Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (557)

Search Parameters:
Keywords = electrocatalytic hydrogenation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2532 KiB  
Article
Efficient Oxygen Evolution Reaction Performance Achieved by Tri-Doping Modification in Prussian Blue Analogs
by Yanhong Ding, Bin Liu, Haiyan Xiang, Fangqi Ren, Tianzi Xu, Jiayi Liu, Haifeng Xu, Hanzhou Ding, Yirong Zhu and Fusheng Liu
Inorganics 2025, 13(8), 258; https://doi.org/10.3390/inorganics13080258 - 2 Aug 2025
Viewed by 162
Abstract
The high cost of hydrogen production is the primary factor limiting the development of the hydrogen energy industry chain. Additionally, due to the inefficiency of hydrogen production by water electrolysis technology, the development of high-performance catalysts is an effective means of producing low-cost [...] Read more.
The high cost of hydrogen production is the primary factor limiting the development of the hydrogen energy industry chain. Additionally, due to the inefficiency of hydrogen production by water electrolysis technology, the development of high-performance catalysts is an effective means of producing low-cost hydrogen. In water electrolysis technology, the electrocatalytic activity of the electrode affects the kinetics of the oxygen evolution reaction (OER) and the hydrogen evolution rate. This study utilizes the liquid phase co-precipitation method to synthesize three types of Prussian blue analog (PBA) electrocatalytic materials: Fe/PBA(Fe4[Fe(CN)6]3), Fe-Mn/PBA((Fe, Mn)3[Fe(CN)6]2·nH2O), and Fe-Mn-Co/PBA((Mn, Co, Fe)3II[FeIII(CN)6]2·nH2O). X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses show that Fe-Mn-Co/PBA has a smaller particle size and higher crystallinity, and its grain boundary defects provide more active sites for electrochemical reactions. The electrochemical test shows that Fe-Mn-Co/PBA exhibits the best electrochemical performance. The overpotential of the oxygen evolution reaction (OER) under 1 M alkaline electrolyte at 10/50 mA·cm−2 is 270/350 mV, with a Tafel slope of 48 mV·dec−1, and stable electrocatalytic activity is maintained at 5 mA·cm−2. All of these are attributed to the synergistic effect of Fe, Mn, and Co metal ions, grain refinement, and the generation of grain boundary defects and internal stresses. Full article
(This article belongs to the Special Issue Novel Catalysts for Photoelectrochemical Energy Conversion)
Show Figures

Figure 1

32 pages, 3004 KiB  
Review
Research and Application of Ga-Based Liquid Metals in Catalysis
by Yu Zhang, Ying Xin and Qingshan Zhao
Nanomaterials 2025, 15(15), 1176; https://doi.org/10.3390/nano15151176 - 30 Jul 2025
Viewed by 184
Abstract
In recent years, Ga-based liquid metals have emerged as a prominent research focus in catalysis, owing to their unique properties, including fluidity, low melting point, high thermal and electrical conductivity, and tunable surface characteristics. This review summarizes the synthesis strategies for Ga-based liquid [...] Read more.
In recent years, Ga-based liquid metals have emerged as a prominent research focus in catalysis, owing to their unique properties, including fluidity, low melting point, high thermal and electrical conductivity, and tunable surface characteristics. This review summarizes the synthesis strategies for Ga-based liquid metal catalysts, with a focus on recent advances in their applications across electrocatalysis, thermal catalysis, photocatalysis, and related fields. In electrocatalysis, these catalysts exhibit potential for reactions such as electrocatalytic CO2 reduction, electrocatalytic ammonia synthesis, electrocatalytic hydrogen production, and the electrocatalytic oxidation of alcohols. As to thermal catalysis, these catalysts are employed in processes such as alkane dehydrogenation, selective hydrogenation, thermocatalytic CO2 reduction, thermocatalytic ammonia synthesis, and thermocatalytic plastic degradation. In photocatalysis, they can be used in other photocatalytic reactions such as organic matter degradation and overall water splitting. Furthermore, Ga-based liquid metal catalysts also exhibit distinct advantages in catalytic reactions within battery systems and mechano-driven catalysis, offering innovative concepts and technical pathways for developing novel catalytic systems. Finally, this review discusses the current challenges and future prospects in Ga-based liquid metal catalysis. Full article
Show Figures

Figure 1

13 pages, 3341 KiB  
Article
Regulation of Electrochemical Activity via Controlled Integration of NiS2 over Co3O4 Nanomaterials for Hydrogen Evolution Reaction
by Mrunal Bhosale, Rutuja U. Amate, Pritam J. Morankar and Chan-Wook Jeon
Coatings 2025, 15(8), 887; https://doi.org/10.3390/coatings15080887 - 30 Jul 2025
Viewed by 216
Abstract
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and [...] Read more.
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and subsequent thermal treatment method. Detailed characterization via physicochemical techniques confirmed the successful formation of a hybrid Co3O4–NiS2 heterostructure with tunable compositional and morphological characteristics. Among the synthesized catalysts (Co–Ni–1, Co–Ni–2, and Co–Ni–3), the Co–Ni–2 sample demonstrated optimal structural integration, displaying interconnected nanosheet morphologies and balanced elemental distribution. Remarkably, Co–Ni–2 achieved exceptional HER performance in 1 M KOH electrolyte, requiring an ultralow overpotential of only 84 mV at 10 mA cm−2 and exhibiting a favorable Tafel slope of 67.5 mV dec−1. Electrochemical impedance spectroscopy and electrochemical surface area measurements further substantiated the superior electrocatalytic kinetics, rapid charge transport, and abundant active site accessibility in the optimized Co–Ni–2 composite. Additionally, Co–Ni–2 demonstrated outstanding durability with negligible activity decay over 5000 cycles. This study not only highlights the strategic synthesis of Co3O4–NiS2 nanostructures but also provides valuable insights for designing advanced, stable, and efficient non-noble electrocatalysts for sustainable hydrogen generation. Full article
Show Figures

Graphical abstract

12 pages, 2954 KiB  
Article
Electrochemical Hydrogenation of Furfural Enhancing Furfuryl Alcohol Selectivity over Flower-like Zn-Based MBON-2 in Alkaline Medium
by Yingxin Zhang, Hengxing Qiu, Chunyu Shen, Shuwen Hou, Qiuju Fu and Xuebo Zhao
Chemistry 2025, 7(4), 124; https://doi.org/10.3390/chemistry7040124 - 30 Jul 2025
Viewed by 216
Abstract
To address the low selectivity in the electrocatalytic conversion of furfural (FFR) to furfuryl alcohol (FFA) under alkaline conditions, a Zn-based metal–organic framework (MBON-2) featuring a 3D hierarchical flower-like architecture self-assembled from nanosheets was synthesized via a simple hydrothermal method. Under optimal conditions, [...] Read more.
To address the low selectivity in the electrocatalytic conversion of furfural (FFR) to furfuryl alcohol (FFA) under alkaline conditions, a Zn-based metal–organic framework (MBON-2) featuring a 3D hierarchical flower-like architecture self-assembled from nanosheets was synthesized via a simple hydrothermal method. Under optimal conditions, MBON-2 exhibited an extremely high selectivity of FFA (100%) and a high Faradaic efficiency (FE) of 93.19% at −0.2 V vs. RHE. Electrochemical impedance spectroscopy (EIS) revealed the excellent electron transfer and mass transport properties of MBON-2. In addition, in situ Fourier transform infrared (FTIR) spectroscopy studies confirmed the adsorption of FFR molecules onto the Zn and B sites of MBON-2 during the ECH of FFR, providing key insights into the hydrogenation mechanism. The numerous exposed B and Zn sites of the MBON-2, as well as its robust structural stability contributed to its outstanding catalytic performance in the electrochemical hydrogenation (ECH) of FFR. This work provides valuable guidelines for developing efficient Zn-based catalysts for the ECH of FFR. Full article
(This article belongs to the Special Issue Catalytic Conversion of Biomass and Its Derivatives)
Show Figures

Figure 1

26 pages, 5379 KiB  
Review
A Review of Strategies to Improve the Electrocatalytic Performance of Tungsten Oxide Nanostructures for the Hydrogen Evolution Reaction
by Meng Ding, Yuan Qin, Weixiao Ji, Yafang Zhang and Gang Zhao
Nanomaterials 2025, 15(15), 1163; https://doi.org/10.3390/nano15151163 - 28 Jul 2025
Viewed by 283
Abstract
Hydrogen, as a renewable and clean energy with a high energy density, is of great significance to the realization of carbon neutrality. In recent years, extensive research has been conducted on the electrocatalytic hydrogen evolution reaction (HER) by splitting water, with a focus [...] Read more.
Hydrogen, as a renewable and clean energy with a high energy density, is of great significance to the realization of carbon neutrality. In recent years, extensive research has been conducted on the electrocatalytic hydrogen evolution reaction (HER) by splitting water, with a focus on developing efficient electrocatalysts that can perform the HER at an overpotential with minimal power consumption. Tungsten oxide (WO3), a non-noble-metal-based material, has great potential in hydrogen evolution due to its excellent redox capability, low cost, and high stability. However, it cannot meet practical needs because of its poor electrical conductivity and the limited number of active sites; thus, it is necessary to further improve HER performance. In this review, recent advances related to WO3-based electrocatalysts for the HER are introduced. Most importantly, several tactics for optimizing the electrocatalytic HER activity of WO3 are summarized, such as controlling its morphology, phase transition, defect engineering (anion vacancies, cation doping, and interstitial atoms), constructing a heterostructure, and the microenvironment effect. This review can provide insight into the development of novel catalysts with high activity for the HER and other renewable energy applications. Full article
(This article belongs to the Special Issue Advanced Nanocatalysis in Environmental Applications)
Show Figures

Figure 1

13 pages, 2300 KiB  
Article
A Hierarchically Structured Ni-NOF@ZIF-L Heterojunction Using Van Der Waals Interactions for Electrocatalytic Reduction of CO2 to HCOOH
by Liqun Wu, Xiaojun He and Jian Zhou
Appl. Sci. 2025, 15(14), 8095; https://doi.org/10.3390/app15148095 - 21 Jul 2025
Viewed by 250
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) offers an energy-saving and environmentally friendly approach to producing hydrocarbon fuels. The use of a gas diffusion electrode (GDE) flow cell has generally improved the rate of CO2RR, while the gas diffusion [...] Read more.
The electrocatalytic CO2 reduction reaction (CO2RR) offers an energy-saving and environmentally friendly approach to producing hydrocarbon fuels. The use of a gas diffusion electrode (GDE) flow cell has generally improved the rate of CO2RR, while the gas diffusion layer (GDL) remains a significant challenge. In this study, we successfully engineered a novel metal–organic framework (MOF) heterojunction through the controlled coating of zeolitic imidazolate framework (ZIF-L) on ultrathin nickel—metal–organic framework (Ni-MOF) nanosheets. This innovative architecture simultaneously integrates GDL functionality and exposes abundant solid–liquid–gas triple-phase boundaries. The resulting Ni-MOF@ZIF-L heterostructure demonstrates exceptional performance, achieving a formate Faradaic efficiency of 92.4% while suppressing the hydrogen evolution reaction (HER) to 6.7%. Through computational modeling of the optimized heterojunction configuration, we further elucidated its competitive adsorption behavior and electronic modulation effects. The experimental and theoretical results demonstrate an improvement in electrochemical CO2 reduction activity with suppressed hydrogen evolution for the heterojunction because of its hydrophobic interface, good electron transfer capability, and high CO2 adsorption at the catalyst interface. This work provides a new insight into the rational design of porous crystalline materials in electrocatalytic CO2RR. Full article
Show Figures

Figure 1

11 pages, 2972 KiB  
Article
ZnCu Metal–Organic Framework Electrocatalysts for Efficient Ammonia Decomposition to Hydrogen
by Mingguang Ouyang, Geng Chen, Weitao Ning, Xiaoyang Wang, Xiaojiang Mu and Lei Miao
Energies 2025, 18(14), 3871; https://doi.org/10.3390/en18143871 - 21 Jul 2025
Viewed by 332
Abstract
The electrocatalytic decomposition of ammonia represents a promising route for sustainable hydrogen production, yet current systems rely heavily on noble metal catalysts with prohibitive costs and limited durability. A critical challenge lies in developing non-noble electrocatalysts that simultaneously achieve high active site exposure, [...] Read more.
The electrocatalytic decomposition of ammonia represents a promising route for sustainable hydrogen production, yet current systems rely heavily on noble metal catalysts with prohibitive costs and limited durability. A critical challenge lies in developing non-noble electrocatalysts that simultaneously achieve high active site exposure, optimized electronic configurations, and robust structural stability. Addressing these requirements, this study strategically engineered Cu-doped ZIF-8 architectures via in situ growth on nickel foam (NF) substrates through a facile room-temperature hydrothermal synthesis approach. Systematic optimization of the Cu/Zn molar ratio revealed that Cu0.7Zn0.3-ZIF/NF achieved optimal performance, exhibiting a distinctive nanoflower-like architecture that substantially increased accessible active sites. The hybrid catalyst demonstrated superior electrocatalytic performance with a current density of 124 mA cm−2 at 1.6 V vs. RHE and a notably low Tafel slope of 30.94 mV dec−1, outperforming both Zn-ZIF/NF (39.45 mV dec−1) and Cu-ZIF/NF (31.39 mV dec−1). Combined XPS and EDS analyses unveiled a synergistic electronic structure modulation between Zn and Cu, which facilitated charge transfer and enhanced catalytic efficiency. A gas chromatography product analysis identified H2 and N2 as the primary gaseous products, confirming the predominant occurrence of the ammonia oxidation reaction (AOR). This study not only presents a noble metal-free electrocatalyst with exceptional efficiency and durability for ammonia decomposition but also demonstrates the significant potential of MOF-derived materials in sustainable hydrogen production technologies. Full article
(This article belongs to the Special Issue Advanced Energy Conversion Technologies Based on Energy Physics)
Show Figures

Figure 1

13 pages, 2832 KiB  
Article
Multiphase NiCoFe-Based LDH for Electrocatalytic Sulfion Oxidation Reaction Assisting Efficient Hydrogen Production
by Zengren Liang, Yong Nian, Hao Du, Peng Li, Mei Wang and Guanshui Ma
Materials 2025, 18(14), 3377; https://doi.org/10.3390/ma18143377 - 18 Jul 2025
Viewed by 295
Abstract
Sulfion oxidation reaction (SOR) has great potential in replacing oxygen evolution reaction (OER) and boosting highly efficient hydrogen evolution. The development of highly active and stable SOR electrocatalysts is crucial for assisting hydrogen production with low energy consumption. In this work, multiphase NiCoFe-based [...] Read more.
Sulfion oxidation reaction (SOR) has great potential in replacing oxygen evolution reaction (OER) and boosting highly efficient hydrogen evolution. The development of highly active and stable SOR electrocatalysts is crucial for assisting hydrogen production with low energy consumption. In this work, multiphase NiCoFe-based layered double hydroxide (namely NiCoFe-LDH) has been synthesized via a facile seed-assisted heterogeneous nucleation method. Benefiting from its unique microsized hydrangea-like structure and synergistic active phases, the catalyst delivers substantial catalytic interfaces and reactive centers for SOR. Consequently, NiCoFe-LDH electrode achieves a remarkably low potential of 0.381 V at 10 mA cm−2 in 1 M KOH + 0.1 M Na2S, representing a significant reduction of 0.98 V compared to conventional OER. Notably, under harsh industrial conditions (6 M KOH + 0.1 M Na2S, 80 °C), the electrolysis system based on NiCoFe-LDH||NF pair exhibits a cell potential of only 0.71 V at 100 mA cm−2, which shows a greater decreasing amplitude of 1.05 V compared with that of traditional OER/HER systems. Meanwhile, the NiCoFe-LDH||NF couple could maintain operational stability for 100 h without obvious potential fluctuation, as well as possessing a lower energy consumption of 1.42 kWh m−3 H2. Multiphase eletrocatalysis for SOR could indeed produce hydrogen with low-energy consumption. Full article
(This article belongs to the Special Issue High-Performance Materials for Energy Conversion)
Show Figures

Graphical abstract

35 pages, 2722 KiB  
Review
Harnessing Ferrocene for Hydrogen and Carbon Dioxide Transformations: From Electrocatalysis to Capture
by Angel A. J. Torriero
Inorganics 2025, 13(7), 244; https://doi.org/10.3390/inorganics13070244 - 17 Jul 2025
Viewed by 460
Abstract
Ferrocene (Fc) is a redox-active organometallic scaffold whose unique electronic properties, stability, and modularity have enabled a broad range of catalytic and sensing applications. This review critically examines recent advances in Fc-based systems for hydrogen evolution and carbon dioxide (CO2) conversion, [...] Read more.
Ferrocene (Fc) is a redox-active organometallic scaffold whose unique electronic properties, stability, and modularity have enabled a broad range of catalytic and sensing applications. This review critically examines recent advances in Fc-based systems for hydrogen evolution and carbon dioxide (CO2) conversion, encompassing electrochemical, photochemical, and thermochemical strategies. Fc serves diverse functions: it operates as a reversible redox mediator, an electron reservoir, a ligand framework, and a structural modulator. Each role contributes differently to enhancing catalytic performance, improving selectivity, or increasing operational stability. We highlight how Fc integration facilitates proton-coupled electron transfer in hydrogen evolution, supports selective CO2 reduction in molecular and hybrid catalysts, and promotes efficient CO2 fixation and capture within functionalised frameworks. Emerging applications in electrosynthetic organic transformations are also discussed. Together, these findings position Fc as a foundational motif for designing future electrocatalytic and carbon management platforms. Full article
Show Figures

Figure 1

20 pages, 3918 KiB  
Article
Engineered Cu0.5Ni0.5Al2O4/GCN Spinel Nanostructures for Dual-Functional Energy Storage and Electrocatalytic Water Splitting
by Abdus Sami, Sohail Ahmad, Ai-Dang Shan, Sijie Zhang, Liming Fu, Saima Farooq, Salam K. Al-Dawery, Hamed N. Harharah, Ramzi H. Harharah and Gasim Hayder
Processes 2025, 13(7), 2200; https://doi.org/10.3390/pr13072200 - 9 Jul 2025
Viewed by 356
Abstract
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, [...] Read more.
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, addressing environmental challenges while meeting rising energy needs. In this study, the fabrication of a novel bifunctional catalyst, copper nickel aluminum spinel (Cu0.5Ni0.5Al2O4) supported on graphitic carbon nitride (GCN), using a solid-state synthesis process is reported. Because of its effective interface design and spinel cubic structure, the Cu0.5Ni0.5Al2O4/GCN nanocomposite, as synthesized, performs exceptionally well in electrochemical energy conversion, such as the oxygen evolution reaction (OER), the hydrogen evolution reaction (HER), and energy storage. In particular, compared to noble metals, Pt/C- and IrO2-based water-splitting cells require higher voltages (1.70 V), while for the Cu0.5Ni0.5Al2O4/GCN nanocomposite, a voltage of 1.49 V is sufficient to generate a current density of 10 mA cm−2 in an alkaline solution. When used as supercapacitor electrode materials, Cu0.5Ni0.5Al2O4/GCN nanocomposites show a specific capacitance of 1290 F g−1 at a current density of 1 A g−1 and maintain a specific capacitance of 609 F g−1 even at a higher current density of 5 A g−1, suggesting exceptional rate performance and charge storage capacity. The electrode’s exceptional capacitive properties were further confirmed through the determination of the roughness factor (Rf), which represents surface heterogeneity and active area enhancement, with a value of 345.5. These distinctive characteristics render the Cu0.5Ni0.5Al2O4/GCN composite a compelling alternative to fossil fuels in the ongoing quest for a viable replacement. Undoubtedly, the creation of the Cu0.5Ni0.5Al2O4/GCN composite represents a significant breakthrough in addressing the energy crisis and environmental concerns. Owing to its unique composition and electrocatalytic characteristics, it is considered a feasible choice in the pursuit of ecologically sustainable alternatives to fossil fuels. Full article
Show Figures

Graphical abstract

14 pages, 3884 KiB  
Article
Self-Supported Tailoring of Nickel Sulfide/CuCo Nanosheets into Hierarchical Heterostructures for Boosting Urea Oxidation Reaction
by Prince J. J. Sagayaraj, Aravind Senthilkumar, Juwon Lee, Eun-Kyeong Byeon, Hyoung-il Kim, Sulakshana Shenoy and Karthikeyan Sekar
Catalysts 2025, 15(7), 664; https://doi.org/10.3390/catal15070664 - 7 Jul 2025
Viewed by 635
Abstract
Electro-oxidation of urea (UOR) in alkaline medium is one of the most effective alternative ways of producing green hydrogen, as the oxidation potential in UOR is less and thermodynamically more favorable than conventional water oxidation. The development of cost-effective materials in catalyzing UOR [...] Read more.
Electro-oxidation of urea (UOR) in alkaline medium is one of the most effective alternative ways of producing green hydrogen, as the oxidation potential in UOR is less and thermodynamically more favorable than conventional water oxidation. The development of cost-effective materials in catalyzing UOR is recently seeking more attention in the research hotspot. Suitably modifying the Ni-based catalysts towards active site creation and preventing surface passivation is much important in this context, following which we reported the synthesis of Ni3S2 (NS) supported with CuCo (CC) bimetallic (NSCC). A simple hydrothermal route for NS synthesis and the electrodeposition method for CuCo (CC) deposition is adapted in a self-supported manner. The NS and CC catalysts exhibited sheet-like morphology, as confirmed by SEM and TEM analysis. The bimetallic CC deposition prevented the surface passivation of nickel sulfide (NS) over oxygen evolution reaction (OER) and improved the charge-transfer kinetics. The NSCC catalyst catalyzed UOR in an alkaline medium, which required a lower potential of 1.335 V vs. RHE to attain the current density of 10 mAcm−2, with a lower Tafel slope value of 131 mVdec−1. In addition, a two-electrode cell setup is constructed with an operating cell voltage of 1.512 V for delivering 10 mAcm−2 current density. This study illustrates the new strategy of designing heterostructure catalysts for electrocatalytic UOR. Full article
(This article belongs to the Special Issue Homogeneous and Heterogeneous Catalytic Oxidation and Reduction)
Show Figures

Figure 1

18 pages, 10208 KiB  
Article
Development of Ni-P-N-C/Nickel Foam for Efficient Hydrogen Production via Urea Electro-Oxidation
by Abdullah M. Aldawsari, Maged N. Shaddad and Saba A. Aladeemy
Catalysts 2025, 15(7), 662; https://doi.org/10.3390/catal15070662 - 7 Jul 2025
Viewed by 459
Abstract
Electrocatalytic urea oxidation reaction (UOR) is a promising dual-purpose approach for hydrogen production and wastewater treatment, addressing critical energy and environmental challenges. However, conventional anode materials often suffer from limited active sites and high charge transfer resistance, restricting UOR efficiency. To overcome these [...] Read more.
Electrocatalytic urea oxidation reaction (UOR) is a promising dual-purpose approach for hydrogen production and wastewater treatment, addressing critical energy and environmental challenges. However, conventional anode materials often suffer from limited active sites and high charge transfer resistance, restricting UOR efficiency. To overcome these issues, a novel NiP@PNC/NF electrocatalyst was developed via a one-step thermal annealing process under nitrogen, integrating nickel phosphide (NiP) with phosphorus and nitrogen co-doped carbon nanotubes (PNCs) on a nickel foam (NF) substrate. This design enhances catalytic activity and charge transfer, achieving current densities of 50 mA cm−2 at 1.34 V and 100 mA cm−2 at 1.43 V versus the reversible hydrogen electrode (RHE). The electrode’s high electrochemical surface area (235 cm2) and double-layer capacitance (94.1 mF) reflect abundant active sites, far surpassing NiP/NF (48 cm2, 15.8 mF) and PNC/NF (39.5 cm2, 12.9 mF). It maintains exceptional stability, with only a 16.3% performance loss after 35 h, as confirmed by HR-TEM showing an intact nanostructure. Our single-step annealing technique provides simplicity, scalability, and efficient integration of NiP nanoparticles inside a PNC matrix on nickel foam. This method enables consistent distribution and robust substrate adhesion, which are difficult to attain with multi-step or more intricate techniques. Full article
Show Figures

Graphical abstract

19 pages, 5983 KiB  
Article
Fabrication of CoP@P, N-CNTs-Deposited Nickel Foam for Energy-Efficient Hydrogen Generation via Electrocatalytic Urea Oxidation
by Hany M. Youssef, Maged N. Shaddad, Saba A. Aladeemy and Abdullah M. Aldawsari
Catalysts 2025, 15(7), 652; https://doi.org/10.3390/catal15070652 - 4 Jul 2025
Viewed by 458
Abstract
The simultaneous generation of hydrogen fuel and wastewater remediation via electrocatalytic urea oxidation has emerged as a promising approach for sustainable energy and environmental solutions. However, the practical application of this process is hindered by the limited active sites and high charge-transfer resistance [...] Read more.
The simultaneous generation of hydrogen fuel and wastewater remediation via electrocatalytic urea oxidation has emerged as a promising approach for sustainable energy and environmental solutions. However, the practical application of this process is hindered by the limited active sites and high charge-transfer resistance of conventional anode materials. In this work, we introduce a novel CoP@P, N-CNTs/NF electrocatalyst, fabricated through a facile one-step thermal annealing technique. Comprehensive characterizations confirm the successful integration of CoP nanoparticles and phosphorus/nitrogen co-doped carbon nanotubes (P, N-CNTs) onto nickel foam, yielding a unique hierarchical structure that offers abundant active sites and accelerated electron transport. As a result, the CoP@P, N-CNTs/NF electrode achieves outstanding urea oxidation reaction (UOR) performance, delivering current densities of 158.5 mA cm−2 at 1.5 V and 232.95 mA cm−2 at 1.6 V versus RHE, along with exceptional operational stability exceeding 50 h with negligible performance loss. This innovative, multi-element-doped electrode design marks a significant advancement in the field, enabling highly efficient UOR and energy-efficient hydrogen production. Our approach paves the way for scalable, cost-effective solutions that couple renewable energy generation with effective wastewater treatment. Full article
Show Figures

Figure 1

39 pages, 18132 KiB  
Review
Recent Advances in Multi-Atom Catalysts for Sustainable Energy Applications
by Qing Wang, Bo Cheng, Shichang Cai, Xiaoxiao Li, Di Lu, Naying Zhang, Chaoqun Chen, Hanlu Zhang, Yagang Feng, Lei Duan, Shaoyong Qin and Zihan Meng
Molecules 2025, 30(13), 2818; https://doi.org/10.3390/molecules30132818 - 30 Jun 2025
Viewed by 312
Abstract
Single-atom catalysts characterized by their novel electronic configurations and exceptional atomic utilization efficiency have emerged as potential alternatives to costly noble metal catalysts, garnering extensive research attention in various electrocatalytic fields. However, the inherent characteristics of single metal centers constrain their further application [...] Read more.
Single-atom catalysts characterized by their novel electronic configurations and exceptional atomic utilization efficiency have emerged as potential alternatives to costly noble metal catalysts, garnering extensive research attention in various electrocatalytic fields. However, the inherent characteristics of single metal centers constrain their further application in catalyzing multi-electron reactions. In contrast, multi-atom catalysts (MACs), particularly dual-atom catalysts (DACs), possess multiple active metal sites that can significantly enhance catalytic performance through synergistic effects. This review summarizes recent developments in multi-atom catalysts, focusing on synthesis methods, design strategies, and the correlation between interatomic synergy and catalytic efficiency. Furthermore, we discuss their applications in key electrochemical reactions, including the hydrogen evolution reaction, oxygen reduction reaction, and oxygen evolution reaction. Finally, we outline the opportunities and challenges in this field to guide the development of high-efficiency catalysts for sustainable energy conversion applications. Full article
Show Figures

Graphical abstract

26 pages, 3149 KiB  
Review
Research Progress and Future Perspectives on Photonic and Optoelectronic Devices Based on p-Type Boron-Doped Diamond/n-Type Titanium Dioxide Heterojunctions: A Mini Review
by Shunhao Ge, Dandan Sang, Changxing Li, Yarong Shi, Qinglin Wang and Dao Xiao
Nanomaterials 2025, 15(13), 1003; https://doi.org/10.3390/nano15131003 - 29 Jun 2025
Cited by 1 | Viewed by 521
Abstract
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. [...] Read more.
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. For instance, TiO2 is widely used as a photocatalyst for hydrogen production via water splitting and for degrading organic pollutants, thanks to its efficient photo-generated electron–hole separation. Additionally, TiO2 exhibits remarkable performance in dye-sensitized solar cells and photodetectors, providing critical support for advancements in green energy and photoelectric conversion technologies. Boron-doped diamond (BDD) is renowned for its exceptional electrical conductivity, high hardness, wide electrochemical window, and outstanding chemical inertness. These unique characteristics enable its extensive use in fields such as electrochemical analysis, electrocatalysis, sensors, and biomedicine. For example, BDD electrodes exhibit high sensitivity and stability in detecting trace chemicals and pollutants, while also demonstrating excellent performance in electrocatalytic water splitting and industrial wastewater treatment. Its chemical stability and biocompatibility make it an ideal material for biosensors and implantable devices. Research indicates that the combination of TiO2 nanostructures and BDD into heterostructures can exhibit unexpected optical and electrical performance and transport behavior, opening up new possibilities for photoluminescence and rectifier diode devices. However, applications based on this heterostructure still face challenges, particularly in terms of photodetector, photoelectric emitter, optical modulator, and optical fiber devices under high-temperature conditions. This article explores the potential and prospects of their combined heterostructures in the field of optoelectronic devices such as photodetector, light emitting diode (LED), memory, field effect transistor (FET) and sensing. TiO2/BDD heterojunction can enhance photoresponsivity and extend the spectral detection range which enables stability in high-temperature and harsh environments due to BDD’s thermal conductivity. This article proposes future research directions and prospects to facilitate the development of TiO2 nanostructured materials and BDD-based heterostructures, providing a foundation for enhancing photoresponsivity and extending the spectral detection range enables stability in high-temperature and high-frequency optoelectronic devices field. Further research and exploration of optoelectronic devices based on TiO2-BDD heterostructures hold significant importance, offering new breakthroughs and innovations for the future development of optoelectronic technology. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Graphical abstract

Back to TopTop