Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (279)

Search Parameters:
Keywords = electric desalination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1166 KiB  
Article
Evaluating Freshwater, Desalinated Water, and Treated Brine as Water Feed for Hydrogen Production in Arid Regions
by Hamad Ahmed Al-Ali and Koji Tokimatsu
Energies 2025, 18(15), 4085; https://doi.org/10.3390/en18154085 - 1 Aug 2025
Viewed by 113
Abstract
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment [...] Read more.
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment (LCA) approach to evaluate three water supply strategies for hydrogen production: (1) seawater desalination without brine treatment (BT), (2) desalination with partial BT, and (3) freshwater purification. Scenarios are modeled for the United Arab Emirates (UAE), Australia, and Spain, representing diverse electricity mixes and water stress conditions. Both electrolysis and steam methane reforming (SMR) are evaluated as hydrogen production methods. Results show that desalination scenarios contribute substantially to human health and ecosystem impacts due to high energy use and brine discharge. Although partial BT aims to reduce direct marine discharge impacts, its substantial energy demand can offset these benefits by increasing other environmental burdens, such as marine eutrophication, especially in regions reliant on carbon-intensive electricity grids. Freshwater scenarios offer lower environmental impact overall but raise water availability concerns. Across all regions, feedwater for SMR shows nearly 50% lower impacts than for electrolysis. This study focuses solely on the environmental impacts associated with water sourcing and treatment for hydrogen production, excluding the downstream impacts of the hydrogen generation process itself. This study highlights the trade-offs between water sourcing, brine treatment, and freshwater purification for hydrogen production, offering insights for optimizing sustainable hydrogen systems in water-stressed regions. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production in Renewable Energy Systems)
Show Figures

Figure 1

20 pages, 5076 KiB  
Article
Brackish Water Desalination Using Electrodialysis: Influence of Operating Parameters on Energy Consumption and Scalability
by Angie N. Medina-Toala, Priscila E. Valverde-Armas, Jonathan I. Mendez-Ruiz, Kevin Franco-González, Steeven Verdezoto-Intriago, Tomas Vitvar and Leonardo Gutiérrez
Membranes 2025, 15(8), 227; https://doi.org/10.3390/membranes15080227 - 31 Jul 2025
Viewed by 303
Abstract
Groundwater is one of the main water sources for consumption, domestic use, agriculture, and tourism in coastal communities. However, high total dissolved solids (TDS) levels in the water (700–2000 mg L−1 TDS) and electrical conductivity (3000–5000 µS cm−1) threaten the [...] Read more.
Groundwater is one of the main water sources for consumption, domestic use, agriculture, and tourism in coastal communities. However, high total dissolved solids (TDS) levels in the water (700–2000 mg L−1 TDS) and electrical conductivity (3000–5000 µS cm−1) threaten the health and economic growth opportunities for residents. This research aims to evaluate the performance of a laboratory-scale electrodialysis system as a technology for desalinating brackish water. For this purpose, water samples were collected from real groundwater sources. Batch experiments were conducted with varying operational parameters, such as voltage (2–10 V), feed volume (100–1600 mL), recovery rate (50–80%), and cros-flow velocity (1.3–5.1 cm s−1) to determine the electrodialysis system setup that meets the requirements for drinking water in terms of TDS and energy efficiency. A total specific energy consumption of 1.65 kWh m−3, including pumping energy, was achieved at a laboratory scale. The conditions were as follows: flow velocity of 5.14 cm s−1, applied voltage of 6 V, feed volume of 1.6 L, and a water recovery of 66%. Furthermore, increasing the flow velocity and the applied voltage enhanced the desalination kinetics and salt removal. Additionally, the system presented opportunities for scalability. This research aims to evaluate a sustainable membrane-based treatment technology for meeting the growing demand for water resources in coastal communities, particularly in developing countries in South America. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

14 pages, 3187 KiB  
Article
Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives
by Haya Taleb, Venkatesh Gopal, Sofian Kanan, Raed Hashaikeh, Nidal Hilal and Naif Darwish
Nanomaterials 2025, 15(15), 1151; https://doi.org/10.3390/nano15151151 - 25 Jul 2025
Viewed by 349
Abstract
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. [...] Read more.
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. This work ultimately aims to develop a novel permselective polymeric membrane material to be employed in an electrochemical desalination system. This part of the study addresses the optimization, preparation, and characterization of a polyvinylidene difluoride (PVDF) polymeric membrane using the electrospinning technique. The membranes produced in this work were fabricated under specific operational, environmental, and material parameters. Five different additives and nano-additives, i.e., graphene oxide (GO), carbon nanotubes (CNTs), zinc oxide (ZnO), activated carbon (AC), and a zeolitic imidazolate metal–organic framework (ZIF-8), were used to modify the functionality and selectivity of the prepared PVDF membranes. Each membrane was synthesized at two different levels of additive composition, i.e., 0.18 wt.% and 0.45 wt.% of the entire PVDF polymeric solution. The physiochemical properties of the prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, contact angle, conductivity, porosity, and pore size distribution. Based on findings of this study, PVDF/GO membrane exhibited superior results, with an electrical conductivity of 5.611 mS/cm, an average pore size of 2.086 µm, and a surface charge of −38.33 mV. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

23 pages, 8106 KiB  
Article
Study on the Flexible Scheduling Strategy of Water–Electricity–Hydrogen Systems in Oceanic Island Groups Enabled by Hydrogen-Powered Ships
by Qiang Wang, Binbin Long and An Zhang
Energies 2025, 18(14), 3627; https://doi.org/10.3390/en18143627 - 9 Jul 2025
Viewed by 337
Abstract
In order to improve energy utilization efficiency and the flexibility of resource transfer in oceanic-island-group microgrids, a water–electricity–hydrogen flexible scheduling strategy based on a multi-rate hydrogen-powered ship is proposed. First, the characteristics of the seawater desalination unit (SDU), proton exchange membrane electrolyzer (PEMEL), [...] Read more.
In order to improve energy utilization efficiency and the flexibility of resource transfer in oceanic-island-group microgrids, a water–electricity–hydrogen flexible scheduling strategy based on a multi-rate hydrogen-powered ship is proposed. First, the characteristics of the seawater desalination unit (SDU), proton exchange membrane electrolyzer (PEMEL), and battery system (BS) in consuming surplus renewable energy on resource islands are analyzed. The variable-efficiency operation characteristics of the SDU and PEMEL are established, and the effect of battery life loss is also taken into account. Second, a spatio-temporal model for the multi-rate hydrogen-powered ship is proposed to incorporate speed adjustment into the system optimization framework for flexible resource transfer among islands. Finally, with the goal of minimizing the total cost of the system, a flexible water–electricity–hydrogen hybrid resource transfer model is constructed, and a certain island group in the South China Sea is used as an example for simulation and analysis. The results show that the proposed scheduling strategy can effectively reduce energy loss, promote renewable energy absorption, and improve the flexibility of resource transfer. Full article
(This article belongs to the Special Issue Hybrid-Renewable Energy Systems in Microgrids)
Show Figures

Figure 1

25 pages, 3103 KiB  
Article
Artificial Intelligence-Based Optimization of Renewable-Powered RO Desalination for Reduced Grid Dependence
by Mohammadreza Najaftomaraei, Mahdis Osouli, Hasan Erbay, Mohammad Hassan Shahverdian, Ali Sohani, Kasra Mazarei Saadabadi and Hoseyn Sayyaadi
Water 2025, 17(13), 1981; https://doi.org/10.3390/w17131981 - 1 Jul 2025
Viewed by 446
Abstract
Water scarcity and the growing demand for sustainable energy solutions have driven the need for renewable-powered desalination. This study evaluates three scenarios for reverse osmosis (RO) desalination powered by photovoltaic (PV), wind turbine (WT), and hybrid PV–WT systems, aiming to minimize the levelized [...] Read more.
Water scarcity and the growing demand for sustainable energy solutions have driven the need for renewable-powered desalination. This study evaluates three scenarios for reverse osmosis (RO) desalination powered by photovoltaic (PV), wind turbine (WT), and hybrid PV–WT systems, aiming to minimize the levelized costs of electricity (LCOE) and water (LCOW) while reducing grid dependence. The city studied is Zahedan, Iran, which has high potential in renewable energy. A multi-objective optimization approach using the Non-dominated Sorting Genetic Algorithm II (NSGA-II), a popular evolutionary algorithm, is employed to determine the optimal number of PV panels and wind turbines. The results show that the hybrid system outperforms single-source configurations, supplying 34.79 MWh of electricity and 34.19 m3 of desalinated water, while achieving the lowest LCOE (2.73 cent/kWh−1) and LCOW (35.33 cent/m−3). The hybrid scenario covers 65.49% of the electricity demand and 58.54% of the water demand, significantly reducing reliance on the grid compared to the PV and WT scenarios. Additionally, it ensures greater energy stability by leveraging the complementary nature of PV and WT. These findings highlight the techno-economic feasibility of hybrid renewable-powered desalination as a cost-effective and sustainable solution. Future research should focus on integrating energy storage to further enhance efficiency and minimize grid dependency. Full article
Show Figures

Figure 1

19 pages, 1022 KiB  
Article
Impact of Biochar Interlayer on Surface Soil Salt Content, Salt Migration, and Photosynthetic Activity and Yield of Sunflowers: Laboratory and Field Studies
by Muhammad Irfan, Gamal El Afandi, Amira Moustafa, Salem Ibrahim and Santosh Sapkota
Sustainability 2025, 17(12), 5642; https://doi.org/10.3390/su17125642 - 19 Jun 2025
Viewed by 505
Abstract
Soil salinization presents a significant challenge, driven by factors such as inadequate drainage, shallow aquifers, and high evaporation rates, threatening global food security. The sunflower emerges as a key cash crop in such areas, providing the opportunity to convert its straw into biochar, [...] Read more.
Soil salinization presents a significant challenge, driven by factors such as inadequate drainage, shallow aquifers, and high evaporation rates, threatening global food security. The sunflower emerges as a key cash crop in such areas, providing the opportunity to convert its straw into biochar, which offers additional agronomic and environmental benefits. This study investigates the effectiveness of biochar interlayers in enhancing salt leaching and suppressing upward salt migration through integrated laboratory and field experiments. The effectiveness of varying biochar interlayer application rates was assessed in promoting salt leaching, decreasing soil electrical conductivity (EC), and enhancing crop performance in saline soils through a systematic approach that combines laboratory and field experiments. The biochar treatments included a control (CK) and different applications of 20 (BL20), 40 (BL40), 60 (BL60), and 80 (BL80) tons of biochar per hectare, all applied below a depth of 20 cm, with each treatment replicated three times. The laboratory and field experimental setups maintained consistency in terms of biochar treatments and interlayer placement methodology. During the laboratory column experiments, the soil columns were treated with deionized water, and their leachates were analyzed for EC and major ionic components. The results showed that columns with biochar interlayers exhibited significantly higher efflux rates compared to those of the control and notably accelerated the time required for the effluent EC to decrease to 2 dS m−1. The CK required 43 days for full discharge and 38 days for EC stabilization below 2 dS m−1. In contrast, biochar treatments notably reduced these times, with BL80 achieving discharge in just 7 days and EC stabilization in 10 days. Elution events occurred 20–36 days earlier in the biochar-treated columns, confirming biochar’s effectiveness in enhancing leaching efficiency in saline soils. The field experiment results supported the laboratory findings, indicating that increased biochar application rates significantly reduced soil EC and ion concentrations at depths of 0–20 cm and 20–40 cm, lowering the EC from 7.12 to 2.25 dS m−1 and from 6.30 to 2.41 dS m−1 in their respective layers. The application of biochar interlayers resulted in significant reductions in Na+, K+, Ca2+, Mg2+, Cl, SO42−, and HCO3 concentrations across both soil layers. In the 0–20 cm layer, Na+ decreased from 3.44 to 2.75 mg·g−1, K+ from 0.24 to 0.11 mg·g−1, Ca2+ from 0.35 to 0.20 mg·g−1, Mg2+ from 0.31 to 0.24 mg·g−1, Cl from 1.22 to 0.88 mg·g−1, SO42− from 1.91 to 1.30 mg·g−1 and HCO3 from 0.39 to 0.18 mg·g−1, respectively. Similarly, in the 20–40 cm layer, Na+ declined from 3.62 to 3.05 mg·g−1, K+ from 0.28 to 0.12 mg·g−1, Ca2+ from 0.39 to 0.26 mg·g−1, Mg2+ from 0.36 to 0.27 mg·g−1, Cl from 1.18 to 0.80 mg·g−1, SO42− from 1.95 to 1.33 mg·g−1 and HCO3 from 0.42 to 0.21 mg·g−1 under increasing biochar rates. Moreover, the use of biochar interlayers significantly improved the physiological traits of sunflowers, including their photosynthesis rates, stomatal conductance, and transpiration efficiency, thereby boosting biomass and achene yield. These results highlight the potential of biochar interlayers as a sustainable strategy for soil desalination, water conservation, and enhanced crop productivity. This approach is especially promising for managing salt-affected soils in regions like California, where soil salinization represents a considerable threat to agricultural sustainability. Full article
(This article belongs to the Special Issue Sustainable Development and Climate, Energy, and Food Security Nexus)
Show Figures

Figure 1

19 pages, 2859 KiB  
Article
Produced Water Use for Hydrogen Production: Feasibility Assessment in Wyoming, USA
by Cilia Abdelhamid, Abdeldjalil Latrach, Minou Rabiei and Kalyan Venugopal
Energies 2025, 18(11), 2756; https://doi.org/10.3390/en18112756 - 26 May 2025
Cited by 1 | Viewed by 609
Abstract
This study evaluates the feasibility of repurposing produced water—an abundant byproduct of hydrocarbon extraction—for green hydrogen production in Wyoming, USA. Analysis of geospatial distribution and production volumes reveals that there are over 1 billion barrels of produced water annually from key basins, with [...] Read more.
This study evaluates the feasibility of repurposing produced water—an abundant byproduct of hydrocarbon extraction—for green hydrogen production in Wyoming, USA. Analysis of geospatial distribution and production volumes reveals that there are over 1 billion barrels of produced water annually from key basins, with a general total of dissolved solids (TDS) ranging from 35,000 to 150,000 ppm, though Wyoming’s sources are often at the lower end of this spectrum. Optimal locations for hydrogen production hubs have been identified, particularly in high-yield areas like the Powder River Basin, where the top 2% of fields contribute over 80% of the state’s produced water. Detailed water-quality analysis indicates that virtually all of the examined sources exceed direct electrolyzer feed requirements (e.g., <2000 ppm TDS, <0.1 ppm Fe/Mn for target PEM systems), necessitating pre-treatment. A review of advanced treatment technologies highlights viable solutions, with estimated desalination and purification costs ranging from USD 0.11 to USD 1.01 per barrel, potentially constituting 2–6% of the levelized cost of hydrogen (LCOH). Furthermore, Wyoming’s substantial renewable-energy potential (3000–4000 GWh/year from wind and solar) could sustainably power electrolysis, theoretically yielding approximately 0.055–0.073 million metric tons (MMT) of green hydrogen annually (assuming 55 kWh/kg H2), a volume constrained more by energy availability than water supply. A preliminary economic analysis underscores that, while water treatment (2–6% LCOH) and transportation (potentially > 10% LCOH) are notable, electricity pricing (50–70% LCOH) and electrolyzer CAPEX (20–40% LCOH) are dominant cost factors. While leveraging produced water could reduce freshwater consumption and enhance hydrogen production sustainability, further research is required to optimize treatment processes and assess economic viability under real-world conditions. This study emphasizes the need for integrated approaches combining water treatment, renewable energy, and policy incentives to advance a circular economy model for hydrogen production. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

21 pages, 7670 KiB  
Article
Changes in Land Use Due to the Development of Photovoltaic Solar Energy in the Region of Murcia (Spain)
by Ramón Martínez-Medina, Encarnación Gil-Meseguer and José María Gómez-Espín
Land 2025, 14(5), 1083; https://doi.org/10.3390/land14051083 - 16 May 2025
Viewed by 1033
Abstract
In recent years, the energy policies of both Spain and the European Union have pursued the development of renewable energies, including solar power. One way these installations will appear in the Region of Murcia is on bodies of water, which do not alter [...] Read more.
In recent years, the energy policies of both Spain and the European Union have pursued the development of renewable energies, including solar power. One way these installations will appear in the Region of Murcia is on bodies of water, which do not alter existing land uses, but ground-mounted solar energy installations do bring about such changes. The Region of Murcia is located in the south-eastern quadrant of the Iberian Peninsula. Positioned on the leeward side of the westerly zonal circulation, characteristic of mid-latitudes, and influenced by the layout of the Betic mountain ranges that cross it from north-west to south-east, it experiences significant scarcity and irregularity of rainfall. In contrast, it benefits from an abundance of sunlight, with more than 3400 h of sunshine per year. This makes it one of the most productive locations for capturing solar energy and converting it into electricity. As a result, the land occupied by photovoltaic parks has increased at the expense of dry farming areas, irrigated land, and woodland. High energy prices have also led to self-consumption measures, with solar panels being installed on the roofs of industrial buildings, floating panels in irrigation reservoirs, photovoltaic solar farms associated with desalination and lift irrigation pumps, and pressure required by localized irrigation, etc. Full article
Show Figures

Figure 1

15 pages, 2820 KiB  
Article
Impacts of Summer Afforestation and Multi-Stage Drip Irrigation on Soil and Vegetation in Coastal Saline Soils
by Linlin Chu, Rong Ma and Dan Chen
Agronomy 2025, 15(5), 1192; https://doi.org/10.3390/agronomy15051192 - 15 May 2025
Viewed by 358
Abstract
The improved multi-stage drip irrigation scheduling, combined with agronomic engineering, was successfully applied for spring re-vegetation in coastal saline soils. To date, few studies have addressed summer vegetation planting using this method. The aim of this study is to reveal the desalinization mechanism [...] Read more.
The improved multi-stage drip irrigation scheduling, combined with agronomic engineering, was successfully applied for spring re-vegetation in coastal saline soils. To date, few studies have addressed summer vegetation planting using this method. The aim of this study is to reveal the desalinization mechanism associated with summer afforestation and multi-stage drip irrigation. A three-year field experiment was conducted in the coastal saline land of southern China. The trial consisted of four irrigation stages, with the soil moisture potential (SMP) monitored directly beneath the drip emitter at a depth of 0.2 m, correspondingly controlled to be higher than −10 kPa (Stage I), −25 kPa (Stage II), and −45 kPa (Stage III), respectively. Results indicated that soil bulk density decreased by 14%, while soil moisture increased by 30% compared to initial conditions. The average electrical conductivity (EC) value across the entire soil layer decreased by 65.64% to 97.79%. Soil pH gradually increased during the first three irrigation stages, with the rate of increase accelerating during the rainfed stage, reaching values between 9.22 and 9.87. The concentrations of soil ions, including Ca2+, K+, Mg2+, Na+, and SO42−, decreased by 95.18%, 79.67%, 87.74%, 89.68%, and 57.19%, respectively, in the final irrigation stage. Throughout the entire soil profile, the average sodium adsorption ratio (SAR) decreased by 49.37%, while the average exchangeable sodium percentage (ESP) increased by 9.98%. This study demonstrated that multi-stage drip irrigation scheduling significantly influenced the soil physicochemical properties, soil salt ions, and vegetation growth, and thereby explained the efficient desalinization mechanism associated with this irrigation strategy. It is recommended to increase the amount of irrigation water and apply acidic regulators during the rainfed stage to reduce soil pH for vegetation establishment in coastal saline areas. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

15 pages, 1937 KiB  
Article
Influence of Groundwater Depth on Salt Migration and Maize Growth in the Typical Irrigation Area
by Liping Dai, Qingfeng Miao, Haibin Shi, Zhuangzhuang Feng, Yuxin Li, Yong Liu, Yongli Xu, Rigan Xu and Weiying Feng
Agronomy 2025, 15(5), 1021; https://doi.org/10.3390/agronomy15051021 - 24 Apr 2025
Cited by 2 | Viewed by 408
Abstract
Groundwater depth has a significant impact on salinization in irrigated areas. In this study, different groundwater depths were controlled via pit tests and we conducted pit tests with different groundwater depths (DGWs) to investigate the relationship between irrigation water volume and salt migration [...] Read more.
Groundwater depth has a significant impact on salinization in irrigated areas. In this study, different groundwater depths were controlled via pit tests and we conducted pit tests with different groundwater depths (DGWs) to investigate the relationship between irrigation water volume and salt migration during the crop growth period, as well as the influence of DGW on maize growth and yield. The aim of this study was to determine an appropriate DGW for maize growth in the Hetao Irrigation District, the largest irrigation area of Asia, under the dual goals of water conservation and salt control. The results showed that the upward replenishment of groundwater was 179.60 mm, 139.17 mm, 119.98 mm, 68.62 mm, and 48.38 mm for each respective DGW, i.e., negatively correlated with DGW during the maize growth period. Soil electrical conductivity (EC) was exponentially related to DGW. For DGWs > 1.75 m, surface soil EC decreased significantly and soil EC exhibited less variation with DGW. Moreover, the desalination rate and depth after irrigation were improved at DGW values of 2.00 m and 2.25 m. Shallow DGW values resulted in increased evapotranspiration and intensified crop stress, which reduced water use efficiency. To reduce resource waste and salt stress on crops, we suggest that a DGW of 2.00~2.25 m is more suitable for maize growth and development. These results provide a reference for determining appropriate DGWs for maize growth in salinized irrigation areas. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

21 pages, 1209 KiB  
Article
Achieving Water and Energy Independence, Economic Sustainability, and CO2 Reduction Through Hybrid Renewable Systems: A Case Study of Skyros Island
by Athanasios-Foivos Papathanasiou and Evangelos Baltas
Water 2025, 17(9), 1267; https://doi.org/10.3390/w17091267 - 24 Apr 2025
Viewed by 876
Abstract
This study explores the challenge of achieving water and energy self-sufficiency in isolated regions through the design a hybrid renewable energy system (HRES) for Skyros, a Greek island not connected to the mainland grid. The proposed system integrates wind turbines, photovoltaics, pumped hydro, [...] Read more.
This study explores the challenge of achieving water and energy self-sufficiency in isolated regions through the design a hybrid renewable energy system (HRES) for Skyros, a Greek island not connected to the mainland grid. The proposed system integrates wind turbines, photovoltaics, pumped hydro, and hydrogen storage to ensure a stable supply, particularly during peak summer demand. Using advanced R simulations, three scenarios were analyzed on a 30 min basis. A combined storage system meets 99.99% of water demand and 83% of electricity needs. A pumped hydro-only system covers 99.99% of water demand and 74% of electricity needs. A hydrogen-only system supplies 99.99% of water demand but just 67% of electricity needs. The findings indicate annual CO2 emission reductions exceeding 9600 tons. Economic analysis confirms the system’s feasibility, with a projected 10-year payback period. The cost of desalinated water is estimated at EUR 1/m3, while energy costs range from EUR 0.083/kWh for pumped hydro to EUR 0.093/kWh for hydrogen storage and EUR 0.101/kWh for the combined system. Overall, the results highlight the potential of hydrogen storage to enhance system flexibility and complement pumped hydro, offering sustainable water and energy solutions for isolated regions while addressing both environmental and economic challenges. Full article
(This article belongs to the Section Water-Energy Nexus)
Show Figures

Figure 1

29 pages, 12196 KiB  
Article
Real-Time Modeling of a Solar-Driven Power Plant with Green Hydrogen, Electricity, and Fresh Water Production: Techno-Economics and Optimization
by Paniz Arashrad, Shayan Sharafi Laleh, Shayan Rabet, Mortaza Yari, Saeed Soltani and Marc A. Rosen
Sustainability 2025, 17(8), 3555; https://doi.org/10.3390/su17083555 - 15 Apr 2025
Cited by 1 | Viewed by 578
Abstract
Solar energy is important for the future as it provides a clean, renewable source of electricity that can help combat climate change by reducing reliance on fossil fuels via implementing various solar-based energy systems. In this study, a unique configuration for a parabolic-trough-based [...] Read more.
Solar energy is important for the future as it provides a clean, renewable source of electricity that can help combat climate change by reducing reliance on fossil fuels via implementing various solar-based energy systems. In this study, a unique configuration for a parabolic-trough-based solar system is presented that allows energy storage for periods of time with insufficient solar radiation. This model, based on extensive analysis in MATLAB utilizing real-time weather data, demonstrates promising results with strong practical applicability. An organic Rankine cycle with a regenerative configuration is applied to produce electricity, which is further utilized for hydrogen generation. A proton exchange membrane electrolysis (PEME) unit converts electricity to hydrogen, a clean and versatile energy carrier since the electricity is solar based. To harness the maximum value from this system, additional energy during peak times is used to produce clean water utilizing a reverse osmosis (RO) desalination unit. The system’s performance is examined by conducting a case study for the city of Antalya, Turkey, to attest to the unit’s credibility and performance. This system is also optimized via the Grey Wolf multi-objective algorithm from energy, exergy, and techno-economic perspectives. For the optimization scenario performed, the energy and exergy efficiencies of the system and the levelized cost of products are found to be approximately 26.5%, 28.5%, and 0.106 $/kWh, respectively. Full article
Show Figures

Figure 1

23 pages, 7410 KiB  
Article
Techno-Economic Analysis of Geospatial Green Hydrogen Potential Using Solar Photovoltaic in Niger: Application of PEM and Alkaline Water Electrolyzers
by Bachirou Djibo Boubé, Ramchandra Bhandari, Moussa Mounkaila Saley, Abdou Latif Bonkaney and Rabani Adamou
Energies 2025, 18(7), 1872; https://doi.org/10.3390/en18071872 - 7 Apr 2025
Viewed by 607
Abstract
This study evaluates the techno-economic feasibility of solar-based green hydrogen potential for off-grid and utility-scale systems in Niger. The geospatial approach is first employed to identify the area available for green hydrogen production based on environmental and socio-technical constraints. Second, we evaluate the [...] Read more.
This study evaluates the techno-economic feasibility of solar-based green hydrogen potential for off-grid and utility-scale systems in Niger. The geospatial approach is first employed to identify the area available for green hydrogen production based on environmental and socio-technical constraints. Second, we evaluate the potential of green hydrogen production using a geographic information system (GIS) tool, followed by an economic analysis of the levelized cost of hydrogen (LCOH) for alkaline and proton exchange membrane (PEM) water electrolyzers using fresh and desalinated water. The results show that the electricity generation potential is 311,617 TWh/year and 353,166 TWh/year for off-grid and utility-scale systems. The hydrogen potential using PEM (alkaline) water electrolyzers is calculated to be 5932 Mt/year and 6723 Mt/year (5694 Mt/year and 6454 Mt/year) for off-grid and utility-scale systems, respectively. The LCOH production potential decreases for PEM and alkaline water electrolyzers by 2030, ranging between 4.72–5.99 EUR/kgH2 and 5.05–6.37 EUR/kgH2 for off-grid and 4.09–5.21 EUR/kgH2 and 4.22–5.4 EUR/kgH2 for utility-scale systems. Full article
(This article belongs to the Topic Advances in Green Energy and Energy Derivatives)
Show Figures

Figure 1

40 pages, 7221 KiB  
Review
Advancements in Integrated Thermoelectric Power Generation and Water Desalination Technologies: A Comprehensive Review
by Oranit Traisak, Pranjal Kumar, Sara Vahaji, Yihe Zhang and Abhijit Date
Energies 2025, 18(6), 1454; https://doi.org/10.3390/en18061454 - 16 Mar 2025
Cited by 2 | Viewed by 1369
Abstract
This paper reviews recent advancements in integrated thermoelectric power generation and water desalination technologies, driven by the increasing global demand for electricity and freshwater. The growing population and reliance on fossil fuels for electricity generation pose challenges related to environmental pollution and resource [...] Read more.
This paper reviews recent advancements in integrated thermoelectric power generation and water desalination technologies, driven by the increasing global demand for electricity and freshwater. The growing population and reliance on fossil fuels for electricity generation pose challenges related to environmental pollution and resource depletion, necessitating the exploration of alternative energy sources and desalination techniques. While thermoelectric generators are capable of converting low-temperature thermal energy into electricity and desalination processes that can utilize low-temperature thermal energy, their effective integration remains largely unexplored. Currently available hybrid power and water systems, such as those combining conventional heat engine cycles (e.g., the Rankine and Kalina cycles) with reverse osmosis, multi-effect distillation, and humidification–dehumidification, are limited in effectively utilizing low-grade thermal energy for simultaneous power generation and desalination, while solid-state heat-to-work conversion technology, such as thermoelectric generators, have low heat-to-work conversion efficiency. This paper identifies a key research gap in the limited effective integration of thermoelectric generators and desalination, despite their complementary characteristics. The study highlights the potential of hybrid systems, which leverage low-grade thermal energy for simultaneous power generation and desalination. The review also explores emerging material innovations in high figure of merit thermoelectric materials and advanced MD membranes, which could significantly enhance system performance. Furthermore, hybrid power–desalination systems incorporating thermoelectric generators with concentrated photovoltaic cells, solar thermal collectors, geothermal energy, and organic Rankine cycles (ORCs) are examined to highlight their potential for sustainable energy and water production. The findings underscore the importance of optimizing material properties, system configurations, and operating conditions to maximize efficiency and output while reducing economic and environmental costs. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

28 pages, 4491 KiB  
Review
Selective Ion Separation by Capacitive Deionization: A Comprehensive Review
by Fanyi Xu, Ling Yuan, Rui Zhao, Bing Qin, Feng Zhang, Liming Ren, Hailun Yang and Menglei Yuan
Materials 2025, 18(5), 1107; https://doi.org/10.3390/ma18051107 - 28 Feb 2025
Cited by 2 | Viewed by 1082
Abstract
Within the last decade, in addition to water desalination, capacitive deionization (CDI) has been used for the resource recovery and selective separation of target ions in multicomponent solutions. CDI is a new technology for selectively extracting valuable metal ions from solutions using an [...] Read more.
Within the last decade, in addition to water desalination, capacitive deionization (CDI) has been used for the resource recovery and selective separation of target ions in multicomponent solutions. CDI is a new technology for selectively extracting valuable metal ions from solutions using an electric field and electrode materials. Unlike traditional adsorption methods, it raises attention for its environmentally friendly process and low cost, especially for extracting valuable elements. CDI technology has advanced significantly in desalination and selective element extraction due to a deep understanding of ion storage, electrode material structure–activity relationships, solvent effects, and reactor design. However, it still faces challenges like short electrode cycle life, poor reversible absorption/desorption, low charge utilization, and limited ion selectivity. In this review, we commence with an examination of the historical development of CDI technology, followed by a comprehensive summary of the fundamental operating principles of capacitors. We then evaluate the criteria for assessing capacitor performance and analyze the advantages and disadvantages associated with various capacitor materials. According to the review, we address the current challenges and obstacles encountered in the advancement of capacitor technology and offer constructive recommendations for its future development. Full article
Show Figures

Figure 1

Back to TopTop