Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = electrophoretic assembly deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1412 KiB  
Article
Adsorption and Bulk Assembly of Quaternized Hydroxyethylcellulose–Anionic Surfactant Complexes on Negatively Charged Substrates
by Maud Nivard, Francisco Ortega, Ramón G. Rubio and Eduardo Guzmán
Polymers 2025, 17(2), 207; https://doi.org/10.3390/polym17020207 - 15 Jan 2025
Cited by 2 | Viewed by 1136
Abstract
This study examines the adsorption and bulk assembly behaviour of quaternized hydroxyethylcellulose ethoxylate (QHECE)–sodium dodecyl sulphate (SDS) complexes on negatively charged substrates. Due to its quaternized structure, QHECE, which is used in several industries, including cosmetics, exhibits enhanced electrostatic interactions. The phase behaviour [...] Read more.
This study examines the adsorption and bulk assembly behaviour of quaternized hydroxyethylcellulose ethoxylate (QHECE)–sodium dodecyl sulphate (SDS) complexes on negatively charged substrates. Due to its quaternized structure, QHECE, which is used in several industries, including cosmetics, exhibits enhanced electrostatic interactions. The phase behaviour and adsorption mechanisms of QHECE–SDS complexes are investigated using model substrates that mimic the wettability and surface charge of damaged hair fibres. Two preparation methodologies, high-concentration mixing and gradient-free mixing, were employed to examine their impact on the complex equilibrium, phase behaviour, and adsorption properties of the complexes. The measurements of turbidity, electrophoretic mobility, and conductivity demonstrate the existence of nonequilibrium dynamics during the mixing process, which exert a significant influence on the structural and functional characteristics of the complexes. The quartz crystal microbalance with dissipation monitoring (QCM-D) was employed to investigate the adsorption of the complexes onto the substrates. The results demonstrated the critical role of intermediate SDS concentrations in enhancing deposition. The findings emphasise the importance of formulation and preparation protocols in designing stable, high-performance cosmetic products. This research advances our understanding of polyelectrolyte–surfactant interactions and provides insights into optimising QHECE-based formulations. Full article
(This article belongs to the Special Issue Cellulose-Based Polymeric Materials)
Show Figures

Graphical abstract

13 pages, 4429 KiB  
Article
Photo-Thermal Conversion and Raman Sensing Properties of Three-Dimensional Gold Nanostructure
by Feng Shan, Jingyi Huang, Yanyan Zhu and Guohao Wei
Molecules 2024, 29(18), 4287; https://doi.org/10.3390/molecules29184287 - 10 Sep 2024
Viewed by 1103
Abstract
Three-dimensional plasma nanostructures with high light–thermal conversion efficiency show the prospect of industrialization in various fields and have become a research hotspot in areas of light–heat utilization, solar energy capture, and so on. In this paper, a simple chemical synthesis method is proposed [...] Read more.
Three-dimensional plasma nanostructures with high light–thermal conversion efficiency show the prospect of industrialization in various fields and have become a research hotspot in areas of light–heat utilization, solar energy capture, and so on. In this paper, a simple chemical synthesis method is proposed to prepare gold nanoparticles, and the electrophoretic deposition method is used to assemble large-area three-dimensional gold nanostructures (3D-GNSs). The light–thermal water evaporation monitoring and surface-enhanced Raman scattering (SERS) measurements of 3D-GNSs were performed via theoretical simulation and experiments. We reveal the physical processes of local electric field optical enhancement and the light–thermal conversion of 3D-GNSs. The results show that with the help of the efficient optical trapping and super-hydrophilic surface properties of 3D-GNSs, they have a significant effect in accelerating water evaporation, which was increased by nearly eight times. At the same time, the three-dimensional SERS substrates based on gold nanosphere particles (GNSPs) and gold nanostar particles (GNSTs) had limited sensitivities of 10−10 M and 10−12 M to R6G molecules, respectively. Therefore, 3D-GNSs show strong competitiveness in the fields of solar-energy-induced water purification and the Raman trace detection of organic molecules. Full article
(This article belongs to the Special Issue Raman Spectroscopy Analysis of Surfaces)
Show Figures

Figure 1

17 pages, 6905 KiB  
Article
Zein/Polysaccharide Nanoscale Electrostatic Complexes: Preparation, Drug Encapsulation and Antibacterial Properties
by Elena-Daniela Lotos, Marcela Mihai, Ana-Lavinia Vasiliu, Irina Rosca, Alice Mija, Bogdan C. Simionescu and Stergios Pispas
Nanomaterials 2024, 14(2), 197; https://doi.org/10.3390/nano14020197 - 15 Jan 2024
Cited by 4 | Viewed by 1930
Abstract
Characterization of zein aqueous solutions, as a function of the ethanol content and pH, was performed, giving information on the zein aggregation state for the construction of complexes. The aggregation state and surface charge of zein was found to depend on the mixed [...] Read more.
Characterization of zein aqueous solutions, as a function of the ethanol content and pH, was performed, giving information on the zein aggregation state for the construction of complexes. The aggregation state and surface charge of zein was found to depend on the mixed solvent composition and pH. Nonstoichiometric complex nanoparticles (NPECs) were prepared by electrostatically self-assembling zein, as the polycation, and sodium alginate or chondroitin sulfate, as the polyanions, at a pH of 4. A wide range of parameters were investigated: the alcohol–water content in the zein solutions, the charge molar ratios, the solution addition order and the addition rate. The resulting nanoparticles were characterized by dynamic and electrophoretic light scattering, circular dichroism and scanning electron microscopy. The smallest size for the NPECs (100 nm) was obtained when the polysaccharides acted as the titrate with an addition rate of 0.03 mL·min−1. The NPECs with the best characteristics were selected for loading with ciprofloxacin and then deposited on a cellulosic material in order to evaluate their antibacterial activity. Substantial drug encapsulation with desired drug release profiles were found together with notable antibacterial efficiency, showing the tunability of the properties for both the zein and its complexes with polysaccharides, together with their application potential in the biomedical field. Full article
Show Figures

Graphical abstract

18 pages, 5175 KiB  
Article
Photoelectrochemical Performance of Strontium Titanium Oxynitride Photo-Activated with Cobalt Phosphate Nanoparticles for Oxidation of Alkaline Water
by Mabrook S. Amer, Prabhakarn Arunachalam, Mohamed A. Ghanem, Abdullah M. Al-Mayouf and Mark T. Weller
Nanomaterials 2023, 13(5), 920; https://doi.org/10.3390/nano13050920 - 1 Mar 2023
Cited by 2 | Viewed by 2240
Abstract
Photoelectrochemical (PEC) solar water splitting is favourable for transforming solar energy into sustainable hydrogen fuel using semiconductor electrodes. Perovskite-type oxynitrides are attractive photocatalysts for this application due to their visible light absorption features and stability. Herein, strontium titanium oxynitride (STON) containing anion vacancies [...] Read more.
Photoelectrochemical (PEC) solar water splitting is favourable for transforming solar energy into sustainable hydrogen fuel using semiconductor electrodes. Perovskite-type oxynitrides are attractive photocatalysts for this application due to their visible light absorption features and stability. Herein, strontium titanium oxynitride (STON) containing anion vacancies of SrTi(O,N)3−δ was prepared via solid phase synthesis and assembled as a photoelectrode by electrophoretic deposition, and their morphological and optical properties and PEC performance for alkaline water oxidation are investigated. Further, cobalt-phosphate (CoPi)-based co-catalyst was photo-deposited over the surface of the STON electrode to boost the PEC efficiency. A photocurrent density of ~138 μA/cm at 1.25 V versus RHE was achieved for CoPi/STON electrodes in presence of a sulfite hole scavenger which is approximately a four-fold enhancement compared to the pristine electrode. The observed PEC enrichment is mainly due to the improved kinetics of oxygen evolution because of the CoPi co-catalyst and the reduced surface recombination of the photogenerated carriers. Moreover, the CoPi modification over perovskite-type oxynitrides provides a new dimension for developing efficient and highly stable photoanodes in solar-assisted water-splitting reactions. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Photocatalysis and Photo(electro)catalysis)
Show Figures

Figure 1

15 pages, 2928 KiB  
Article
Electrochemically Deposited MoS2 and MnS Multilayers on Nickel Substrates in Inverse Opal Structure as Supercapacitor Microelectrodes
by Sheng-Kuei Chiu, Po-Yan Chen and Rong-Fuh Louh
Micromachines 2023, 14(2), 361; https://doi.org/10.3390/mi14020361 - 31 Jan 2023
Cited by 5 | Viewed by 2642
Abstract
High-dispersion polystyrene (PS) microspheres with monodispersity were successfully synthesized by the non-emulsification polymerization method, and three-dimensional (3D) photonic crystals of PS microspheres were fabricated by electrophoretic self-assembly (EPSA). The metal nickel inverse opal structure (IOS) photonic crystal, of which the structural thickness can [...] Read more.
High-dispersion polystyrene (PS) microspheres with monodispersity were successfully synthesized by the non-emulsification polymerization method, and three-dimensional (3D) photonic crystals of PS microspheres were fabricated by electrophoretic self-assembly (EPSA). The metal nickel inverse opal structure (IOS) photonic crystal, of which the structural thickness can be freely adjusted via electrochemical deposition (ECD), and subsequently, MnS/MoS2/Ni-IOS specimens were also prepared by ECD. Excellent specific capacitance values (1880 F/g) were obtained at a charge current density of 5 A/g. The samples in this experiment were tested for 2000 cycles of cycle life and still retained a reasonably good level of 76.6% of their initial capacitance value. In this study, the inverse opal structure photonic crystal substrate was used as the starting point, and then the microelectrode material for the MnS/MoS2/Ni-IOS supercapacitor was synthesized. Our findings show that the MnS/MoS2/Ni-IOS microelectrode makes a viable technical contribution to the design and fabrication of high-performance supercapacitors. Full article
(This article belongs to the Special Issue Micro-Optics Devices)
Show Figures

Figure 1

35 pages, 13410 KiB  
Review
A Brief Insight to the Electrophoretic Deposition of PEEK-, Chitosan-, Gelatin-, and Zein-Based Composite Coatings for Biomedical Applications: Recent Developments and Challenges
by Syeda Ammara Batool, Abdul Wadood, Syed Wilayat Hussain, Muhammad Yasir and Muhammad Atiq Ur Rehman
Surfaces 2021, 4(3), 205-239; https://doi.org/10.3390/surfaces4030018 - 4 Aug 2021
Cited by 21 | Viewed by 7695
Abstract
Electrophoretic deposition (EPD) is a powerful technique to assemble metals, polymer, ceramics, and composite materials into 2D, 3D, and intricately shaped implants. Polymers, proteins, and peptides can be deposited via EPD at room temperature without affecting their chemical structures. Furthermore, EPD is being [...] Read more.
Electrophoretic deposition (EPD) is a powerful technique to assemble metals, polymer, ceramics, and composite materials into 2D, 3D, and intricately shaped implants. Polymers, proteins, and peptides can be deposited via EPD at room temperature without affecting their chemical structures. Furthermore, EPD is being used to deposit multifunctional coatings (i.e., bioactive, antibacterial, and biocompatible coatings). Recently, EPD was used to architect multi-structured coatings to improve mechanical and biological properties along with the controlled release of drugs/metallic ions. The key characteristics of EPD coatings in terms of inorganic bioactivity and their angiogenic potential coupled with antibacterial properties are the key elements enabling advanced applications of EPD in orthopedic applications. In the emerging field of EPD coatings for hard tissue and soft tissue engineering, an overview of such applications will be presented. The progress in the development of EPD-based polymeric or composite coatings, including their application in orthopedic and targeted drug delivery approaches, will be discussed, with a focus on the effect of different biologically active ions/drugs released from EPD deposits. The literature under discussion involves EPD coatings consisting of chitosan (Chi), zein, polyetheretherketone (PEEK), and their composites. Moreover, in vitro and in vivo investigations of EPD coatings will be discussed in relation to the current main challenge of orthopedic implants, namely that the biomaterial must provide good bone-binding ability and mechanical compatibility. Full article
Show Figures

Figure 1

13 pages, 3258 KiB  
Article
Electrophoretic Deposition of Aged and Charge Controlled Colloidal Copper Sulfide Nanoparticles
by Yoonsu Park, Hyeri Kang, Wooseok Jeong, Hyungbin Son and Don-Hyung Ha
Nanomaterials 2021, 11(1), 133; https://doi.org/10.3390/nano11010133 - 8 Jan 2021
Cited by 15 | Viewed by 3425
Abstract
Colloidal nanoparticles (NPs) have been recently spotlighted as building blocks for various nanostructured devices. Their collective properties have been exhibited by arranging them on a substrate to form assembled NPs. In particular, electrophoretic deposition (EPD) is an emerging fabrication method for such nanostructured [...] Read more.
Colloidal nanoparticles (NPs) have been recently spotlighted as building blocks for various nanostructured devices. Their collective properties have been exhibited by arranging them on a substrate to form assembled NPs. In particular, electrophoretic deposition (EPD) is an emerging fabrication method for such nanostructured films. To maximize the benefits of this method, further studies are required to fully elucidate the key parameters that influence the NP deposition. Herein, two key parameters are examined, namely: (i) the aging of colloidal NPs and (ii) the charge formation by surface ligands. The aging of Cu2-xS NPs changes the charge states, thus leading to different NP deposition behaviors. The SEM images of NP films, dynamic light scattering, and zeta potential results demonstrated that the charge control and restoration of interparticle interactions for aged NPs were achieved via simple ligand engineering. The charge control of colloidal NPs was found to be more dominant than the influence of aging, which can alter the surface charges of the NPs. The present results thus reveal that the charge formation on the colloidal NPs, which depends on the surface ligands, is an important controllable parameter in EPD. Full article
Show Figures

Graphical abstract

10 pages, 3637 KiB  
Communication
Targeted Assembly of Ultrathin NiO/MoS2 Electrodes for Electrocatalytic Hydrogen Evolution in Alkaline Electrolyte
by Kai Xia, Meiyu Cong, Fanfan Xu, Xin Ding and Xiaodong Zhang
Nanomaterials 2020, 10(8), 1547; https://doi.org/10.3390/nano10081547 - 7 Aug 2020
Cited by 11 | Viewed by 3882
Abstract
The development of non-noble metal catalysts for hydrogen revolution in alkaline media is highly desirable, but remains a great challenge. Herein, synergetic ultrathin NiO/MoS2 catalysts were prepared to improve the sluggish water dissociation step for HER in alkaline conditions. With traditional electrode [...] Read more.
The development of non-noble metal catalysts for hydrogen revolution in alkaline media is highly desirable, but remains a great challenge. Herein, synergetic ultrathin NiO/MoS2 catalysts were prepared to improve the sluggish water dissociation step for HER in alkaline conditions. With traditional electrode assembly methods, MoS2:NiO-3:1 exhibited the best catalytic performance; an overpotential of 158 mV was required to achieve a current density of 10 mA/cm2. Further, a synergetic ultrathin NiO/MoS2/nickel foam (NF) electrode was assembled by electrophoretic deposition (EPD) and post-processing reactions. The electrode displayed higher electrocatalytic ability and stability, and an overpotential of only 121 mV was needed to achieve a current density of 10 mA/cm2. The improvement was ascribed to the better catalytic environment, rather than a larger active surface area, a higher density of exposed active sites or other factors. DFT calculations indicated that the hybrid NiO/MoS2 heterostuctured interface is advantageous for the enhanced water dissociation step and the corresponding lower kinetic energy barrier—from 1.53 to 0.81 eV. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

28 pages, 15651 KiB  
Article
Manipulation and Localized Deposition of Particle Groups with Modulated Electric Fields
by David Pritchet, Kornel Ehmann, Jian Cao and Jiaxing Huang
Micromachines 2020, 11(2), 226; https://doi.org/10.3390/mi11020226 - 23 Feb 2020
Cited by 6 | Viewed by 3586
Abstract
This paper presents a new micro additive manufacturing process and initial characterization of its capabilities. The process uses modulated electric fields to manipulate and deposit particles from colloidal solution in a contactless way and is named electrophoretically-guided micro additive manufacturing (EPμAM). The inherent [...] Read more.
This paper presents a new micro additive manufacturing process and initial characterization of its capabilities. The process uses modulated electric fields to manipulate and deposit particles from colloidal solution in a contactless way and is named electrophoretically-guided micro additive manufacturing (EPμAM). The inherent flexibility and reconfigurability of the EPμAM process stems from electrode array as an actuator use, which avoids common issues of controlling particle deposition with templates or masks (e.g., fixed template geometry, post-process removal of masks, and unstable particle trapping). The EPμAM hardware testbed is presented alongside with implemented control methodology and developed process characterization workflow. Additionally, a streamlined two-dimensional (2D) finite element model (FEM) of the EPμAM process is used to compute electric field distribution generated by the electrode array and to predict the final deposition location of particles. Simple particle manipulation experiments indicate proof-of-principle capabilities of the process. Experiments where particle concentration and electric current strength were varied demonstrate the stability of the process. Advanced manipulation experiments demonstrate interelectrode deposition and particle group shaping capabilities where high, length-to-width, aspect ratio deposits were obtained. The experimental and FEM results were compared and analyzed; observed process limitations are discussed and followed by a comprehensive list of possible future steps. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

8 pages, 1785 KiB  
Article
Remarkably Facile Preparation of Superhydrophobic Functionalized Bismuth Trioxide (Bi2O3) Coatings
by Tao-tao Liang and Xiao-gang Guo
Appl. Sci. 2019, 9(13), 2653; https://doi.org/10.3390/app9132653 - 29 Jun 2019
Cited by 4 | Viewed by 3247
Abstract
Herein, a novel superhydrophobic functionalized nano-Bi2O3 coating is designed and fabricated using electrophoretic assembly deposition (EAD) in the optimal suspension of polyethylene glycol, ethanol, acetylacetone, and surface functionalization. The small size (70 nm, nano-scale) of Bi2O3 particles [...] Read more.
Herein, a novel superhydrophobic functionalized nano-Bi2O3 coating is designed and fabricated using electrophoretic assembly deposition (EAD) in the optimal suspension of polyethylene glycol, ethanol, acetylacetone, and surface functionalization. The small size (70 nm, nano-scale) of Bi2O3 particles and uniform distribution make the target film possessing a promising structure for realizing hydrophobic functionalization. Moreover, the hydrophobicity and stability results indicate that the product has a high-water contact angle (CA) of ca. 167° and is kept almost stable after 180 days exposure in the natural environment. These findings will provide new insight into a better design of superhydrophobic functional coatings via this facile method, holding great promise for future various applications. Full article
(This article belongs to the Special Issue Nanocharacterization and Innovation at Nanoscale)
Show Figures

Figure 1

14 pages, 3390 KiB  
Article
Oil-Water Separation of Electrospun Cellulose Triacetate Nanofiber Membranes Modified by Electrophoretically Deposited TiO2/Graphene Oxide
by Saba Naseem, Chang-Mou Wu, Ting-Zhen Xu, Chiu-Chun Lai and Syang-Peng Rwei
Polymers 2018, 10(7), 746; https://doi.org/10.3390/polym10070746 - 5 Jul 2018
Cited by 43 | Viewed by 7216
Abstract
Recycled waste industrial cellulose triacetate (TAC) film, which is one of the key materials in polarizers, was used to produce nanofiber membranes by electrospinning and synergistic assembly with graphene oxide (GO) and titanium dioxide (TiO2) for oil-water separation. In this study, [...] Read more.
Recycled waste industrial cellulose triacetate (TAC) film, which is one of the key materials in polarizers, was used to produce nanofiber membranes by electrospinning and synergistic assembly with graphene oxide (GO) and titanium dioxide (TiO2) for oil-water separation. In this study, GO and TiO2 coated by an electrophoretic deposition method introduced super hydrophilicity onto the recycled TAC (rTAC) membrane, with enhanced water permeability. The results indicate that when the outermost TiO2 layer of an asymmetric composite fiber membrane is exposed to ultraviolet irradiation; the hydrophilicity of the hydrophilic layer is more effectively promoted. Moreover, this coating could efficiently repel oil, and demonstrated robust self-cleaning performance during the cycle test, with the aid of the photocatalytic properties of TiO2. The rTAC membrane of networked hydrophobic fibers could also increase the speed of the filtrate flow and the water flux of the oil-water emulsion. The permeate carbon concentration in the water was analyzed using a total organic carbon analyzer. Incorporation of TiO2/GO onto the rTAC membrane contributed greatly towards enhanced membrane hydrophilicity and antifouling performance. Therefore, the novel TiO2/GO/rTAC asymmetric composite fiber has promise for applications in oil-water separation. Full article
(This article belongs to the Collection Polysaccharides)
Show Figures

Graphical abstract

Back to TopTop