reticulum-Associated Degradation and Polyubiquitination of NKCC2
by Nadia Frachon, Sylvie Demaretz, Elie Seaayfan, Lydia Chelbi, Dalal Bakhos-Douaihy and Kamel Laghmani
Cells 2024, 13(5), 389; https://doi.org/10.3390/cells13050389 - 24 Feb 2024
Cited by 3 | Viewed by 2637
Abstract
Inactivating mutations of kidney Na-K-2Cl cotransporter NKCC2 lead to antenatal Bartter syndrome (BS) type 1, a life-threatening salt-losing tubulopathy. We previously reported that this serious inherited renal disease is linked to the endoplasmic reticulum-associated degradation (ERAD) pathway. The purpose of this work is [...] Read more.
Inactivating mutations of kidney Na-K-2Cl cotransporter NKCC2 lead to antenatal Bartter syndrome (BS) type 1, a life-threatening salt-losing tubulopathy. We previously reported that this serious inherited renal disease is linked to the endoplasmic reticulum-associated degradation (ERAD) pathway. The purpose of this work is to characterize further the ERAD machinery of NKCC2. Here, we report the identification of ancient ubiquitous protein 1 (AUP1) as a novel interactor of NKCC2 ER-resident form in renal cells. AUP1 is also an interactor of the ER lectin OS9, a key player in the ERAD of NKCC2. Similar to OS9, AUP1 co-expression decreased the amount of total NKCC2 protein by enhancing the ER retention and associated protein degradation of the cotransporter. Blocking the ERAD pathway with the proteasome inhibitor MG132 or the α-mannosidase inhibitor kifunensine fully abolished the AUP1 effect on NKCC2. Importantly, AUP1 knock-down or inhibition by overexpressing its dominant negative form strikingly decreased NKCC2 polyubiquitination and increased the protein level of the cotransporter. Interestingly, AUP1 co-expression produced a more profound impact on NKCC2 folding mutants. Moreover, AUP1 also interacted with the related kidney cotransporter NCC and downregulated its expression, strongly indicating that AUP1 is a common regulator of sodium-dependent chloride cotransporters. In conclusion, our data reveal the presence of an AUP1-mediated pathway enhancing the polyubiquitination and ERAD of NKCC2. The characterization and selective regulation of specific ERAD constituents of NKCC2 and its pathogenic mutants could open new avenues in the therapeutic strategies for type 1 BS treatment. Full article
(This article belongs to the Special Issue Cellular and Molecular Basis in Chronic Kidney Disease)
Show Figures

Figure 1

32 pages, 1753 KiB  
Review
Protein Quality Control Systems and ER Stress as Key Players in SARS-CoV-2-Induced Neurodegeneration
by Elena Gavilán, Rafael Medina-Guzman, Bazhena Bahatyrevich-Kharitonik and Diego Ruano
Cells 2024, 13(2), 123; https://doi.org/10.3390/cells13020123 - 9 Jan 2024
Cited by 12 | Viewed by 3995
Abstract
The COVID-19 pandemic has brought to the forefront the intricate relationship between SARS-CoV-2 and its impact on neurological complications, including potential links to neurodegenerative processes, characterized by a dysfunction of the protein quality control systems and ER stress. This review article explores the [...] Read more.
The COVID-19 pandemic has brought to the forefront the intricate relationship between SARS-CoV-2 and its impact on neurological complications, including potential links to neurodegenerative processes, characterized by a dysfunction of the protein quality control systems and ER stress. This review article explores the role of protein quality control systems, such as the Unfolded Protein Response (UPR), the Endoplasmic Reticulum-Associated Degradation (ERAD), the Ubiquitin–Proteasome System (UPS), autophagy and the molecular chaperones, in SARS-CoV-2 infection. Our hypothesis suggests that SARS-CoV-2 produces ER stress and exploits the protein quality control systems, leading to a disruption in proteostasis that cannot be solved by the host cell. This disruption culminates in cell death and may represent a link between SARS-CoV-2 and neurodegeneration. Full article
(This article belongs to the Special Issue Endoplasmic Reticulum Stress in Neurodegenerative Diseases)
Show Figures

Graphical abstract

15 pages, 772 KiB  
Review
Mechanisms of Endoplasmic Reticulum Protein Homeostasis in Plants
by Zhihao Duan, Kai Chen, Tao Yang, Ronghui You, Binzhao Chen, Jianming Li and Linchuan Liu
Int. J. Mol. Sci. 2023, 24(24), 17599; https://doi.org/10.3390/ijms242417599 - 18 Dec 2023
Cited by 5 | Viewed by 3395
Abstract
Maintenance of proteome integrity is essential for cell function and survival in changing cellular and environmental conditions. The endoplasmic reticulum (ER) is the major site for the synthesis of secretory and membrane proteins. However, the accumulation of unfolded or misfolded proteins can perturb [...] Read more.
Maintenance of proteome integrity is essential for cell function and survival in changing cellular and environmental conditions. The endoplasmic reticulum (ER) is the major site for the synthesis of secretory and membrane proteins. However, the accumulation of unfolded or misfolded proteins can perturb ER protein homeostasis, leading to ER stress and compromising cellular function. Eukaryotic organisms have evolved sophisticated and conserved protein quality control systems to ensure protein folding fidelity via the unfolded protein response (UPR) and to eliminate potentially harmful proteins via ER-associated degradation (ERAD) and ER-phagy. In this review, we summarize recent advances in our understanding of the mechanisms of ER protein homeostasis in plants and discuss the crosstalk between different quality control systems. Finally, we will address unanswered questions in this field. Full article
(This article belongs to the Special Issue Regulation of Plant Protein Homeostasis under Stress)
Show Figures

Figure 1

19 pages, 3690 KiB  
Article
UBE3C Facilitates the ER-Associated and Peripheral Degradation of Misfolded CFTR
by Yuka Kamada, Hazuki Tateishi, Uta Nakayamada, Daichi Hinata, Ayuka Iwasaki, Jingxin Zhu, Ryosuke Fukuda and Tsukasa Okiyoneda
Cells 2023, 12(23), 2741; https://doi.org/10.3390/cells12232741 - 30 Nov 2023
Cited by 4 | Viewed by 2421
Abstract
The ubiquitin E3 ligase UBE3C promotes the proteasomal degradation of cytosolic proteins and endoplasmic reticulum (ER) membrane proteins. UBE3C is proposed to function downstream of the RNF185/MBRL ER-associated degradation (ERAD) branch, contributing to the ERAD of select membrane proteins. Here, we report that [...] Read more.
The ubiquitin E3 ligase UBE3C promotes the proteasomal degradation of cytosolic proteins and endoplasmic reticulum (ER) membrane proteins. UBE3C is proposed to function downstream of the RNF185/MBRL ER-associated degradation (ERAD) branch, contributing to the ERAD of select membrane proteins. Here, we report that UBE3C facilitates the ERAD of misfolded CFTR, even in the absence of both RNF185 and its functional ortholog RNF5 (RNF5/185). Unlike RNF5/185, UBE3C had a limited impact on the ubiquitination of misfolded CFTR. UBE3C knockdown (KD) resulted in an additional increase in the functional ∆F508-CFTR channels on the plasma membrane when combined with the RNF5/185 ablation, particularly in the presence of clinically used CFTR modulators. Interestingly, although UBE3C KD failed to attenuate the ERAD of insig-1, it reduced the ERAD of misfolded ∆Y490-ABCB1 and increased cell surface expression. UBE3C KD also stabilized the mature form of ∆F508-CFTR and increased the cell surface level of T70-CFTR, a class VI CFTR mutant. These results suggest that UBE3C plays a vital role in the ERAD of misfolded CFTR and ABCB1, even within the RNF5/185-independent ERAD pathway, and it may also be involved in maintaining the peripheral quality control of CFTR. Full article
Show Figures

Figure 1

14 pages, 2730 KiB  
Article
A Natural Compound Containing a Disaccharide Structure of Glucose and Rhamnose Identified as Potential N-Glycanase 1 (NGLY1) Inhibitors
by Ruijie Liu, Jingjing Gu, Yilin Ye, Yuxin Zhang, Shaoxing Zhang, Qiange Lin, Shuying Yuan, Yanwen Chen, Xinrong Lu, Yongliang Tong, Shaoxian Lv, Li Chen and Guiqin Sun
Molecules 2023, 28(23), 7758; https://doi.org/10.3390/molecules28237758 - 24 Nov 2023
Cited by 1 | Viewed by 1830
Abstract
N-glycanase 1 (NGLY1) is an essential enzyme involved in the deglycosylation of misfolded glycoproteins through the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, which could hydrolyze N-glycan from N-glycoprotein or N-glycopeptide in the cytosol. Recent studies indicated that NGLY1 inhibition is a potential novel [...] Read more.
N-glycanase 1 (NGLY1) is an essential enzyme involved in the deglycosylation of misfolded glycoproteins through the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, which could hydrolyze N-glycan from N-glycoprotein or N-glycopeptide in the cytosol. Recent studies indicated that NGLY1 inhibition is a potential novel drug target for antiviral therapy. In this study, structure-based virtual analysis was applied to screen candidate NGLY1 inhibitors from 2960 natural compounds. Three natural compounds, Poliumoside, Soyasaponin Bb, and Saikosaponin B2 showed significantly inhibitory activity of NGLY1, isolated from traditional heat-clearing and detoxifying Chinese herbs. Furthermore, the core structural motif of the three NGLY1 inhibitors was a disaccharide structure with glucose and rhamnose, which might exert its action by binding to important active sites of NGLY1, such as Lys238 and Trp244. In traditional Chinese medicine, many compounds containing this disaccharide structure probably targeted NGLY1. This study unveiled the leading compound of NGLY1 inhibitors with its core structure, which could guide future drug development. Full article
Show Figures

Graphical abstract

31 pages, 5364 KiB  
Article
DUBing Primary Tumors of the Central Nervous System: Regulatory Roles of Deubiquitinases
by Thomas Klonisch, Susan E. Logue, Sabine Hombach-Klonisch and Jerry Vriend
Biomolecules 2023, 13(10), 1503; https://doi.org/10.3390/biom13101503 - 10 Oct 2023
Cited by 5 | Viewed by 2839
Abstract
The ubiquitin proteasome system (UPS) utilizes an orchestrated enzymatic cascade of E1, E2, and E3 ligases to add single or multiple ubiquitin-like molecules as post-translational modification (PTM) to proteins. Ubiquitination can alter protein functions and/or mark ubiquitinated proteins for proteasomal degradation but deubiquitinases [...] Read more.
The ubiquitin proteasome system (UPS) utilizes an orchestrated enzymatic cascade of E1, E2, and E3 ligases to add single or multiple ubiquitin-like molecules as post-translational modification (PTM) to proteins. Ubiquitination can alter protein functions and/or mark ubiquitinated proteins for proteasomal degradation but deubiquitinases (DUBs) can reverse protein ubiquitination. While the importance of DUBs as regulatory factors in the UPS is undisputed, many questions remain on DUB selectivity for protein targeting, their mechanism of action, and the impact of DUBs on the regulation of diverse biological processes. Furthermore, little is known about the expression and role of DUBs in tumors of the human central nervous system (CNS). In this comprehensive review, we have used publicly available transcriptional datasets to determine the gene expression profiles of 99 deubiquitinases (DUBs) from five major DUB families in seven primary pediatric and adult CNS tumor entities. Our analysis identified selected DUBs as potential new functional players and biomarkers with prognostic value in specific subtypes of primary CNS tumors. Collectively, our analysis highlights an emerging role for DUBs in regulating CNS tumor cell biology and offers a rationale for future therapeutic targeting of DUBs in CNS tumors. Full article
(This article belongs to the Special Issue Deubiquitinating Enzymes in Health and Disease)
Show Figures

Graphical abstract

23 pages, 1482 KiB  
Review
Role of NFE2L1 in the Regulation of Proteostasis: Implications for Aging and Neurodegenerative Diseases
by Aswathy Chandran, Haley Jane Oliver and Jean-Christophe Rochet
Biology 2023, 12(9), 1169; https://doi.org/10.3390/biology12091169 - 25 Aug 2023
Cited by 11 | Viewed by 3235
Abstract
A hallmark of aging and neurodegenerative diseases is a disruption of proteome homeostasis (“proteostasis”) that is caused to a considerable extent by a decrease in the efficiency of protein degradation systems. The ubiquitin proteasome system (UPS) is the major cellular pathway involved in [...] Read more.
A hallmark of aging and neurodegenerative diseases is a disruption of proteome homeostasis (“proteostasis”) that is caused to a considerable extent by a decrease in the efficiency of protein degradation systems. The ubiquitin proteasome system (UPS) is the major cellular pathway involved in the clearance of small, short-lived proteins, including amyloidogenic proteins that form aggregates in neurodegenerative diseases. Age-dependent decreases in proteasome subunit expression coupled with the inhibition of proteasome function by aggregated UPS substrates result in a feedforward loop that accelerates disease progression. Nuclear factor erythroid 2- like 1 (NFE2L1) is a transcription factor primarily responsible for the proteasome inhibitor-induced “bounce-back effect” regulating the expression of proteasome subunits. NFE2L1 is localized to the endoplasmic reticulum (ER), where it is rapidly degraded under basal conditions by the ER-associated degradation (ERAD) pathway. Under conditions leading to proteasome impairment, NFE2L1 is cleaved and transported to the nucleus, where it binds to antioxidant response elements (AREs) in the promoter region of proteasome subunit genes, thereby stimulating their transcription. In this review, we summarize the role of UPS impairment in aging and neurodegenerative disease etiology and consider the potential benefit of enhancing NFE2L1 function as a strategy to upregulate proteasome function and alleviate pathology in neurodegenerative diseases. Full article
Show Figures

Figure 1

24 pages, 4465 KiB  
Article
Modeling Sarcoglycanopathy in Danio rerio
by Francesco Dalla Barba, Michela Soardi, Leila Mouhib, Giovanni Risato, Eylem Emek Akyürek, Tyrone Lucon-Xiccato, Martina Scano, Alberto Benetollo, Roberta Sacchetto, Isabelle Richard, Francesco Argenton, Cristiano Bertolucci, Marcello Carotti and Dorianna Sandonà
Int. J. Mol. Sci. 2023, 24(16), 12707; https://doi.org/10.3390/ijms241612707 - 11 Aug 2023
Cited by 3 | Viewed by 2522
Abstract
Sarcoglycanopathies, also known as limb girdle muscular dystrophy 3-6, are rare muscular dystrophies characterized, although heterogeneous, by high disability, with patients often wheelchair-bound by late adolescence and frequently developing respiratory and cardiac problems. These diseases are currently incurable, emphasizing the importance of effective [...] Read more.
Sarcoglycanopathies, also known as limb girdle muscular dystrophy 3-6, are rare muscular dystrophies characterized, although heterogeneous, by high disability, with patients often wheelchair-bound by late adolescence and frequently developing respiratory and cardiac problems. These diseases are currently incurable, emphasizing the importance of effective treatment strategies and the necessity of animal models for drug screening and therapeutic verification. Using the CRISPR/Cas9 genome editing technique, we generated and characterized δ-sarcoglycan and β-sarcoglycan knockout zebrafish lines, which presented a progressive disease phenotype that worsened from a mild larval stage to distinct myopathic features in adulthood. By subjecting the knockout larvae to a viscous swimming medium, we were able to anticipate disease onset. The δ-SG knockout line was further exploited to demonstrate that a δ-SG missense mutant is a substrate for endoplasmic reticulum-associated degradation (ERAD), indicating premature degradation due to protein folding defects. In conclusion, our study underscores the utility of zebrafish in modeling sarcoglycanopathies through either gene knockout or future knock-in techniques. These novel zebrafish lines will not only enhance our understanding of the disease’s pathogenic mechanisms, but will also serve as powerful tools for phenotype-based drug screening, ultimately contributing to the development of a cure for sarcoglycanopathies. Full article
(This article belongs to the Special Issue Zebrafish as a Model in Human Disease 2.0)
Show Figures

Figure 1

15 pages, 3648 KiB  
Article
Identification of EGF Receptor and Thrombospondin-1 as Endogenous Targets of ER-Associated Degradation Enhancer EDEM1 in HeLa Cells
by Kohta Miura, Riko Katsuki, Shusei Yoshida, Ren Ohta and Taku Tamura
Int. J. Mol. Sci. 2023, 24(15), 12171; https://doi.org/10.3390/ijms241512171 - 29 Jul 2023
Cited by 2 | Viewed by 1782
Abstract
Secretory and membrane proteins are vital for cell activities, including intra- and intercellular communication. Therefore, protein quality control in the endoplasmic reticulum (ER) is an essential and crucial process for eukaryotic cells. Endoplasmic reticulum-associated degradation (ERAD) targets misfolded proteins during the protein maturation [...] Read more.
Secretory and membrane proteins are vital for cell activities, including intra- and intercellular communication. Therefore, protein quality control in the endoplasmic reticulum (ER) is an essential and crucial process for eukaryotic cells. Endoplasmic reticulum-associated degradation (ERAD) targets misfolded proteins during the protein maturation process in the ER and leads to their disposal. This process maintains the ER productive function and prevents misfolded protein stress (i.e., ER stress). The ERAD-stimulating factor ER degradation-enhancing α mannosidase-like 1 protein (EDEM1) acts on misfolded proteins to accelerate ERAD, thereby maintaining the productivity of the ER. However, the detail mechanism underlying the function of EDEM1 in ERAD is not completely understood due to a lack of established physiological substrate proteins. In this study, we attempted to identify substrate proteins for EDEM1 using siRNA. The matrix component thrombospondin-1 (TSP1) and epidermal growth factor receptor (EGFR) were identified as candidate targets of EDEM1. Their protein maturation status and cellular localization were markedly affected by knockdown of EDEM1. We also showed that EDEM1 physically associates with EGFR and enhances EGFR degradation via ERAD. Our data highlight the physiological role of EDEM1 in maintaining specific target proteins and provide a potential approach to the regulation of expression of clinically important proteins. Full article
(This article belongs to the Special Issue Endoplasmic Reticulum Stress and Apoptosis)
Show Figures

Figure 1

Back to TopTop