Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,616)

Search Parameters:
Keywords = electrical energy balance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2886 KiB  
Article
Incremental Capacity-Based Variable Capacitor Battery Model for Effective Description of Charge and Discharge Behavior
by Ngoc-Thao Pham, Sungoh Kwon and Sung-Jin Choi
Batteries 2025, 11(8), 300; https://doi.org/10.3390/batteries11080300 - 5 Aug 2025
Abstract
Determining charge and discharge behavior is essential for optimizing charging strategies and evaluating balancing algorithms in battery energy storage systems and electric vehicles. Conventionally, a sequence of circuit simulations or tedious hardware tests is required to evaluate the performance of the balancing algorithm. [...] Read more.
Determining charge and discharge behavior is essential for optimizing charging strategies and evaluating balancing algorithms in battery energy storage systems and electric vehicles. Conventionally, a sequence of circuit simulations or tedious hardware tests is required to evaluate the performance of the balancing algorithm. To mitigate these problems, this paper proposes a variable capacitor model that can be easily built from the incremental capacity curve. This model provides a direct and insightful R-C time constant method for the charge/discharge time calculation. After validating the model accuracy by experimental results based on the cylindrical lithium-ion cell test, a switched-capacitor active balancing and a passive cell balancing circuit are implemented to further verify the effectiveness of the proposed model in calculating the cell balancing time within 2% error. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Figure 1

22 pages, 1646 KiB  
Article
Stochastic Optimization Scheduling Method for Mine Electricity–Heat Energy Systems Considering Power-to-Gas and Conditional Value-at-Risk
by Chao Han, Yun Zhu, Xing Zhou and Xuejie Wang
Energies 2025, 18(15), 4146; https://doi.org/10.3390/en18154146 - 5 Aug 2025
Abstract
To fully accommodate renewable and derivative energy sources in mine energy systems under supply and demand uncertainties, this paper proposes an optimized electricity–heat scheduling method for mining areas that incorporates Power-to-Gas (P2G) technology and Conditional Value-at-Risk (CVaR). First, to address uncertainties on both [...] Read more.
To fully accommodate renewable and derivative energy sources in mine energy systems under supply and demand uncertainties, this paper proposes an optimized electricity–heat scheduling method for mining areas that incorporates Power-to-Gas (P2G) technology and Conditional Value-at-Risk (CVaR). First, to address uncertainties on both the supply and demand sides, a P2G unit is introduced, and a Latin hypercube sampling technique based on Cholesky decomposition is employed to generate wind–solar-load sample matrices that capture source–load correlations, which are subsequently used to construct representative scenarios. Second, a stochastic optimization scheduling model is developed for the mine electricity–heat energy system, aiming to minimize the total scheduling cost comprising day-ahead scheduling cost, expected reserve adjustment cost, and CVaR. Finally, a case study on a typical mine electricity–heat energy system is conducted to validate the effectiveness of the proposed method in terms of operational cost reduction and system reliability. The results demonstrate a 1.4% reduction in the total operating cost, achieving a balance between economic efficiency and system security. Full article
Show Figures

Figure 1

16 pages, 3086 KiB  
Article
Design and Optimization Strategy of a Net-Zero City Based on a Small Modular Reactor and Renewable Energy
by Jungin Choi and Junhee Hong
Energies 2025, 18(15), 4128; https://doi.org/10.3390/en18154128 - 4 Aug 2025
Viewed by 13
Abstract
This study proposes the SMR Smart Net-Zero City (SSNC) framework—a scalable model for achieving carbon neutrality by integrating Small Modular Reactors (SMRs), renewable energy sources, and sector coupling within a microgrid architecture. As deploying renewables alone would require economically and technically impractical energy [...] Read more.
This study proposes the SMR Smart Net-Zero City (SSNC) framework—a scalable model for achieving carbon neutrality by integrating Small Modular Reactors (SMRs), renewable energy sources, and sector coupling within a microgrid architecture. As deploying renewables alone would require economically and technically impractical energy storage systems, SMRs provide a reliable and flexible baseload power source. Sector coupling systems—such as hydrogen production and heat generation—enhance grid stability by absorbing surplus energy and supporting the decarbonization of non-electric sectors. The core contribution of this study lies in its real-time data emulation framework, which overcomes a critical limitation in the current energy landscape: the absence of operational data for future technologies such as SMRs and their coupled hydrogen production systems. As these technologies are still in the pre-commercial stage, direct physical integration and validation are not yet feasible. To address this, the researchers leveraged real-time data from an existing commercial microgrid, specifically focusing on the import of grid electricity during energy shortfalls and export during solar surpluses. These patterns were repurposed to simulate the real-time operational behavior of future SMRs (ProxySMR) and sector coupling loads. This physically grounded simulation approach enables high-fidelity approximation of unavailable technologies and introduces a novel methodology to characterize their dynamic response within operational contexts. A key element of the SSNC control logic is a day–night strategy: maximum SMR output and minimal hydrogen production at night, and minimal SMR output with maximum hydrogen production during the day—balancing supply and demand while maintaining high SMR utilization for economic efficiency. The SSNC testbed was validated through a seven-day continuous operation in Busan, demonstrating stable performance and approximately 75% SMR utilization, thereby supporting the feasibility of this proxy-based method. Importantly, to the best of our knowledge, this study represents the first publicly reported attempt to emulate the real-time dynamics of a net-zero city concept based on not-yet-commercial SMRs and sector coupling systems using live operational data. This simulation-based framework offers a forward-looking, data-driven pathway to inform the development and control of next-generation carbon-neutral energy systems. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

23 pages, 4451 KiB  
Article
Energy Management and Power Distribution for Battery/Ultracapacitor Hybrid Energy Storage System in Electric Vehicles with Regenerative Braking Control
by Abdelsalam A. Ahmed, Young Il Lee, Saleh Al Dawsari, Ahmed A. Zaki Diab and Abdelsalam A. Ezzat
Math. Comput. Appl. 2025, 30(4), 82; https://doi.org/10.3390/mca30040082 - 3 Aug 2025
Viewed by 204
Abstract
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking [...] Read more.
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking control strategy is developed to maximize kinetic energy recovery using an induction motor, efficiently distributing the recovered energy between the UC and battery. Additionally, a power flow management approach is introduced for both motoring (discharge) and braking (charge) operations via bidirectional buck–boost DC-DC converters. In discharge mode, an optimal distribution factor is dynamically adjusted to balance power delivery between the battery and UC, maximizing efficiency. During charging, a DC link voltage control mechanism prioritizes UC charging over the battery, reducing stress and enhancing energy recovery efficiency. The proposed EMS is validated through simulations and experiments, demonstrating significant improvements in vehicle acceleration, energy efficiency, and battery lifespan. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

19 pages, 3154 KiB  
Article
Optimizing the Operation of Local Energy Communities Based on Two-Stage Scheduling
by Ping He, Lei Zhou, Jingwen Wang, Zhuo Yang, Guozhao Lv, Can Cai and Hongbo Zou
Processes 2025, 13(8), 2449; https://doi.org/10.3390/pr13082449 - 2 Aug 2025
Viewed by 227
Abstract
Flexible energy sources such as electric vehicles and the battery energy storage systems of intelligent distribution systems can provide system-wide auxiliary services such as frequency regulation for power systems. This paper proposes an optimal method for operating the local energy community that is [...] Read more.
Flexible energy sources such as electric vehicles and the battery energy storage systems of intelligent distribution systems can provide system-wide auxiliary services such as frequency regulation for power systems. This paper proposes an optimal method for operating the local energy community that is based on two-stage scheduling. Firstly, the basic concepts of the local energy community and flexible service are introduced in detail. Taking LEC as the reserve unit of artificial frequency recovery, an energy information interaction model among LEC, balance service providers, and the power grid is established. Then, a two-stage scheduling framework is proposed to ensure the rationality and economy of community energy scheduling. In the first stage, day-ahead scheduling uses the energy community management center to predict the up/down flexibility capacity that LEC can provide by adjusting the BESS control parameters. In the second stage, real-time scheduling aims at maximizing community profits and scheduling LEC based on the allocation and activation of standby flexibility determined in real time. Finally, the correctness of the two-stage scheduling framework is verified through a case study. The results show that the control parameters used in the day-ahead stage can significantly affect the real-time profitability of LEC, and that LEC benefits more in the case of low BESS utilization than in the case of high BESS utilization and non-participation in frequency recovery reserve. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 571 KiB  
Article
Exploring the Material Feasibility of a LiFePO4-Based Energy Storage System
by Caleb Scarlett and Vivek Utgikar
Energies 2025, 18(15), 4102; https://doi.org/10.3390/en18154102 - 1 Aug 2025
Viewed by 160
Abstract
This paper analyzes the availability of lithium resources required to support a global decarbonized energy system featuring electrical energy storage based on lithium iron phosphate (LFP) batteries. A net-zero carbon grid consisting of existing nuclear and hydro capacity, with the balance being a [...] Read more.
This paper analyzes the availability of lithium resources required to support a global decarbonized energy system featuring electrical energy storage based on lithium iron phosphate (LFP) batteries. A net-zero carbon grid consisting of existing nuclear and hydro capacity, with the balance being a 50/50 mix of wind and solar power generation, is assumed to satisfy projected world electrical demand in 2050, incorporating the electrification of transportation. The battery electrical storage capacity needed to support this grid is estimated and translated into the required number of nominal 10 MWh LFP storage plants similar to the ones currently in operation. The total lithium required for the global storage system is determined from the number of nominal plants and the inventory of lithium in each plant. The energy required to refine this amount of lithium is accounted for in the estimation of the total lithium requirement. Comparison of the estimated lithium requirements with known global lithium resources indicates that a global storage system consisting only of LFP plants would require only around 12.3% of currently known lithium reserves in a high-economic-growth scenario. The overall cost for a global LFP-based grid-scale energy storage system is estimated to be approximately USD 17 trillion. Full article
(This article belongs to the Collection Renewable Energy and Energy Storage Systems)
Show Figures

Figure 1

30 pages, 866 KiB  
Article
Balancing Profitability and Sustainability in Electric Vehicles Insurance: Underwriting Strategies for Affordable and Premium Models
by Xiaodan Lin, Fenqiang Chen, Haigang Zhuang, Chen-Ying Lee and Chiang-Ku Fan
World Electr. Veh. J. 2025, 16(8), 430; https://doi.org/10.3390/wevj16080430 - 1 Aug 2025
Viewed by 185
Abstract
This study aims to develop an optimal underwriting strategy for affordable (H1 and M1) and premium (L1 and M2) electric vehicles (EVs), balancing financial risk and sustainability commitments. The research is motivated by regulatory pressures, risk management needs, and sustainability goals, necessitating an [...] Read more.
This study aims to develop an optimal underwriting strategy for affordable (H1 and M1) and premium (L1 and M2) electric vehicles (EVs), balancing financial risk and sustainability commitments. The research is motivated by regulatory pressures, risk management needs, and sustainability goals, necessitating an adaptation of traditional underwriting models. The study employs a modified Delphi method with industry experts to identify key risk factors, including accident risk, repair costs, battery safety, driver behavior, and PCAF carbon impact. A sensitivity analysis was conducted to examine premium adjustments under different risk scenarios, categorizing EVs into four risk segments: Low-Risk, Low-Carbon (L1); Medium-Risk, Low-Carbon (M1); Medium-Risk, High-Carbon (M2); and High-Risk, High-Carbon (H1). Findings indicate that premium EVs (L1 and M2) exhibit lower volatility in underwriting costs, benefiting from advanced safety features, lower accident rates, and reduced carbon attribution penalties. Conversely, budget EVs (H1 and M1) experience higher premium fluctuations due to greater accident risks, costly repairs, and higher carbon costs under PCAF implementation. The worst-case scenario showed a 14.5% premium increase, while the best-case scenario led to a 10.5% premium reduction. The study recommends prioritizing premium EVs for insurance coverage due to their lower underwriting risks and carbon efficiency. For budget EVs, insurers should implement selective underwriting based on safety features, driver risk profiling, and energy efficiency. Additionally, incentive-based pricing such as telematics discounts, green repair incentives, and low-carbon charging rewards can mitigate financial risks and align with net-zero insurance commitments. This research provides a structured framework for insurers to optimize EV underwriting while ensuring long-term profitability and regulatory compliance. Full article
Show Figures

Figure 1

31 pages, 5480 KiB  
Review
Solid Core Magnetic Gear Systems: A Comprehensive Review of Topologies, Core Materials, and Emerging Applications
by Serkan Sezen, Kadir Yilmaz, Serkan Aktas, Murat Ayaz and Taner Dindar
Appl. Sci. 2025, 15(15), 8560; https://doi.org/10.3390/app15158560 (registering DOI) - 1 Aug 2025
Viewed by 264
Abstract
Magnetic gears (MGs) are attracting increasing attention in power transmission systems due to their contactless operation principles, low frictional losses, and high efficiency. However, the broad application potential of these technologies requires a comprehensive evaluation of engineering parameters, such as material selection, energy [...] Read more.
Magnetic gears (MGs) are attracting increasing attention in power transmission systems due to their contactless operation principles, low frictional losses, and high efficiency. However, the broad application potential of these technologies requires a comprehensive evaluation of engineering parameters, such as material selection, energy efficiency, and structural design. This review focuses solely on solid-core magnetic gear systems designed using laminated electrical steels, soft magnetic composites (SMCs), and high-saturation alloys. This review systematically examines the topological diversity, torque transmission principles, and the impact of various core materials, such as electrical steels, soft magnetic composites (SMCs), and cobalt-based alloys, on the performance of magnetic gear systems. Literature-based comparative analyses are structured around topological classifications, evaluation of material properties, and performance analyses based on losses. Additionally, the study highlights that aligning material properties with appropriate manufacturing methods, such as powder metallurgy, wire electrical discharge machining (EDM), and precision casting, is essential for the practical scalability of magnetic gear systems. The findings reveal that coaxial magnetic gears (CMGs) offer a favorable balance between high torque density and compactness, while soft magnetic composites provide significant advantages in loss reduction, particularly at high frequencies. Additionally, application trends in fields such as renewable energy, electric vehicles (EVs), aerospace, and robotics are highlighted. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

35 pages, 3218 KiB  
Article
Integrated GBR–NSGA-II Optimization Framework for Sustainable Utilization of Steel Slag in Road Base Layers
by Merve Akbas
Appl. Sci. 2025, 15(15), 8516; https://doi.org/10.3390/app15158516 (registering DOI) - 31 Jul 2025
Viewed by 164
Abstract
This study proposes an integrated, machine learning-based multi-objective optimization framework to evaluate and optimize the utilization of steel slag in road base layers, simultaneously addressing economic costs and environmental impacts. A comprehensive dataset of 482 scenarios was engineered based on literature-informed parameters, encompassing [...] Read more.
This study proposes an integrated, machine learning-based multi-objective optimization framework to evaluate and optimize the utilization of steel slag in road base layers, simultaneously addressing economic costs and environmental impacts. A comprehensive dataset of 482 scenarios was engineered based on literature-informed parameters, encompassing transport distance, processing energy intensity, initial moisture content, gradation adjustments, and regional electricity emission factors. Four advanced tree-based ensemble regression algorithms—Random Forest Regressor (RFR), Extremely Randomized Trees (ERTs), Gradient Boosted Regressor (GBR), and Extreme Gradient Boosting Regressor (XGBR)—were rigorously evaluated. Among these, GBR demonstrated superior predictive performance (R2 > 0.95, RMSE < 7.5), effectively capturing complex nonlinear interactions inherent in slag processing and logistics operations. Feature importance analysis via SHapley Additive exPlanations (SHAP) provided interpretative insights, highlighting transport distance and energy intensity as dominant factors affecting unit cost, while moisture content and grid emission factor predominantly influenced CO2 emissions. Subsequently, the Gradient Boosted Regressor model was integrated into a Non-Dominated Sorting Genetic Algorithm II (NSGA-II) framework to explore optimal trade-offs between cost and emissions. The resulting Pareto front revealed a diverse solution space, with significant nonlinear trade-offs between economic efficiency and environmental performance, clearly identifying strategic inflection points. To facilitate actionable decision-making, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method was applied, identifying an optimal balanced solution characterized by a transport distance of 47 km, energy intensity of 1.21 kWh/ton, moisture content of 6.2%, moderate gradation adjustment, and a grid CO2 factor of 0.47 kg CO2/kWh. This scenario offered a substantial reduction (45%) in CO2 emissions relative to cost-minimized solutions, with a moderate increase (33%) in total cost, presenting a realistic and balanced pathway for sustainable infrastructure practices. Overall, this study introduces a robust, scalable, and interpretable optimization framework, providing valuable methodological advancements for sustainable decision making in infrastructure planning and circular economy initiatives. Full article
Show Figures

Figure 1

19 pages, 4009 KiB  
Article
Cost Analysis and Optimization of Modern Power System Operations
by Ahto Pärl, Praveen Prakash Singh, Ivo Palu and Sulabh Sachan
Appl. Sci. 2025, 15(15), 8481; https://doi.org/10.3390/app15158481 (registering DOI) - 30 Jul 2025
Viewed by 175
Abstract
The reliable and economical operation of modern power systems is increasingly complex due to the integration of diverse energy sources and dynamic load patterns. A critical challenge is maintaining the balance between electricity supply and demand within various operational constraints. This study addresses [...] Read more.
The reliable and economical operation of modern power systems is increasingly complex due to the integration of diverse energy sources and dynamic load patterns. A critical challenge is maintaining the balance between electricity supply and demand within various operational constraints. This study addresses the economic scheduling of generation units using a Mixed Integer Programming (MIP) optimization model. Key constraints considered include reserve requirements, ramp rate limits, and minimum up/down time. Simulations are performed across multiple scenarios, including systems with spinning reserves, responsive demand, renewable energy integration, and energy storage systems. For each scenario, the optimal mix of generation resources is determined to meet a 24 h load forecast while minimizing operating costs. The results show that incorporating demand responsiveness and renewable resources enhances the economic efficiency, reliability, and flexibility of the power system. Full article
(This article belongs to the Special Issue New Insights into Power Systems)
Show Figures

Figure 1

21 pages, 3051 KiB  
Article
Novel Gaussian-Decrement-Based Particle Swarm Optimization with Time-Varying Parameters for Economic Dispatch in Renewable-Integrated Microgrids
by Yuan Wang, Wangjia Lu, Wenjun Du and Changyin Dong
Mathematics 2025, 13(15), 2440; https://doi.org/10.3390/math13152440 - 29 Jul 2025
Viewed by 176
Abstract
Background: To address the uncertainties of renewable energy power generation, the disorderly charging characteristics of electric vehicles, and the high electricity cost of the power grid in expressway service areas, a method of economic dispatch optimization based on the improved particle swarm optimization [...] Read more.
Background: To address the uncertainties of renewable energy power generation, the disorderly charging characteristics of electric vehicles, and the high electricity cost of the power grid in expressway service areas, a method of economic dispatch optimization based on the improved particle swarm optimization algorithm is proposed in this study. Methods: Mathematical models of photovoltaic power generation, energy storage systems, and electric vehicles were established, thereby constructing the microgrid system model of the power load in the expressway service area. Taking the economic cost of electricity consumption in the service area as the objective function and simultaneously meeting constraints such as power balance, power grid interactions, and energy storage systems, a microgrid economy dispatch model is constructed. An improved particle swarm optimization algorithm with time-varying parameters of the inertia weight and learning factor was designed to solve the optimal dispatching strategy. The inertia weight was improved by adopting the Gaussian decreasing method, and the asymmetric dynamic learning factor was adjusted simultaneously. Findings: Field case studies demonstrate that, compared to other algorithms, the improved Particle Swarm Optimization algorithm effectively reduces the operational costs of microgrid systems while exhibiting accelerated convergence speed and enhanced robustness. Value: This study provides a theoretical mathematical reference for the economic dispatch optimization of microgrids in renewable-integrated transportation systems. Full article
Show Figures

Figure 1

22 pages, 4670 KiB  
Article
Integrated Carbon Flow Tracing and Topology Reconfiguration for Low-Carbon Optimal Dispatch in DG-Embedded Distribution Networks
by Rao Fu, Guofeng Xia, Sining Hu, Yuhao Zhang, Handaoyuan Li and Jiachuan Shi
Mathematics 2025, 13(15), 2395; https://doi.org/10.3390/math13152395 - 25 Jul 2025
Viewed by 241
Abstract
Addressing the imperative for energy transition amid depleting fossil fuels, distributed generation (DG) is increasingly integrated into distribution networks (DNs). This integration necessitates low-carbon dispatching solutions that reconcile economic and environmental objectives. To bridge the gap between conventional “electricity perspective” optimization and emerging [...] Read more.
Addressing the imperative for energy transition amid depleting fossil fuels, distributed generation (DG) is increasingly integrated into distribution networks (DNs). This integration necessitates low-carbon dispatching solutions that reconcile economic and environmental objectives. To bridge the gap between conventional “electricity perspective” optimization and emerging “carbon perspective” requirements, this research integrated Carbon Emission Flow (CEF) theory to analyze spatiotemporal carbon flow characteristics within DN. Recognizing the limitations of the single-objective approach in balancing multifaceted demands, a multi-objective optimization model was formulated. This model could capture the spatiotemporal dynamics of nodal carbon intensity for low-carbon dispatching while comprehensively incorporating diverse operational economic costs to achieve collaborative low-carbon and economic dispatch in DG-embedded DN. To efficiently solve this complex constrained model, a novel Q-learning enhanced Moth Flame Optimization (QMFO) algorithm was proposed. QMFO synergized the global search capability of the Moth Flame Optimization (MFO) algorithm with the adaptive decision-making of Q-learning, embedding an adaptive exploration strategy to significantly enhance solution efficiency and accuracy for multi-objective problems. Validated on a 16-node three-feeder system, the method co-optimizes switch configurations and DG outputs, achieving dual objectives of loss reduction and carbon emission mitigation while preserving radial topology feasibility. Full article
(This article belongs to the Special Issue Mathematical and Computational Methods for Mechanics and Engineering)
Show Figures

Figure 1

15 pages, 753 KiB  
Article
A Novel Cloud Energy Consumption Heuristic Based on a Network Slicing–Ring Fencing Ratio
by Vinay Sriram Iyer, Yasantha Samarawickrama and Giovani Estrada
Network 2025, 5(3), 27; https://doi.org/10.3390/network5030027 - 25 Jul 2025
Viewed by 209
Abstract
The widespread adoption of cloud computing has amplified the demand for electric power. It is strategically important to address the limitations of reliable sources and sustainability of power. Research and investment in data centres and power infrastructure are therefore critically important for our [...] Read more.
The widespread adoption of cloud computing has amplified the demand for electric power. It is strategically important to address the limitations of reliable sources and sustainability of power. Research and investment in data centres and power infrastructure are therefore critically important for our digital economy. A novel heuristic for the minimisation of energy consumption in cloud computing is presented. It draws similarities to the concept of “network slices”, in which an orchestrator enables multiplexing to reduce the network “churn” often associated with significant losses of energy consumption. The novel network slicing–ring fencing ratio is a heuristic calculated through an iterative procedure for the reduction in cloud energy consumption. Simulation results show how the non-convex equation optimises power by reducing energy from 10,680 kJ to 912 kJ, which is a 91.46% efficiency gain. In comparison, the Heuristic AUGMENT Non-Convex algorithm (HA-NC, by Hossain and Ansari) reported a 312.74% increase in energy consumption from 2464 kJ to 10,168 kJ, while the Priority Selection Offloading algorithm (PSO, by Anajemba et al.) also reported a 150% increase in energy consumption, from 10,738 kJ to 26,845 kJ. The proposed network slicing–ring fencing ratio is seen to successfully balance energy consumption and computing performance. We therefore think the novel approach could be of interest to network architects and cloud operators. Full article
Show Figures

Figure 1

29 pages, 9145 KiB  
Article
Ultra-Short-Term Forecasting-Based Optimization for Proactive Home Energy Management
by Siqi Liu, Zhiyuan Xie, Zhengwei Hu, Kaisa Zhang, Weidong Gao and Xuewen Liu
Energies 2025, 18(15), 3936; https://doi.org/10.3390/en18153936 - 23 Jul 2025
Viewed by 207
Abstract
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy [...] Read more.
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy that integrates advanced forecasting models with multi-objective scheduling algorithms. By leveraging deep learning techniques like Graph Attention Network (GAT) architectures, the system predicts ultra-short-term household load profiles with high accuracy, addressing the volatility of residential energy use. Then, based on the predicted data, a comprehensive consideration of electricity costs, user comfort, carbon emission pricing, and grid load balance indicators is undertaken. This study proposes an enhanced mixed-integer optimization algorithm to collaboratively optimize multiple objective functions, thereby refining appliance scheduling, energy storage utilization, and grid interaction. Case studies demonstrate that integrating photovoltaic (PV) power generation forecasting and load forecasting models into a home energy management system, and adjusting the original power usage schedule based on predicted PV output and water heater demand, can effectively reduce electricity costs and carbon emissions without compromising user engagement in optimization. This approach helps promote energy-saving and low-carbon electricity consumption habits among users. Full article
Show Figures

Figure 1

23 pages, 5432 KiB  
Article
Efficient Heating System Management Through IoT Smart Devices
by Álvaro de la Puente-Gil, Alberto González-Martínez, Enrique Rosales-Asensio, Ana-María Diez-Suárez and Jorge-Juan Blanes Peiró
Machines 2025, 13(8), 643; https://doi.org/10.3390/machines13080643 - 23 Jul 2025
Viewed by 234
Abstract
A novel approach to managing domestic heating systems through IoT technologies is introduced in this paper. The system optimizes energy consumption by dynamically adapting to electricity and fuel price fluctuations while maintaining user comfort. Integrating smart devices significantly reduce energy costs and offer [...] Read more.
A novel approach to managing domestic heating systems through IoT technologies is introduced in this paper. The system optimizes energy consumption by dynamically adapting to electricity and fuel price fluctuations while maintaining user comfort. Integrating smart devices significantly reduce energy costs and offer a favorable payback period, positioning the solution as both sustainable and economically viable. Efficient heating management is increasingly critical amid growing energy and environmental concerns. This strategy uses IoT devices to collect real-time data on prices, consumption, and user preferences. Based on this data, the system adjusts heating settings intelligently to balance comfort and cost savings. IoT connectivity manages continuous monitoring and dynamic optimization in response to changing conditions. This study includes a real-case comparison between a conventional central heating system and an IoT-managed electric radiator setup. By applying automation rules linked to energy pricing and user habits, the system enhances energy efficiency, especially in cold climates. The economic evaluation shows that using low-cost IoT devices yields meaningful savings and achieves equipment payback within approximately three years. The results demonstrate the system’s effectiveness, demonstrating that smart, adaptive heating solutions can cut energy expenses without sacrificing comfort, while offering environmental and financial benefits. Full article
Show Figures

Figure 1

Back to TopTop