Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,085)

Search Parameters:
Keywords = ecology transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1597 KB  
Article
Dynamic Reward–Punishment Mechanisms Driving Agricultural Systems Toward Sustainability in China
by Rongjiang Cai, Tao Zhang and Xi Wang
Systems 2025, 13(11), 976; https://doi.org/10.3390/systems13110976 (registering DOI) - 2 Nov 2025
Abstract
Agricultural systems are complex social–ecological systems shaped by interactions among diverse stakeholders including governments, enterprises, farmers, consumers, and financial institutions. To examine policy-driven sustainability transitions, this study focuses on three principal actors—government regulatory agencies, agricultural enterprises, and farmers—whose strategic interactions critically determine transition [...] Read more.
Agricultural systems are complex social–ecological systems shaped by interactions among diverse stakeholders including governments, enterprises, farmers, consumers, and financial institutions. To examine policy-driven sustainability transitions, this study focuses on three principal actors—government regulatory agencies, agricultural enterprises, and farmers—whose strategic interactions critically determine transition outcomes. The aim is to drive agricultural systems toward sustainability in China. This study develops a three-party evolutionary game model involving the government, enterprises, and farmers to explore how policy-driven incentives influence sustainable development practices. The model incorporates both static and dynamic reward–punishment mechanisms, calibrated with empirical data, to examine behavioral dynamics across stakeholders. The results indicate that fluctuations in enterprise and government engagement contribute to instability in agricultural sustainability transitions. While static reward mechanisms mitigate peak fluctuations, they are insufficient to fully stabilize enterprise commitment, with actors oscillating between sustainable and conventional agricultural practices. Linear dynamic reward mechanisms offer partial stabilization but lack the capacity to maintain long-run Nash equilibrium. In contrast, nonlinear dynamic mechanisms effectively align stakeholder incentives, fostering a stable and enduring shift toward sustainable agricultural systems. This study underscores the importance of tailored dynamic strategies to build resilient agricultural systems with integrated sustainability objectives. Full article
Show Figures

Figure 1

37 pages, 2700 KB  
Article
National Ecological Civilization Construction Demonstration Zone and PM2.5 Pollution Mitigation in China
by Shen Zhong, Yue Wang and Daizhi Jin
Sustainability 2025, 17(21), 9765; https://doi.org/10.3390/su17219765 (registering DOI) - 2 Nov 2025
Abstract
Rapid industrialization and urbanization have driven China’s economic growth but also worsened air pollution, posing serious challenges to sustainable development and public health. Balancing economic growth and environmental protection has become essential for achieving the UN Sustainable Development Goal of “Climate Action.” The [...] Read more.
Rapid industrialization and urbanization have driven China’s economic growth but also worsened air pollution, posing serious challenges to sustainable development and public health. Balancing economic growth and environmental protection has become essential for achieving the UN Sustainable Development Goal of “Climate Action.” The National Ecological Civilization Construction Demonstration Zone policy, a major institutional innovation for green transition, aims to integrate ecological protection, industrial upgrading, and spatial governance to achieve both economic and environmental goals. Using county-level panel data from 2010 to 2022, this study applies a difference-in-differences (DID) approach, treating the phased establishment of NECCDZs as an exogenous policy shock. It further explores the mediating effects of green innovation capability and land use efficiency. The results show that the NECCDZ policy significantly reduces PM2.5 concentrations in pilot regions, and the findings remain robust under multiple tests. Improvements in green innovation and land use efficiency are identified as key transmission mechanisms, while policy effects vary across city hierarchies, industrial base types, and regions. Overall, the NECCDZ policy demonstrates the effectiveness of institutionalized ecological governance and offers policy insights for developing countries seeking coordinated progress in economic growth and environmental sustainability. Full article
29 pages, 3257 KB  
Article
Modeling Air Pollution from Urban Transport and Strategies for Transitioning to Eco-Friendly Mobility in Urban Environments
by Sayagul Zhaparova, Monika Kulisz, Nurzhan Kospanov, Anar Ibrayeva, Zulfiya Bayazitova and Aigul Kurmanbayeva
Environments 2025, 12(11), 411; https://doi.org/10.3390/environments12110411 (registering DOI) - 1 Nov 2025
Abstract
Urban air pollution caused by vehicular emissions remains one of the most pressing environmental challenges, negatively affecting both public health and climate processes. In Kokshetau, Kazakhstan, where electric vehicle (EV) adoption accounts for only 0.019% of the total fleet and charging infrastructure is [...] Read more.
Urban air pollution caused by vehicular emissions remains one of the most pressing environmental challenges, negatively affecting both public health and climate processes. In Kokshetau, Kazakhstan, where electric vehicle (EV) adoption accounts for only 0.019% of the total fleet and charging infrastructure is nearly absent, reducing transport-related emissions requires short-term and cost-effective solutions. This study proposes an integrated approach combining urban ecology principles with computational modeling to optimize traffic signal control for emission reduction. An artificial neural network (ANN) was trained using intersection-specific traffic data to predict emissions of carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter (PM2.5). The ANN was incorporated into a nonlinear optimization framework to determine traffic signal timings that minimize total emissions without increasing traffic delays. The results demonstrate reductions in emissions of CO by 12.4%, NOx by 9.8%, SO2 by 7.6%, and PM2.5 by 10.3% at major congestion hotspots. These findings highlight the potential of the proposed framework to improve urban air quality, reduce ecological risks, and support sustainable transport planning. The method is scalable and adaptable to other cities with similar urban and environmental characteristics, facilitating the transition toward eco-friendly mobility and integrating data-driven traffic management into broader climate and public health policies. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas, 4th Edition)
Show Figures

Figure 1

18 pages, 3633 KB  
Article
Assessing Water Conservation Services of Sichuan’s Forest Ecosystems Using the InVEST Model
by Jiang Zhang, Wenchao Yan, Renhong Li, Peng Wei, Cheng Jia and Wen Zhang
Water 2025, 17(21), 3142; https://doi.org/10.3390/w17213142 (registering DOI) - 1 Nov 2025
Abstract
Forests are pivotal to hydrologic regulation, yet province-wide dynamics across complex terrain remain insufficiently quantified. We quantified Sichuan’s forest water conservation dynamics (1990–2023), coupling the InVEST water yield model with a topographic–hydraulic correction (topographic index, saturated hydraulic conductivity, land-cover-specific flow velocity). The model [...] Read more.
Forests are pivotal to hydrologic regulation, yet province-wide dynamics across complex terrain remain insufficiently quantified. We quantified Sichuan’s forest water conservation dynamics (1990–2023), coupling the InVEST water yield model with a topographic–hydraulic correction (topographic index, saturated hydraulic conductivity, land-cover-specific flow velocity). The model used precipitation and potential evapotranspiration, land-use/cover, soil texture, and rooting depth, and was calibrated to provincial water resources statistics. Outputs were stratified by elevation and slope and monetized via a replacement cost (reservoir capacity) method. Sichuan exhibited a persistent high-capacity belt along basin–mountain transitions and the southeastern ranges, contrasting with low values on the western plateau; period maxima intensified in 2020–2023. Interannual variability closely tracked precipitation anomalies against largely stable atmospheric demand; per-unit capacity declined monotonically with slope, and total capacity generally increased with elevation, with >3500 m both highest and most variable. Economic value rose overall but fluctuated and showed marked inter-city heterogeneity. We conclude that climate pacing operating on a terrain-anchored template governs Sichuan’s forest water conservation service, supporting precision, slope-aware forest management, and differentiated ecological compensation to stabilize hydrologic regulation under climate variability. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

19 pages, 893 KB  
Review
Beyond the Sleep Lab: A Narrative Review of Wearable Sleep Monitoring
by Maria P. Mogavero, Giuseppe Lanza, Oliviero Bruni, Luigi Ferini-Strambi, Alessandro Silvani, Ugo Faraguna and Raffaele Ferri
Bioengineering 2025, 12(11), 1191; https://doi.org/10.3390/bioengineering12111191 (registering DOI) - 31 Oct 2025
Abstract
Sleep is a fundamental biological process essential for health and homeostasis. Traditionally investigated through laboratory-based polysomnography (PSG), sleep research has undergone a paradigm shift with the advent of wearable technologies that enable non-invasive, long-term, and real-world monitoring. This review traces the evolution from [...] Read more.
Sleep is a fundamental biological process essential for health and homeostasis. Traditionally investigated through laboratory-based polysomnography (PSG), sleep research has undergone a paradigm shift with the advent of wearable technologies that enable non-invasive, long-term, and real-world monitoring. This review traces the evolution from early analog and actigraphic methods to current multi-sensor and AI-driven wearable systems. We summarize major technological milestones, including the transition from movement-based to physiological and biochemical sensing, and the growing role of edge computing and deep learning in automated sleep staging. Comparative studies with PSG are discussed, alongside the strengths and limitations of emerging devices such as wristbands, rings, headbands, and camera-based systems. The clinical applications of wearable sleep monitors are examined in relation to remote patient management, personalized medicine, and large-scale population research. Finally, we outline future directions toward integrating multimodal biosensing, transparent algorithms, and standardized validation frameworks. By bridging laboratory precision with ecological validity, wearable technologies promise to redefine the gold standard for sleep monitoring, advancing both individualized care and population-level health assessment. Full article
(This article belongs to the Section Biosignal Processing)
26 pages, 3720 KB  
Article
Digital Economy, Spatial Imbalance, and Coordinated Growth: Evidence from Urban Agglomerations in the Middle and Lower Reaches of the Yellow River Basin
by Yuan Li, Bin Xu, Yuxuan Wan, Yan Li and Hui Li
Sustainability 2025, 17(21), 9743; https://doi.org/10.3390/su17219743 (registering DOI) - 31 Oct 2025
Abstract
Amid the rapid evolution of the digital economy reshaping global competitiveness, China has advanced regional coordination through the Digital China initiative and the “Data Elements ×” Three-Year Action Plan (2024–2026). To further integrate digital transformation with high-quality growth in the urban agglomerations of [...] Read more.
Amid the rapid evolution of the digital economy reshaping global competitiveness, China has advanced regional coordination through the Digital China initiative and the “Data Elements ×” Three-Year Action Plan (2024–2026). To further integrate digital transformation with high-quality growth in the urban agglomerations of the middle and lower Yellow River, this study aims to strengthen regional competitiveness, expand digital industries, foster new productivity, refine the development pathway, and safeguard balanced economic, social, and ecological progress. Taking the Yellow River urban clusters as the research object, a comprehensive assessment framework encompassing seven subsystems is established. By employing a mixed-weighting approach, entropy-based TOPSIS, hotspot analysis, coupling coordination models, spatial gravity shift techniques, and grey relational methods, this study investigates the spatiotemporal dynamics between the digital economy and high-quality development. The findings reveal that: (1) temporally, the coupling–coordination process evolves through three distinct phases—initial fluctuation and divergence (1990–2005), synergy consolidation (2005–2015), and high-level stabilization (2015–2022)—with the average coordination index rising from 0.21 to 0.41; (2) spatially, a persistent “core–periphery” structure emerges, while subsystem coupling consistently surpasses coordination levels, reflecting a pattern of “high coupling but insufficient coordination”; (3) hot–cold spot analysis identifies sharp east–west contrasts, with the gravity center shift and ellipse trajectory showing weaker directional stability but greater dispersion; and (4) grey correlation results indicate that key drivers have transitioned from economic scale and infrastructure inputs to green innovation performance and data resource allocation. Overall, this study interprets the empirical results in both temporal and spatial dimensions, offering insights for policymakers seeking to narrow the digital divide and advance sustainable, high-quality development in the Yellow River region. Full article
27 pages, 2119 KB  
Article
Analyzing Surface Spectral Signature Shifts in Fire-Affected Areas of Elko County Nevada
by Ibtihaj Ahmad and Haroon Stephen
Fire 2025, 8(11), 429; https://doi.org/10.3390/fire8110429 (registering DOI) - 31 Oct 2025
Abstract
This study investigates post-fire vegetation transitions and spectral responses in the Snowstorm Fire (2017) and South Sugarloaf Fire (2018) in Nevada using Landsat 8 Operational Land Imager (OLI) surface reflectance imagery and unsupervised ISODATA classification. By comparing pre-fire and post-fire conditions, we have [...] Read more.
This study investigates post-fire vegetation transitions and spectral responses in the Snowstorm Fire (2017) and South Sugarloaf Fire (2018) in Nevada using Landsat 8 Operational Land Imager (OLI) surface reflectance imagery and unsupervised ISODATA classification. By comparing pre-fire and post-fire conditions, we have assessed changes in vegetation composition, spectral signatures, and the emergence of novel land cover types. The results revealed widespread conversion of shrubland and conifer-dominated systems to herbaceous cover with significant reductions in near-infrared reflectance and elevated shortwave infrared responses, indicative of vegetation loss and surface alteration. In the South Sugarloaf Fire, three new spectral classes emerged post-fire, representing ash-dominated, charred, and sparsely vegetated conditions. A similar new class emerged in Snowstorm, highlighting the spatial heterogeneity of fire effects. Class stability analysis confirmed low persistence of shrub and conifer types, with grassland and herbaceous classes showing dominant post-fire expansion. The findings highlight the ecological consequences of high-severity fire in sagebrush ecosystems, including reduced resilience, increased invasion risk, and type conversion. Unsupervised classification and spectral signature analysis proved effective for capturing post-fire landscape change and can support more accurate, site-specific post-fire assessment and restoration planning. Full article
16 pages, 2510 KB  
Article
Impact of Land Use Patterns on Transboundary Water Bodies: A Case Study of the Sino-Russian Erguna River Basin
by Yufeng Xie, Lei Wang, Jinlin Jiang, Shang Gao and Tao Long
Water 2025, 17(21), 3115; https://doi.org/10.3390/w17213115 - 30 Oct 2025
Viewed by 192
Abstract
The Erguna River, a Sino-Russian transboundary river, is vital for regional ecology, but land use impacts on its water quality remain unclear. This study aimed to reveal their response relationship. Using ArcGIS/ENVI, it classified land use in 2010 and 2016 into six types, [...] Read more.
The Erguna River, a Sino-Russian transboundary river, is vital for regional ecology, but land use impacts on its water quality remain unclear. This study aimed to reveal their response relationship. Using ArcGIS/ENVI, it classified land use in 2010 and 2016 into six types, and applied Pearson correlation to 10 monitoring sections’ water quality data. Results showed land use–water quality correlations were temporally and spatially variable: correlations weakened with increasing buffer distance, with the strongest associations within 1000 m. From 2010 to 2016, grassland shifted from a positive (water-purifying) to negative (pollutant-source) impact on water quality (BOD5 and arsenic), which was driven by area reduction and overuse; forestland transitioned from no significant effect to a positive (pollutant-intercepting) role, attributed to area expansion. Arable and construction land showed no significant correlations with water quality, due to low proportions of construction land in cross-border areas, and arable land is mostly distributed in areas far from the riverbank. This study provides critical scientific support for transboundary water resource cooperation and targeted ecological management of the Erguna River Basin. Full article
Show Figures

Figure 1

39 pages, 1564 KB  
Article
The Role of Green Finance in Investing in Environmentally Friendly Technologies: Risks and Returns
by Aylin Erdoğdu, Faruk Dayi, Adem Özbek, Farshad Ganji and Ayhan Benek
Sustainability 2025, 17(21), 9652; https://doi.org/10.3390/su17219652 - 30 Oct 2025
Viewed by 175
Abstract
This study offers a comprehensive analysis of the performance and systemic dynamics of green finance investments in environmentally sustainable technologies from 2000 to 2025, complemented by scenario-based projections extending to 2050. Empirical results indicate a consistent increase in portfolio returns—from 5.2% in 2000 [...] Read more.
This study offers a comprehensive analysis of the performance and systemic dynamics of green finance investments in environmentally sustainable technologies from 2000 to 2025, complemented by scenario-based projections extending to 2050. Empirical results indicate a consistent increase in portfolio returns—from 5.2% in 2000 to 11.8% in 2025—accompanied by a significant reduction in annualized volatility, declining from 8.1% to 3.0%. Concurrently, the portfolio’s sustainability score improved from 0.45 to a full alignment score of 1.00, reflecting a strategic shift towards high-impact green assets. Building on these observed trends, this study introduces the Eco-Financial Resonance Theory (EFRT), an original conceptual framework that interprets sustainable transitions as emergent phenomena arising from resonant interactions among four interdependent domains: financial flows, technological innovation, policy and regulation, and environmental outcomes. Scenario analyses highlight the pivotal roles of policy ambition and innovation pathways in shaping long-term risk-return profiles, with optimistic forecasts projecting returns exceeding 40% by 2050, alongside markedly reduced risks. Regional analysis reveals persistent disparities, underscoring the necessity for context-specific strategies to enhance systemic coherence. Beyond its theoretical contributions, EFRT offers actionable insights for investors and policymakers aiming to align profitability with ecological sustainability. Collectively, these findings position green finance not merely as a niche or ancillary activity but as a transformative mechanism for enabling scalable and resilient sustainability transitions amid accelerating global environmental challenges. Full article
Show Figures

Figure 1

23 pages, 2961 KB  
Article
Load Capacity Factor as Metrics for Land and Forests Sustainability Assessment in G20 Economies: Fresh Insight from Policy, Technology, and Economy Perspectives
by Guanglei Huang, Pao-Hsun Huang, Shoukat Iqbal Khattak and Anwar Khan
Forests 2025, 16(11), 1654; https://doi.org/10.3390/f16111654 - 30 Oct 2025
Viewed by 152
Abstract
Traditional environmental research remains affixed in fragmented metrics (e.g., CO2 emissions or ecological footprints) that undermine the systemic equilibrium between economic demand and ecological regeneration. Biocapacity, representing the capacity of lands (crop and grazing), forests, and other natural systems, is the backbone [...] Read more.
Traditional environmental research remains affixed in fragmented metrics (e.g., CO2 emissions or ecological footprints) that undermine the systemic equilibrium between economic demand and ecological regeneration. Biocapacity, representing the capacity of lands (crop and grazing), forests, and other natural systems, is the backbone of economic livelihoods and environmental resilience. Recent literature frequently calls for operationalizing models with robust environmental sustainability indicators, such as the load capacity factor (LF), a comprehensive compass that measures biocapacity (e.g., forests, croplands) relative to ecological footprint. For this purpose, the integrated model combined environment-related policies (regulations, ENRs), technologies (ERTs), sectoral structures, and LF, with the latest available data (2000–2022) of G20 economies. Results of the multiple tests, including feasible generalized least squares, sensitivity tests (alternate proxies), and panel-corrected standard errors, highlighted a paradox: even though ENRs and ERTs tend to improve environmental sustainability through forestation, land use, and green initiatives, the results showed adverse effects of both indicators on environmental sustainability (LF), reflecting a misalignment between policies and environmental outcomes. While industrialization, renewable energy use, and rising per capita income had enhanced environmental sustainability (LF) gains, structural frictions in the services, manufacturing, and trade sectors undermined these advantages, revealing diffusion lags and transitional lock-ins across sampled countries. With LF embedded as a new tool for sustainable governance of forests and land management, the paper advances three critical contributions: (i) uncovering paradoxical deteriorations in sustainability under misaligned policy and technology interventions, (ii) showing an imperative need for performance-based, adaptive, and innovation-financed policies, and (iii) demonstrating LF as a standard for positioning technology, economic transitions, and policy with ecological and cropland-forests resilience. Full article
Show Figures

Figure 1

38 pages, 3011 KB  
Review
Harnessing Beneficial Microbes and Sensor Technologies for Sustainable Smart Agriculture
by Younes Rezaee Danesh
Sensors 2025, 25(21), 6631; https://doi.org/10.3390/s25216631 - 29 Oct 2025
Viewed by 695
Abstract
The integration of beneficial microorganisms with sensor technologies represents a transformative advancement toward sustainable smart agriculture. This review synthesizes recent progress in combining microbial bioinoculants with sensor-based monitoring systems to enhance crop productivity, resource-use efficiency, and environmental resilience. Beneficial bacteria and fungi improve [...] Read more.
The integration of beneficial microorganisms with sensor technologies represents a transformative advancement toward sustainable smart agriculture. This review synthesizes recent progress in combining microbial bioinoculants with sensor-based monitoring systems to enhance crop productivity, resource-use efficiency, and environmental resilience. Beneficial bacteria and fungi improve nutrient cycling, stress tolerance, and soil fertility thereby reducing the reliance on chemical fertilizers and pesticides. In parallel, sensor networks—including soil moisture, nutrient, environmental, and remote-sensing platforms—enable real-time, data-driven management of agroecosystems. Integrated microbe–sensor approaches have demonstrated 10–25% yield increases and up to 30% reductions in agrochemical inputs under optimized field conditions. We propose an integrative Microbe–Sensor Closed Loop (MSCL) framework in which microbial activity and sensor feedback interact dynamically to optimize inputs, monitor plant–soil interactions, and sustain productivity. Key applications include precision fertilization, stress diagnostics, and early detection of nutrient or pathogen imbalances. The review also highlights barriers to large-scale adoption, such as variable field performance of inoculants, high sensor costs, and limited interoperability of data systems. Addressing these challenges through standardization, cross-disciplinary collaboration, and farmer training will accelerate the transition toward climate-smart, self-regulating agricultural systems. Collectively, the integration of biological and technological innovations provides a clear pathway toward resilient, resource-efficient, and ecologically sound food production. Full article
Show Figures

Figure 1

23 pages, 3695 KB  
Review
The Dilemmas and Challenges of Tail Water Treatment Technology for Land-Based Marine Aquaculture in China: A Review
by Shengjie Deng and Wenbin Pan
Sustainability 2025, 17(21), 9593; https://doi.org/10.3390/su17219593 - 28 Oct 2025
Viewed by 171
Abstract
In recent years, China’s land-based marine aquaculture industry has developed rapidly. Frequent water changes during the aquaculture process have resulted in a large amount of aquaculture tail water. The untreated tail water, containing organic waste, nutrients, and chemicals, is often discharged into the [...] Read more.
In recent years, China’s land-based marine aquaculture industry has developed rapidly. Frequent water changes during the aquaculture process have resulted in a large amount of aquaculture tail water. The untreated tail water, containing organic waste, nutrients, and chemicals, is often discharged into the seawater, potentially causing serious environmental and ecological problems. Therefore, the tail water from land-based marine aquaculture should be treated before being reused for resource utilization or safely discharged into the environment. This can promote the sustainable development and circular economy of the marine aquaculture industry. Against this background, this article provides an in-depth understanding of the generation, composition, and hazards of aquaculture wastewater. It reviews the various technologies for marine aquaculture tail water treatment currently adopted by scholars, classifying them into three major categories: physical, chemical, and biological. The paper analyzes the advantages and disadvantages of each technology, as well as the challenges they face. Additionally, future research directions are proposed, and suggestions are provided for achieving the sustainable development of the marine aquaculture industry and transitioning to environmentally friendly aquaculture. Full article
Show Figures

Graphical abstract

21 pages, 15736 KB  
Article
Coupling Mechanism and Management of Groundwater Dynamics and Land Use in Arid Inland Basins (Wuwei, China)
by Pucheng Zhu, Lifang Wang, Min Liu, Xiaosi Su and Zhenlong Nie
Water 2025, 17(21), 3080; https://doi.org/10.3390/w17213080 - 28 Oct 2025
Viewed by 283
Abstract
Arid inland basins represent critical hotspots of intensified conflict among water resources, ecological integrity, and economic development on a global scale. The coevolution of groundwater systems and land use patterns plays a pivotal role in shaping regional sustainability trajectories. This study synthesizes multi-source [...] Read more.
Arid inland basins represent critical hotspots of intensified conflict among water resources, ecological integrity, and economic development on a global scale. The coevolution of groundwater systems and land use patterns plays a pivotal role in shaping regional sustainability trajectories. This study synthesizes multi-source data spanning 2000 to 2020 from the Wuwei Basin, located within the Shiyang River watershed in China, to elucidate the synergistic dynamics between hydrological and land use transformations. Key findings reveal: (1) Around 2010, a significant structural shift in land use occurred, transitioning from production-oriented expansion to ecologically driven priorities. This shift was characterized by a reduction in cultivated land, increased utilization of artificial surfaces, and accelerated ecological restoration efforts. These changes were jointly influenced by enhanced water governance frameworks and spatial planning policies. (2) Groundwater levels exhibit marked spatial variability. While stability is maintained in piedmont and discharge zones, persistent overdraft has led to pronounced declines in transitional and distal recharge areas. This heterogeneity is primarily governed by the interplay of hydrogeological factors—such as recharge capacity and aquifer permeability—and anthropogenic pressures, including the extent of cultivated land and intensity of groundwater extraction. Notably, these patterns cannot be explained solely by the proportion of cultivated land or total extraction volumes. (3) A positive feedback mechanism—termed the “gain-loss regime shift”—has been identified in the discharge zone, where simultaneous increases in groundwater extraction and water-level recovery are observed. However, human activities have disrupted the natural coupling between precipitation and groundwater recharge, resulting in a significant attenuation of recharge rates (exceeding 80%). These findings offer a robust scientific basis for implementing spatially differentiated water resource management strategies and optimizing land use in arid basin environments. The implications extend beyond regional contexts, contributing to broader efforts in harmonizing human–environment interactions globally. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

43 pages, 2705 KB  
Article
Climate- and Region-Based Risk Assessment of Protected Trees in South Korea and Strategies for Their Conservation
by Seok Kim and Younghee Noh
Sustainability 2025, 17(21), 9589; https://doi.org/10.3390/su17219589 - 28 Oct 2025
Viewed by 144
Abstract
(1) Background: Climate change has intensified extreme heat and localized rainfall, exposing South Korea’s protected trees to new risks. Despite their ecological and cultural value, prior research has been largely local or qualitative, leaving little basis for nationwide prioritization. (2) Methods: We developed [...] Read more.
(1) Background: Climate change has intensified extreme heat and localized rainfall, exposing South Korea’s protected trees to new risks. Despite their ecological and cultural value, prior research has been largely local or qualitative, leaving little basis for nationwide prioritization. (2) Methods: We developed a composite risk index that integrates heat and rainfall exposure with species sensitivities, covering nearly the entire national inventory (≈10,000 individuals). Risks were calculated at the tree level, aggregated to district, provincial, and national scales, and tested for robustness across weighting and normalization choices. Spatial clustering was assessed with Moran’s I and LISA. (3) Results: High-risk clusters were consistently identified in southern and southwestern regions. Mean and tail indicators showed that average-based approaches obscure extreme vulnerabilities, while LISA confirmed significant High–High clusters. Rankings proved robust across scenarios, indicating that results reflect structural signals rather than parameter settings. Priority areas defined by the presence of extreme-risk individuals emerged as stable candidates for intervention. (4) Conclusions: The study establishes a transparent, operational rule for prioritization and offers tailored strategies—such as drainage infrastructure, shading, and root-zone management—while informing medium-term planning. It provides the first nationwide, empirically grounded framework for conserving protected trees under climate transition. Full article
(This article belongs to the Section Tourism, Culture, and Heritage)
Show Figures

Figure 1

19 pages, 617 KB  
Article
From Digitalization to Intelligentization: How Do Marine Ranches Evolve?
by Juying Wang, Huiyi Su and Zhigang Li
Water 2025, 17(21), 3081; https://doi.org/10.3390/w17213081 - 28 Oct 2025
Viewed by 188
Abstract
Under China’s diversified food supply strategy and the accelerated modernization of its fisheries sector, marine ranches have become vital food sources and production bases. Their digital–intelligent transformation now represents a key pathway to improve resource efficiency, ensure food security, and promote sustainable marine [...] Read more.
Under China’s diversified food supply strategy and the accelerated modernization of its fisheries sector, marine ranches have become vital food sources and production bases. Their digital–intelligent transformation now represents a key pathway to improve resource efficiency, ensure food security, and promote sustainable marine economic development. Adopting a qualitative research design, this study examines China’s marine ranches using the TOE framework and a systemic grounded theory approach to identify key elements and evolutionary logic of their digital–intelligent transformation from multi-source qualitative data. It constructs a three-stage evolutionary model comprising “Technology and Facility Capacity Building Phase–Digital Resource Integration and Application Deepening Phase–Multi-stakeholder Collaboration and Systemic Governance Phase,” revealing the dynamic coupling mechanism among technological progress, organizational change, and environmental adaptation. Results indicate that the digital–intelligent transformation of marine ranches represents a systemic transition from technology-driven to collaborative governance, characterized by platform-based collaboration, factor restructuring, and institutional linkage. Based on these findings, this study proposes tiered policy and practice recommendations emphasizing institutional guidance by governments, innovation investments by enterprises, and ecological support from third-party platforms. The research not only expands the application scope of the TOE framework but also provides an applicable theoretical framework and policy reference for digital governance and sustainable development in marine fisheries. Full article
Show Figures

Figure 1

Back to TopTop