Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (144)

Search Parameters:
Keywords = end-of-life lithium-ion battery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4979 KiB  
Article
Oxygen Vacancy-Engineered Ni:Co3O4/Attapulgite Photothermal Catalyst from Recycled Spent Lithium-Ion Batteries for Efficient CO2 Reduction
by Jian Shi, Yao Xiao, Menghan Yu and Xiazhang Li
Catalysts 2025, 15(8), 732; https://doi.org/10.3390/catal15080732 - 1 Aug 2025
Viewed by 245
Abstract
Accelerated industrialization and surging energy demands have led to continuously rising atmospheric CO2 concentrations. Developing sustainable methods to reduce atmospheric CO2 levels is crucial for achieving carbon neutrality. Concurrently, the rapid development of new energy vehicles has driven a significant increase [...] Read more.
Accelerated industrialization and surging energy demands have led to continuously rising atmospheric CO2 concentrations. Developing sustainable methods to reduce atmospheric CO2 levels is crucial for achieving carbon neutrality. Concurrently, the rapid development of new energy vehicles has driven a significant increase in demand for lithium-ion batteries (LIBs), which are now approaching an end-of-life peak. Efficient recycling of valuable metals from spent LIBs represents a critical challenge. This study employs conventional hydrometallurgical processing to recover valuable metals from spent LIBs. Subsequently, Ni-doped Co3O4 (Ni:Co3O4) supported on the natural mineral attapulgite (ATP) was synthesized via a sol–gel method. The incorporation of a small amount of Ni into the Co3O4 lattice generates oxygen vacancies, inducing a localized surface plasmon resonance (LSPR) effect, which significantly enhances charge carrier transport and separation efficiency. During the photocatalytic reduction of CO2, the primary product CO generated by the Ni:Co3O4/ATP composite achieved a high production rate of 30.1 μmol·g−1·h−1. Furthermore, the composite maintains robust catalytic activity even after five consecutive reaction cycles. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in Air Pollution Control)
Show Figures

Figure 1

16 pages, 3383 KiB  
Article
Thermal and Electrical Design Considerations for a Flexible Energy Storage System Utilizing Second-Life Electric Vehicle Batteries
by Rouven Christen, Simon Nigsch, Clemens Mathis and Martin Stöck
Batteries 2025, 11(8), 287; https://doi.org/10.3390/batteries11080287 - 26 Jul 2025
Viewed by 305
Abstract
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These [...] Read more.
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These batteries, no longer suitable for traction applications due to a reduced state of health (SoH) below 80%, retain sufficient capacity for less demanding stationary applications. The proposed system is designed to be flexible and scalable, serving both research and commercial purposes. Key challenges include heterogeneous battery characteristics, safety considerations due to increased internal resistance and battery aging, and the need for flexible power electronics. An optimized dual active bridge (DAB) converter topology is introduced to connect several batteries in parallel and to ensure efficient bidirectional power flow over a wide voltage range. A first prototype, rated at 50 kW, has been built and tested in the laboratory. This study contributes to sustainable energy storage solutions by extending battery life cycles, reducing waste, and promoting economic viability for industrial partners. Full article
Show Figures

Figure 1

18 pages, 2688 KiB  
Article
Eco-Friendly Leaching of Spent Lithium-Ion Battery Black Mass Using a Ternary Deep Eutectic Solvent System Based on Choline Chloride, Glycolic Acid, and Ascorbic Acid
by Furkan Nazlı, Işıl Hasdemir, Emircan Uysal, Halide Nur Dursun, Utku Orçun Gezici, Duygu Yesiltepe Özçelik, Fırat Burat and Sebahattin Gürmen
Minerals 2025, 15(8), 782; https://doi.org/10.3390/min15080782 - 25 Jul 2025
Viewed by 402
Abstract
Lithium-ion batteries (LiBs) are utilized in numerous applications due to advancements in technology, and the recovery of end-of-life (EoL) LiBs is imperative for environmental and economic reasons. Pyrometallurgical and hydrometallurgical methods have been used in the recovery of metals such as Li, Co, [...] Read more.
Lithium-ion batteries (LiBs) are utilized in numerous applications due to advancements in technology, and the recovery of end-of-life (EoL) LiBs is imperative for environmental and economic reasons. Pyrometallurgical and hydrometallurgical methods have been used in the recovery of metals such as Li, Co, and Ni in the EoL LiBs. Hydrometallurgical methods, which have been demonstrated to exhibit higher recovery efficiency and reduced energy consumption, have garnered increased attention in recent research. Inorganic acids, including HCl, HNO3, and H2SO4, as well as organic acids such as acetic acid and citric acid, are employed in the hydrometallurgical recovery of these metals. It is imperative to acknowledge the environmental hazards posed by these acids. Consequently, solvometallurgical processes, which involve the use of organic solvents with minimal or no water, are gaining increasing attention as alternative or complementary techniques to conventional hydrometallurgical processes. In the context of solvent systems that have been examined for a range of solvometallurgical methods, deep eutectic solvents (DESs) have garnered particular interest due to their low toxicity, biodegradable nature, tunable properties, and efficient metal recovery potential. In this study, the leaching process of black mass containing graphite, LCO, NMC, and LMO was carried out in a short time using the ternary DES system. The ternary DES system consists of choline chloride (ChCl), glycolic acid (GLY), and ascorbic acid (AA). As a result of the leaching process of cathode powders in the black mass without any pre-enrichment process, Li, Co, Ni, and Mn elements passed into solution with an efficiency of over 95% at 60 °C and within 1 h. Moreover, the kinetics of the leaching process was investigated, and Density Functional Theory (DFT) calculations were used to explain the leaching mechanism. Full article
Show Figures

Figure 1

18 pages, 840 KiB  
Article
Centralized vs. Decentralized Black-Mass Production: A Comparative Analysis of Lithium Reverse Logistics Supply Chain Networks
by Oluwatosin S. Atitebi and Erick C. Jones
Logistics 2025, 9(3), 97; https://doi.org/10.3390/logistics9030097 - 23 Jul 2025
Viewed by 309
Abstract
Background: The transition to renewable energy is intensifying demand for lithium-ion batteries (LIBs), thereby increasing the need for sustainable lithium sourcing. Traditional mining practices pose environmental and health risks, which can be mitigated through efficient end-of-life recycling systems. Methods: This study [...] Read more.
Background: The transition to renewable energy is intensifying demand for lithium-ion batteries (LIBs), thereby increasing the need for sustainable lithium sourcing. Traditional mining practices pose environmental and health risks, which can be mitigated through efficient end-of-life recycling systems. Methods: This study proposes a modified lithium reverse logistics network that decentralizes black-mass production at distributed facilities before centralized extraction, contrasting with conventional models that transport raw LIBs directly to central processing sites. Using the United States as a case study, two mathematical optimization (mixed-integer linear programming) models were developed to compare the traditional and modified networks in terms of cost efficiency and carbon emissions. Results: The model indicates that the proposed network significantly reduces both operational costs and emissions. Conclusions: This study highlights its potential to support a greener economy and inform policy development. Full article
Show Figures

Figure 1

15 pages, 2481 KiB  
Article
Capacity Forecasting of Lithium-Ion Batteries Using Empirical Models: Toward Efficient SOH Estimation with Limited Cycle Data
by Kanchana Sivalertporn, Piyawong Poopanya and Teeraphon Phophongviwat
Energies 2025, 18(14), 3828; https://doi.org/10.3390/en18143828 - 18 Jul 2025
Viewed by 275
Abstract
Accurate prediction of lithium-ion battery capacity degradation is crucial for reliable state-of-health estimation and long-term performance assessment in battery management systems. This study presents an empirical modeling approach based on experimental data collected from four lithium iron phosphate (LFP) battery packs cycled over [...] Read more.
Accurate prediction of lithium-ion battery capacity degradation is crucial for reliable state-of-health estimation and long-term performance assessment in battery management systems. This study presents an empirical modeling approach based on experimental data collected from four lithium iron phosphate (LFP) battery packs cycled over 75 to 100 charge–discharge cycles. Several mathematical models—including linear, quadratic, single-exponential, and double-exponential functions—were evaluated for their predictive accuracy. Among these, the linear and single-exponential models demonstrated strong performance in early-cycle predictions. It was found that using 30 to 40 cycles of data is sufficient for reliable forecasting within a 100-cycle range, reducing the mean absolute error by over 80% compared to using early-cycle data alone. Although these models provide reasonable short-term predictions, they fail to capture the nonlinear degradation behavior observed beyond 80 cycles. To address this, a modified linear model was proposed by introducing an exponentially decaying slope. The modified linear model offers improved long-term prediction accuracy and robustness, particularly when data availability is limited. Capacity forecasts based on only 40 cycles yielded results comparable to those using 100 cycles, demonstrating the model’s efficiency. End-of-life estimates based on the modified linear model align more closely with typical LFP specifications, whereas conventional models tend to underestimate the cycle life. The proposed model offers a practical balance between computational simplicity and predictive accuracy, making it well suited for battery health diagnostics. Full article
Show Figures

Figure 1

27 pages, 1344 KiB  
Review
An Overview of Lithium-Ion Battery Recycling: A Comparison of Brazilian and International Scenarios
by Jean Furlanetto, Marcus V. C. de Lara, Murilo Simionato, Vagner do Nascimento and Giovani Dambros Telli
World Electr. Veh. J. 2025, 16(7), 371; https://doi.org/10.3390/wevj16070371 - 3 Jul 2025
Viewed by 1215
Abstract
Purely electric and hybrid vehicles are emerging as the transport sector’s response to meet climate goals, aiming to mitigate global warming. As the adoption of transport electrification increases, the importance of recycling components of the electric propulsion system at the end of their [...] Read more.
Purely electric and hybrid vehicles are emerging as the transport sector’s response to meet climate goals, aiming to mitigate global warming. As the adoption of transport electrification increases, the importance of recycling components of the electric propulsion system at the end of their life grows, particularly the battery pack, which significantly contributes to the vehicle’s final cost and generates environmental impacts and CO2 during production. This work presents an overview of the recycling processes for lithium-ion automotive batteries, emphasizing the developing Brazilian scenario and more established international scenarios. In Brazil, companies and research centers are investing in recycling and using reused cathode material to manufacture new batteries through the hydrometallurgical process. On the international front, pyrometallurgy and physical recycling are being applied, and other methods, such as direct processes and biohydrometallurgy, are also under study. Regardless of the recycling method, the main challenge is scaling prototype processes to meet current and future battery demand, driven by the growth of electric and hybrid vehicles, pursuing both environmental gains through reduced mining and CO2 emissions and economic viability to make recycling profitable and support global electrification. Full article
Show Figures

Figure 1

31 pages, 1734 KiB  
Review
Progress, Challenges and Opportunities in Recycling Electric Vehicle Batteries: A Systematic Review Article
by Hamid Safarzadeh and Francesco Di Maria
Batteries 2025, 11(6), 230; https://doi.org/10.3390/batteries11060230 - 13 Jun 2025
Cited by 1 | Viewed by 1776
Abstract
Objective: The rapid growth of electric vehicle (EV) adoption has led to an unprecedented increase in lithium-ion battery (LIB) demand and end-of-life waste, underscoring the urgent need for effective recycling strategies. This review evaluates current progress in EV battery recycling and explores future [...] Read more.
Objective: The rapid growth of electric vehicle (EV) adoption has led to an unprecedented increase in lithium-ion battery (LIB) demand and end-of-life waste, underscoring the urgent need for effective recycling strategies. This review evaluates current progress in EV battery recycling and explores future prospects. Design: Review based on PRISMA 2020. Data sources: Scientific publications indexed in major databases such as Scopus, Web of Science, and ScienceDirect were searched for relevant studies published between 2020 and 15 April 2025. Inclusion criteria: Studies were included if they were published in English between 2020 and 15 April 2025, and focused on the recycling of electric vehicle batteries. Eligible studies specifically addressed (i) recycling methods, technologies, and material recovery processes for EV batteries; (ii) the impact of recycled battery systems on power generation processes and grid stability; and (iii) assessments of materials used in battery manufacturing, including efficiency and recyclability. Review articles and meta-analyses were excluded to ensure the inclusion of only original research data. Data extraction: Data were independently screened and extracted by two researchers and analyzed for recovery rates, environmental impact, and system-level energy contributions. One researcher independently screened all articles and extracted relevant data. A second researcher validated the accuracy of extracted data. The data were then organized and analyzed based on reported quantitative and qualitative indicators related to recycling methods, material recovery rates, environmental impact, and system-level energy benefits. Results: A total of 23 studies were included. Significant progress has been made in hydrometallurgical and direct recycling processes, with recovery rates of critical metals (Li, Co, Ni) improving. Second-life battery applications also show promise for grid stabilization and renewable energy storage. Furthermore, recycled batteries show potential in stabilizing power grids through second-life applications in BESS. Conclusion: EV battery recycling is a vital strategy for addressing raw material scarcity, minimizing environmental harm, and supporting energy resilience. However, challenges persist in policy harmonization, technology scaling, and economic viability. Future progress will depend on integrated efforts across sectors and regions to build a circular battery economy. Full article
Show Figures

Graphical abstract

25 pages, 3552 KiB  
Article
A Stochastic Sequence-Dependent Disassembly Line Balancing Problem with an Adaptive Large Neighbourhood Search Algorithm
by Dong Zhu, Xuesong Zhang, Xinyue Huang, Duc Truong Pham and Changshu Zhan
Processes 2025, 13(6), 1675; https://doi.org/10.3390/pr13061675 - 27 May 2025
Viewed by 501
Abstract
The remanufacturing of end-of-life products is an effective approach to alleviating resource shortages, environmental pollution, and global warming. As the initial step in the remanufacturing process, the quality and efficiency of disassembly have a decisive impact on the entire workflow. However, the complexity [...] Read more.
The remanufacturing of end-of-life products is an effective approach to alleviating resource shortages, environmental pollution, and global warming. As the initial step in the remanufacturing process, the quality and efficiency of disassembly have a decisive impact on the entire workflow. However, the complexity of product structures poses numerous challenges to practical disassembly operations. These challenges include not only conventional precedence constraints among disassembly tasks but also sequential dependencies, where interference between tasks due to their execution order can prolong operation times and complicate the formulation of disassembly plans. Additionally, the inherent uncertainties in the disassembly process further affect the practical applicability of disassembly plans. Therefore, developing reliable disassembly plans must fully consider both sequential dependencies and uncertainties. To this end, this paper employs a chance-constrained programming model to characterise uncertain information and constructs a multi-objective sequence-dependent disassembly line balancing (MO-SDDLB) problem model under uncertain environments. The model aims to minimise the hazard index, workstation time variance, and energy consumption, achieving a multi-dimensional optimisation of the disassembly process. To efficiently solve this problem, this paper designs an innovative multi-objective adaptive large neighbourhood search (MO-ALNS) algorithm. The algorithm integrates three destruction and repair operators, combined with simulated annealing, roulette wheel selection, and local search strategies, significantly enhancing solution efficiency and quality. Practical disassembly experiments on a lithium-ion battery validate the effectiveness of the proposed model and algorithm. Moreover, the proposed MO-ALNS demonstrated a superior performance compared to other state-of-the-art methods. On average, against the best competitor results, MO-ALNS improved the number of Pareto solutions (NPS) by approximately 21%, reduced the inverted generational distance (IGD) by about 21%, and increased the hypervolume (HV) by nearly 8%. Furthermore, MO-ALNS exhibited a superior stability, providing a practical and feasible solution for disassembly optimisation. Full article
Show Figures

Figure 1

15 pages, 2113 KiB  
Article
Form Factor and Chemistry Agnostic Battery Deactivation Using Electrically Conductive Gel for Safe Transportation
by Gordon Henry Waller, Connor Jacob, Annabelle Green, Rachel Ashmore Carter and Corey Thomas Love
Batteries 2025, 11(5), 201; https://doi.org/10.3390/batteries11050201 - 21 May 2025
Viewed by 760
Abstract
Removing residual energy from end-of-life batteries prior to transportation requires some method of deactivation. While many methods have been proposed, very few have been implemented due to limitations of cost, safety, and efficacy. In this work, multiple cell and battery types (e.g., lithium-polymer [...] Read more.
Removing residual energy from end-of-life batteries prior to transportation requires some method of deactivation. While many methods have been proposed, very few have been implemented due to limitations of cost, safety, and efficacy. In this work, multiple cell and battery types (e.g., lithium-polymer pouch cells, 18650 lithium-ion cell, alkaline batteries, and lithium-ion power-tool batteries) were deactivated using a low-cost and easily applied gel consisting of borax cross-linked polyvinyl alcohol and carbon. The PVA–carbon composite creates an external short-circuit pathway of moderate resistance that enables the complete discharge of batteries. Abusive testing conducted after deactivation demonstrates that hazards are largely eliminated, including a complete avoidance of thermal runaway from lithium-ion cells and a reduction in flammable and toxic gases by several orders of magnitude. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Figure 1

15 pages, 4474 KiB  
Article
Data-Driven Battery Remaining Life Prediction Based on ResNet with GA Optimization
by Jixiang Zhou, Weijian Huang, Haiyan Dai, Chuang Wang and Yuhua Zhong
World Electr. Veh. J. 2025, 16(5), 267; https://doi.org/10.3390/wevj16050267 - 14 May 2025
Viewed by 551
Abstract
As lithium batteries are widely used in mobile electronic devices and electric vehicles, accurately assessing the Remaining Useful Life (RUL) of lithium-ion batteries is crucial to ensure the stable operation of the devices, improve energy efficiency, and safeguard user safety. Although data-driven methods [...] Read more.
As lithium batteries are widely used in mobile electronic devices and electric vehicles, accurately assessing the Remaining Useful Life (RUL) of lithium-ion batteries is crucial to ensure the stable operation of the devices, improve energy efficiency, and safeguard user safety. Although data-driven methods show good prediction potential without the need to understand the reaction mechanism inside the battery, they face the problems of high data demand and feature redundancy that may reduce the model learning accuracy in practical applications. To this end, this paper proposes a data-driven lithium-ion battery life prediction method based on residual network (ResNet) and genetic algorithm (GA) optimization, which is designed to screen the features of the lithium-ion battery training data in order to effectively reduce the redundant features and improve the prediction performance of the model. Fourteen health features were first extracted during the charging and discharging phases of the battery. In order to reduce the usage of the dataset, only the first 100 cycles of the battery data were used, and the prediction error was about 9%. Secondly, the deep feature extraction capability of ResNet is utilized to effectively capture the complex patterns and subtle changes during battery decline to alleviate the problem of gradient disappearance. Meanwhile, in order to reduce the influence of redundant information, GA is used for health feature selection and optimization to screen out the most representative health features and enhance the generalization ability of the model. The experimental results obtained using the test set provided by the Massachusetts Institute of Technology (MIT), demonstrated the effectiveness and superiority of the proposed method. Full article
Show Figures

Figure 1

16 pages, 20746 KiB  
Article
Pretreatment Methods for Recovering Active Cathode Material from Spent Lithium-Ion Batteries
by Federica Barontini, Flavio Francalanci, Eleonora Stefanelli and Monica Puccini
Environments 2025, 12(4), 119; https://doi.org/10.3390/environments12040119 - 12 Apr 2025
Viewed by 700
Abstract
The development of environmentally friendly pretreatment processes for spent lithium-ion batteries (LIBs) is crucial for optimizing direct recycling methods. This study explores alternative approaches for recovering active cathode materials from end-of-life LIBs, focusing on environmentally safer options compared to the usually employed toxic [...] Read more.
The development of environmentally friendly pretreatment processes for spent lithium-ion batteries (LIBs) is crucial for optimizing direct recycling methods. This study explores alternative approaches for recovering active cathode materials from end-of-life LIBs, focusing on environmentally safer options compared to the usually employed toxic solvent N-methyl-pyrrolidone (NMP), using disassembled batteries as test subjects. Various pretreatment methods, including thermal treatment, selective aluminum foil dissolution with a NaOH solution, and the use of eco-friendly solvents such as triethyl phosphate (TEP), are examined on the cathode sheets. The results show that thermal pretreatment combined with TEP provides the most effective approach, achieving a recovery efficiency of 95% while maintaining the morphology and purity of the recovered materials, making them suitable for direct recycling. These methods are further tested on complete battery cells, simulating industrial-scale operations. The TEP treatment proves particularly promising, ensuring high recovery efficiency and preserving the structural integrity of the materials, with a mean particle diameter of approximately 8 µm. Additionally, when applied to cycled batteries, this pretreatment successfully recovers active materials without contamination. This study provides valuable insights into various pretreatment strategies, contributing to the development of a greener, more efficient direct recycling pretreatment process for spent LIBs. Full article
Show Figures

Figure 1

40 pages, 2834 KiB  
Review
Sustainable Recycling of End-of-Life Electric Vehicle Batteries: EV Battery Recycling Frameworks in China and the USA
by Amjad Ali, Mujtaba Al Bahrani, Shoaib Ahmed, Md Tasbirul Islam, Sikandar Abdul Qadir and Muhammad Shahid
Recycling 2025, 10(2), 68; https://doi.org/10.3390/recycling10020068 - 10 Apr 2025
Cited by 1 | Viewed by 3099
Abstract
The increasing adoption of electric vehicles (EVs) has led to a surge in end-of-life (EOL) lithium-ion batteries (LIBs), necessitating efficient recycling strategies to mitigate environmental risks and recover critical materials. This study compares the EV battery recycling frameworks in China and the United [...] Read more.
The increasing adoption of electric vehicles (EVs) has led to a surge in end-of-life (EOL) lithium-ion batteries (LIBs), necessitating efficient recycling strategies to mitigate environmental risks and recover critical materials. This study compares the EV battery recycling frameworks in China and the United States, focusing on policy effectiveness, technological advancements, and material recovery efficiencies. China’s extended producer responsibility (EPR) policies and 14th Five-Year Plan mandate strict recycling targets, achieving a 40% battery recycling rate with 90% material recovery efficiency. Hydrometallurgical methods dominate, reducing energy consumption by 50% compared to virgin material extraction. The US, leveraging incentive-based mechanisms and private sector innovations, has a 35% recycling rate but a higher 95% resource recovery efficiency, mainly due to direct recycling and AI-based sorting technologies. Despite these advancements, challenges remain, including high recycling costs, inconsistent global regulations, and supply chain inefficiencies. To enhance sustainability, this study recommends harmonized international policies, investment in next-generation recycling technologies, and second-life battery applications. Emerging innovations, such as AI-driven sorting and direct cathode regeneration, could increase recovery efficiency by 20–30%, further reducing lifecycle costs. By integrating synergistic policies and advanced recycling infrastructures, China and the US can set a global precedent for sustainable EV battery management, driving the transition toward a circular economy. Future research should explore life cycle cost analysis and battery reuse strategies to optimize long-term sustainability. Full article
(This article belongs to the Special Issue Lithium-Ion and Next-Generation Batteries Recycling)
Show Figures

Figure 1

30 pages, 7059 KiB  
Review
Global Regulations for Sustainable Battery Recycling: Challenges and Opportunities
by Dan Su, Yu Mei, Tongchao Liu and Khalil Amine
Sustainability 2025, 17(7), 3045; https://doi.org/10.3390/su17073045 - 29 Mar 2025
Cited by 6 | Viewed by 5196
Abstract
With the rapid expansion of transportation electrification worldwide, the demand for electric vehicles (EVs) has increased dramatically, creating new and sustainable growth opportunities for the global economy. However, as the most expensive component of EVs, lithium-ion batteries pose significant sustainability challenges due to [...] Read more.
With the rapid expansion of transportation electrification worldwide, the demand for electric vehicles (EVs) has increased dramatically, creating new and sustainable growth opportunities for the global economy. However, as the most expensive component of EVs, lithium-ion batteries pose significant sustainability challenges due to raw material consumption and supply chain constrains, as well as the complexities of end-of-life battery disposal and recycling. To address these concerns, many countries are actively establishing regulations to promote sustainable pathways for battery reuse and recycling. Despite these efforts, existing battery recycling regulations remain often inefficient and vary significantly across different countries in legal enforcement, producer responsibility, waste classification, recycling targets, design standards, public engagement, and financial incentives, particularly given the complexities of the global supply chain and resource distribution within the battery industry. Understanding these regulatory differences and establishing a unified framework are therefore crucial to ensuring sustainable and efficient battery recycling. This review provides a comprehensive analysis of the necessity of establishing robust regulations for sustainable development of battery recycling industry. The evolution and refinement of battery recycling regulations are deeply reviewed to identifying persistent gaps and challenges in key countries. Furthermore, we discuss the challenges associated with regulatory enforcement and propose strategies for developing a more cohesive legislative framework to ensure the effective utilization of retired batteries. Full article
(This article belongs to the Special Issue Treatment, Recycling, and Utilization of Secondary Resources)
Show Figures

Figure 1

14 pages, 2868 KiB  
Article
Environmentally Sustainable Anode Material for Lithium-Ion Batteries Derived from Cattle Bone Waste: A Full-Cell Analysis with a LiFePO4 Cathode
by Muhammad Shajih Zafar, Pejman Salimi, Marco Ricci, Jasim Zia and Remo Proietti Zaccaria
Sustainability 2025, 17(7), 3005; https://doi.org/10.3390/su17073005 - 28 Mar 2025
Viewed by 738
Abstract
Modern society relies heavily on energy, driving global research into sustainable energy storage and conversion technologies. Concurrently, the increasing volume of waste generated by industrial and commercial activities emphasizes the need for effective waste management strategies. Carbonization emerges as a promising solution, converting [...] Read more.
Modern society relies heavily on energy, driving global research into sustainable energy storage and conversion technologies. Concurrently, the increasing volume of waste generated by industrial and commercial activities emphasizes the need for effective waste management strategies. Carbonization emerges as a promising solution, converting waste into energy and valuable end products such as biochar. This study explores an approach for valorizing bone-based food waste, presenting innovative pathways for managing the escalating issue of food waste. We investigate carbon derived from cattle bone waste, carbonized at 800 °C (CBW8), to design sustainable full-cell lithium-ion batteries (FLIBs). FLIBs featuring CBW8 as the anode material and LiFePO4 as the cathode exhibit exceptional cycling life, even at high current rates. The cell demonstrates a high specific capacity of 165 mAh g−1 at 0.5 C, maintaining stable performance over 1800 cycles at various C-rates. This work not only advances the field of sustainable energy and waste management, but also opens new avenues for eco-friendly technological applications. Full article
(This article belongs to the Special Issue Biomass Transformation and Sustainability)
Show Figures

Figure 1

24 pages, 2214 KiB  
Article
Challenges Faced by Lithium-Ion Batteries in Effective Waste Management
by Anna Luiza Santos, Wellington Alves and Paula Ferreira
Sustainability 2025, 17(7), 2893; https://doi.org/10.3390/su17072893 - 26 Mar 2025
Cited by 2 | Viewed by 1221
Abstract
Electric vehicles are regarded as key players in reducing CO2 emissions. However, managing the end-of-life (EoL) of lithium-ion batteries (LIBs) poses significant environmental and technical challenges. This presents a daunting task for governments, companies, and academics when discussing and developing initiatives for [...] Read more.
Electric vehicles are regarded as key players in reducing CO2 emissions. However, managing the end-of-life (EoL) of lithium-ion batteries (LIBs) poses significant environmental and technical challenges. This presents a daunting task for governments, companies, and academics when discussing and developing initiatives for the EoL of LIBs. As more LIBs reach the end of their vehicular use, it becomes essential to identify key challenges. This research aims to analyze possible pathways, identify LIBs’ challenges in reaching the appropriate destinations, and propose actions to overcome these obstacles. Additionally, this study addresses those responsible for each challenge. A narrative review was employed as a methodological approach to achieve the proposed objectives, utilizing available literature on EoL LIB management. The research findings highlight various challenges, including safety, commercialization, and disassembly. To address these issues, this work recommends strategies such as extended producer responsibility, automation, and regulation. The study also emphasizes the necessity for a collaborative effort, particularly highlighting the key roles of government and industry in developing regulations, implementing effective waste management strategies, and driving market expansion, while academia contributes through research and technological advancements. The research contributes to a better understanding of sustainable LIB management, advocating for responsible disposal and reducing environmental and economic impacts. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

Back to TopTop