Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (503)

Search Parameters:
Keywords = early brain injury

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 551 KiB  
Article
Mortality During In-Hospital Stay and the First 24 h After Decompressive Craniectomy in Severe Traumatic Brain Injury: A Multi-Center, Retrospective Propensity Score-Matched Study
by Thomas Kapapa, Martin Petkov, Andrej Pala, Dieter Woischneck, Franziska Schiller, Stefanie Jesuthasan, Frederike Schiller, Hendrik Bracht, Benjamin Mayer and Marcel Oehmichen
J. Clin. Med. 2025, 14(15), 5540; https://doi.org/10.3390/jcm14155540 - 6 Aug 2025
Abstract
Objectives: Early death after trauma has been described several times. Little is known about it after traumatic brain injury (TBI) and decompressive craniectomy (DC). The aim of this study was to characterize patients who die after a TBI and DC during their [...] Read more.
Objectives: Early death after trauma has been described several times. Little is known about it after traumatic brain injury (TBI) and decompressive craniectomy (DC). The aim of this study was to characterize patients who die after a TBI and DC during their in-hospital stay. Methods: In a subgroup analysis of a retrospective, multicenter, and observational study, non-survivors from in-hospital stays treated for severe TBI and DC were included. Propensity score matching (PSM) was used. Results: A total of 223 patients with severe TBI were treated with DC, and there were 65 (29.1%) patients who did not survive. Of these, 22 (33.8%) died within the first 24 h. Non-survivors were older (p = 0.010), and pupillomotor dysfunction and a higher heart rate on admission were more common (p < 0.001). PSM patients for overall survival (41, 18.4%) differed in mean heart rate from the deceased (p = 0.030). In a multivariate model, age (OR: 1.045, p = 0.013, CI95%: 1.010 to 1.082), Quick value (OR: 0.965, p = 0.049, CI95%: 0.931 to 1.000), and heart rate (OR: 1.099, p = 0.030, CI95%: 1.009 to 1.197) were confirmed as predictive factors. Conclusions: Even after DC, known factors, such as chronological age and comorbidities, have a significant influence on mortality. The value of DC in an aging society for a particular severity of TBI should be further assessed on the basis of prospective studies. Full article
Show Figures

Figure 1

20 pages, 8673 KiB  
Article
Potential of Lactoferrin Against the Radiation-Induced Brain Injury
by Marina Yu. Kopaeva, Anton B. Cherepov, Irina B. Alchinova, Daria A. Shaposhnikova, Anna V. Rybakova and Alexandr P. Trashkov
Cells 2025, 14(15), 1198; https://doi.org/10.3390/cells14151198 - 4 Aug 2025
Abstract
The purpose of this work was to study the effects of lactoferrin (Lf) on acute (days 3 and 15) and early-delayed (day 30) changes in the dentate gyrus of mouse hippocampus caused by whole-body gamma-irradiation. Male C57BL/6 mice received Lf (4 mg per [...] Read more.
The purpose of this work was to study the effects of lactoferrin (Lf) on acute (days 3 and 15) and early-delayed (day 30) changes in the dentate gyrus of mouse hippocampus caused by whole-body gamma-irradiation. Male C57BL/6 mice received Lf (4 mg per mouse, i.p. injection) immediately after whole-body gamma-irradiation at a dose of 7.5 Gy from a 60Co source. The effect of Lf on mouse behavior was evaluated using “Open field” and “Elevated plus-maze” tests. The proportion of cells with DNA replication was determined by 5-ethynyl-2′-deoxyuridine incorporation (thymidine analog) and detected by a click reaction with azide Alexa Fluor 568. Lf treatment increased animal survival during the experiment (30 days), compensated for radiation-induced body weight loss, and prevented suppression of motor and exploratory activities. A pronounced anti-radiation effect of Lf on mouse brain cells has been demonstrated. A single injection of the protein allowed preserving 2-fold more proliferating cells and immature neurons in the dentate gyrus of the hippocampus of irradiated animals during the acute period of post-radiation injury development. Full article
Show Figures

Figure 1

13 pages, 1145 KiB  
Article
Trends in Term-Equivalent Age Brain Volumes in Infants Born Across the Gestational Age Spectrum
by Anouk Sanne Verschuur, Gerda van Wezel-Meijler, Selma Low, Ingrid M. Nijholt, Amy Metcalfe, Jannice Skiffington, Donna M. Slater, Amy Bergeron, Elsa Fiedrich, Martijn F. Boomsma, Chantal M. W. Tax, Alexander Leemans and Lara Maria Leijser
Children 2025, 12(8), 1026; https://doi.org/10.3390/children12081026 - 4 Aug 2025
Abstract
Purpose: Our understanding of the influence of preterm birth and related perinatal exposures on early brain development is limited, hampering personalized optimization of neuroprotective strategies. This study assesses the effect of gestational age (GA) at birth on brain volumes at term-equivalent age (TEA) [...] Read more.
Purpose: Our understanding of the influence of preterm birth and related perinatal exposures on early brain development is limited, hampering personalized optimization of neuroprotective strategies. This study assesses the effect of gestational age (GA) at birth on brain volumes at term-equivalent age (TEA) in infants without overt brain injury born across the GA spectrum. Methods: A cohort of infants born across the GA spectrum (25–40 weeks’ gestation) underwent 3T brain MRI around TEA (40–46 weeks postmenstrual age). Eight brain regions, intracranial and total tissue volumes were segmented using MANTiS (morphologically adaptive neonatal tissue segmentation toolbox). Segmentations were visually quality-checked and excluded if segmentation failed. Absolute TEA volume in relation to GA was assessed using univariate and multivariate (correction for postmenstrual age) linear regression analysis. Statistical significance was set at p < 0.05. Post hoc scatter plots of brain volumes relative to intracranial volumes were created. Results: Fifty infants were included (mean GA = 35.0 [SD = 3.3, range = 25.7–40.1] weeks). A higher GA at birth was significantly related to lower cerebrospinal fluid (p = 0.004) and amygdala (p = 0.02) volumes; no significant relation was found between GA and other volumes. Post hoc analyses showed positive trends between GA and several brain structures, including total brain tissue, cortical gray matter, deep gray matter, hippocampus, cerebellum and brainstem volumes. Conclusions: Our results suggest that GA has an effect on TEA brain volumes that is independent of brain lesions, with lower GA being associated with smaller brain tissue volumes and significantly larger cerebrospinal fluid volume. Preterm birth and related exposures may thus affect early brain growth and contribute to neurodevelopmental challenges encountered by preterm-born children. Full article
(This article belongs to the Section Pediatric Neonatology)
Show Figures

Figure 1

21 pages, 719 KiB  
Review
Intra-Arterial Administration of Stem Cells and Exosomes for Central Nervous System Disease
by Taishi Honda, Masahito Kawabori and Miki Fujimura
Int. J. Mol. Sci. 2025, 26(15), 7405; https://doi.org/10.3390/ijms26157405 - 31 Jul 2025
Viewed by 423
Abstract
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating [...] Read more.
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating brain damage and restoring neural connectivity, owing to their multifaceted properties, including anti-apoptotic, anti-inflammatory, neurogenic, and vasculogenic effects. Recent research has also identified exosomes—small vesicles enclosed by a lipid bilayer, secreted by stem cells—as a key mechanism underlying the therapeutic effects of stem cell therapies, and given their enhanced stability and superior blood–brain barrier permeability compared to the stem cells themselves, exosomes have emerged as a promising alternative treatment for CNS disorders. A key challenge in the application of both stem cell and exosome-based therapies for CNS diseases is the method of delivery. Currently, several routes are being investigated, including intracerebral, intrathecal, intravenous, intranasal, and intra-arterial administration. Intracerebral injection can deliver a substantial quantity of stem cells directly to the brain, but it carries the potential risk of inducing additional brain injury. Conversely, intravenous transplantation is minimally invasive but results in limited delivery of cells and exosomes to the brain, which may compromise the therapeutic efficacy. With advancements in catheter technology, intra-arterial administration of stem cells and exosomes has garnered increasing attention as a promising delivery strategy. This approach offers the advantage of delivering a significant number of stem cells and exosomes to the brain while minimizing the risk of additional brain damage. However, the investigation into the therapeutic potential of intra-arterial transplantation for CNS injury is still in its early stages. In this comprehensive review, we aim to summarize both basic and clinical research exploring the intra-arterial administration of stem cells and exosomes for the treatment of CNS diseases. Additionally, we will elucidate the underlying therapeutic mechanisms and provide insights into the future potential of this approach. Full article
(This article belongs to the Special Issue Stem Cells Research: Advancing Science and Medicine)
Show Figures

Graphical abstract

15 pages, 286 KiB  
Review
Strategies for Maximising Lung Utilisation in Donors After Brain and Cardiac Death: A Narrative Review
by Carola Pergolizzi, Chiara Lazzeri, Daniele Marianello, Cesare Biuzzi, Casagli Irene, Antonella Puddu, Elena Bargagli, David Bennett, Chiara Catelli, Luca Luzzi, Francesca Montagnani, Francisco Del Rio Gallegos, Sabino Scolletta, Adriano Peris and Federico Franchi
J. Clin. Med. 2025, 14(15), 5380; https://doi.org/10.3390/jcm14155380 - 30 Jul 2025
Viewed by 273
Abstract
Lung transplantation remains the standard of care for end-stage lung disease, yet a persistent gap exists between donor lung availability and growing clinical demand. Expanding the donor pool and optimising donor lung management are therefore critical priorities. However, no universally accepted management protocols [...] Read more.
Lung transplantation remains the standard of care for end-stage lung disease, yet a persistent gap exists between donor lung availability and growing clinical demand. Expanding the donor pool and optimising donor lung management are therefore critical priorities. However, no universally accepted management protocols are currently in place. This narrative review examines evidence-based strategies to improve lung utilisation across three donor categories: donors after brain death (DBD), controlled donors after circulatory death (cDCD), and uncontrolled donors after circulatory death (uDCD). A systematic literature search was conducted to identify interventions targeting lung preservation and function, including protective ventilation, recruitment manoeuvres, fluid and hormonal management, and ex vivo lung perfusion (EVLP). Distinct pathophysiological mechanisms—sympathetic storm and systemic inflammation in DBD, ischaemia–reperfusion injury in cDCD, and prolonged warm ischaemia in uDCD—necessitate tailored approaches to lung preservation. In DBD donors, early application of protective ventilation, bronchoscopy, and infection surveillance is essential. cDCD donors benefit from optimised pre- and post-withdrawal management to mitigate lung injury. uDCD donor lungs, uniquely vulnerable to ischaemia, require meticulous post-mortem evaluation and preservation using EVLP. Implementing structured, evidence-based lung management strategies can significantly enhance donor lung utilisation and expand the transplantable organ pool. The integration of such practices into clinical protocols is vital to addressing the global shortage of suitable lungs for transplantation. Full article
(This article belongs to the Section Respiratory Medicine)
12 pages, 526 KiB  
Systematic Review
Advances in Understanding Chronic Traumatic Encephalopathy: A Systematic Review of Clinical and Pathological Evidence
by Francesco Orsini, Giovanni Pollice, Francesco Carpano, Luigi Cipolloni, Andrea Cioffi, Camilla Cecannecchia, Roberta Bibbò and Stefania De Simone
Forensic Sci. 2025, 5(3), 33; https://doi.org/10.3390/forensicsci5030033 - 30 Jul 2025
Viewed by 195
Abstract
Background/Objectives: Traumatic brain injury is one of the leading causes of death and disability. When traumatic brain injury is repeated over time, it can lead to the development of Chronic Traumatic Encephalopathy, a chronic neurodegenerative disease commonly observed in individuals who engage [...] Read more.
Background/Objectives: Traumatic brain injury is one of the leading causes of death and disability. When traumatic brain injury is repeated over time, it can lead to the development of Chronic Traumatic Encephalopathy, a chronic neurodegenerative disease commonly observed in individuals who engage in contact sports or military personnel involved in activities with a high risk of repeated head trauma. At autopsy, the examination of the brain reveals regional atrophy, corresponding to high concentrations of glutamate receptors. Microscopically, the primary findings are the deposition of neurofibrillary tangles and neuropil threads. The aim of this study is to highlight the clinical and histopathological characteristics of Chronic Traumatic Encephalopathy, providing diagnostic support to forensic pathologists. Additionally, it seeks to aid in the differential diagnosis of similar conditions. Methods: A review of literature was conducted following the PRISMA criteria. Of 274 articles, 7 were selected. Results: According to these papers, most patients were male and exhibited neurological symptoms and neuropsychiatric impairments, and a proportion of them committed suicide or had aggressive behavior. Conclusions: Chronic Traumatic Encephalopathy remains largely underdiagnosed during life. The definitive diagnosis of Chronic Traumatic Encephalopathy is established post-mortem through the identification of pathognomonic tauopathy lesions. Early and accurate antemortem recognition, particularly in at-risk individuals, is highly valuable for its differentiation from other neurodegenerative conditions, thereby enabling appropriate clinical management and potential interventions. Full article
Show Figures

Figure 1

14 pages, 4627 KiB  
Communication
BDNF Overexpression Enhances Neuronal Activity and Axonal Growth in Human iPSC-Derived Neural Cultures
by Alba Ortega-Gasco, Francesca Percopo, Ares Font-Guixe, Santiago Ramos-Bartolome, Andrea Cami-Bonet, Marc Magem-Planas, Marc Fabrellas-Monsech, Emma Esquirol-Albala, Luna Goulet, Sergi Fornos-Zapater, Ainhoa Arcas-Marquez, Anna-Christina Haeb, Claudia Gomez-Bravo, Clelia Introna, Josep M. Canals and Daniel Tornero
Int. J. Mol. Sci. 2025, 26(15), 7262; https://doi.org/10.3390/ijms26157262 - 27 Jul 2025
Viewed by 552
Abstract
As the global population continues to age, the incidence of neurodegenerative diseases and neural injuries is increasing, presenting major challenges for healthcare systems. Due to the brain’s limited regenerative capacity, there is an urgent need for strategies that promote neuronal repair and functional [...] Read more.
As the global population continues to age, the incidence of neurodegenerative diseases and neural injuries is increasing, presenting major challenges for healthcare systems. Due to the brain’s limited regenerative capacity, there is an urgent need for strategies that promote neuronal repair and functional integration. Brain-derived neurotrophic factor (BDNF) is a key regulator of synaptic plasticity and neuronal development. In this study, we investigated whether constitutive BDNF expression in human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) enhances their neurogenic and integrative potential in vitro. We found that NPCs engineered to overexpress BDNF produced neuronal cultures with increased numbers of mature and spontaneously active neurons, without altering the overall structure or organization of functional networks. Furthermore, BDNF-expressing neurons exhibited significantly greater axonal outgrowth, including directed axon extension in a compartmentalized microfluidic system, suggesting a chemoattractive effect of localized BDNF secretion. These effects were comparable to those observed with the early supplementation of recombinant BDNF. Our results demonstrate that sustained BDNF expression enhances neuronal maturation and axonal projection without disrupting network integrity. These findings support the use of BDNF not only as a therapeutic agent to improve cell therapy outcomes but also as a tool to accelerate the development of functional neural networks in vitro. Full article
(This article belongs to the Special Issue New Advances in Stem Cells in Human Health and Diseases)
Show Figures

Figure 1

15 pages, 1476 KiB  
Article
Elevated Plasma BDNF in Early Primary Biliary Cholangitis: Associations with Liver Fibrosis, IL-6, IL-18, Fatigue, and Cognitive Impairment
by Magdalena Rogalska, Sławomir Ławicki, Agnieszka Błachnio-Zabielska, Piotr Zabielski, Kamila Roszczyc-Owsiejczuk, Jacek Janica, Dagmara Bogdanowska-Charkiewicz, Aleksandra Andrzejuk, Andrzej Dąbrowski, Robert Flisiak and Paweł Rogalski
Int. J. Mol. Sci. 2025, 26(15), 7142; https://doi.org/10.3390/ijms26157142 - 24 Jul 2025
Viewed by 197
Abstract
Background and Aims: Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease frequently associated with fatigue and mild cognitive impairment. Brain-derived neurotrophic factor (BDNF) plays key roles in neuroplasticity, immune regulation, and metabolism. This study aimed to evaluate plasma BDNF levels in [...] Read more.
Background and Aims: Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease frequently associated with fatigue and mild cognitive impairment. Brain-derived neurotrophic factor (BDNF) plays key roles in neuroplasticity, immune regulation, and metabolism. This study aimed to evaluate plasma BDNF levels in early-stage PBC and examine their clinical and biochemical associations. Methods: In this observational study, plasma BDNF, IL-6, and IL-18 concentrations were measured by ELISA in 45 patients with early-stage PBC and 31 age- and sex-matched healthy controls (mean age 60.5 years; 96% women). All participants underwent liver elastography using point shear wave elastography (ElastPQ), Doppler ultrasound, laboratory testing, and assessment of cognitive function (PHES) and fatigue severity (MFIS). Non-invasive fibrosis scores (APRI, FIB-4) were calculated. Results: Median plasma BDNF concentrations were significantly higher in PBC patients than in controls [median: 21.04 ng/mL (IQR: 10.68–38.07) vs. 5.80 ng/mL (IQR: 4.58–7.54); p < 0.0001]. In PBC patients, higher BDNF levels correlated inversely with liver stiffness measured by ElastPQ (R = −0.39, p = 0.0258), spleen dimensions, splenic vein flow volume (R = −0.49, p = 0.0018), suggesting an association with milder liver fibrosis and early hemodynamic alterations. A trend toward association between BDNF and IL-6 levels was observed in multivariate analysis. No significant associations were found between BDNF concentrations and markers of hepatocellular injury, cognitive performance, or fatigue severity. Conclusions: Plasma BDNF concentrations are elevated in early-stage PBC and inversely correlate with liver fibrosis severity. No significant associations were found with hepatocellular injury, cognitive function, or fatigue. These findings suggest that BDNF may play a protective role against hepatic fibrogenesis, or alternatively, that BDNF concentrations may decline with advancing liver disease. Further studies are needed to clarify its significance in PBC. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

15 pages, 1828 KiB  
Article
The Effect of Anti-Inflammatory Dimethylmalonic Acid on the Neurobehavioral Phenotype of a Neonatal ASD Model Induced by Antiepileptic Valproic Acid
by Xiuwen Zhou, Xiaowen Xu, Lili Li, Yiming Jin, Qing Wang, Xinxin Wang, Meifang Jin and Hong Ni
Biomedicines 2025, 13(7), 1765; https://doi.org/10.3390/biomedicines13071765 - 18 Jul 2025
Viewed by 352
Abstract
Background: Valproic acid (VPA) is a medication used to treat epilepsy, bipolar disorder, and migraine. If taken during pregnancy, it can cause neural tube defects (NTDs) and leads to offspring ASD behavioral phenotype. It has recently been found that early postnatal VPA [...] Read more.
Background: Valproic acid (VPA) is a medication used to treat epilepsy, bipolar disorder, and migraine. If taken during pregnancy, it can cause neural tube defects (NTDs) and leads to offspring ASD behavioral phenotype. It has recently been found that early postnatal VPA exposure can also induce the ASD phenotype, but the details of model production and intervention still need further investigation. Dimethylmalonic acid (DMM), a competitive inhibitor of succinate dehydrogenase, blocks the key element succinate of OXPHOS, decreasing the secretion of anti-inflammatory cytokines and ROS production. However, it is still unclear whether DMM is involved in the repair of developmental brain injuries. Objectives: The aim of this study was to evaluate the intervention effect and optimal dosage of DMM on behavioral phenotypes using a neonatal mouse VPA autism model. Methods: This experiment consists of two parts. The first part observed the effects of different concentrations of VPA on the development and neurobehavioral phenotype of mice. The second part determined the intervention effect of DMM on a developmental VPA autism model and determined the optimal therapeutic dose. Results: We found that the 40 mg/mL concentration had a greater impact on the neural reflex damage in mice. Moreover, DMM treatment can partially improve the neurobehavioral damage in the VPA model, and 20 mg/kg has the best intervention effect. Conclusions: This study provides valuable model construction data for further exploring the mechanism of DMM treatment for an ASD phenotype induced by VPA exposure in neonates. Full article
(This article belongs to the Special Issue Neuroinflammation and Neuroprotection)
Show Figures

Figure 1

12 pages, 805 KiB  
Communication
Longitudinal Dysregulation of Adiponectin and Leptin Following Blast-Induced Polytrauma in a Rat Model
by Rex Jeya Rajkumar Samdavid Thanapaul, Manoj Govindarajulu, Chetan Pundkar, Gaurav Phuyal, Ondine Eken, Joseph B Long and Peethambaran Arun
Int. J. Mol. Sci. 2025, 26(14), 6860; https://doi.org/10.3390/ijms26146860 - 17 Jul 2025
Viewed by 235
Abstract
Blast-induced polytrauma (BIPT) is a common injury among military personnel exposed to explosive blasts. It is increasingly recognized as a complex, multisystem disorder that extends beyond neurological damage to include systemic metabolic and inflammatory dysfunction. Adipokines, particularly leptin and adiponectin, are hormones secreted [...] Read more.
Blast-induced polytrauma (BIPT) is a common injury among military personnel exposed to explosive blasts. It is increasingly recognized as a complex, multisystem disorder that extends beyond neurological damage to include systemic metabolic and inflammatory dysfunction. Adipokines, particularly leptin and adiponectin, are hormones secreted by adipose tissue and are emerging as key mediators in the pathophysiology of traumatic brain injuries. Yet, their long-term dynamics following blast exposure remain unclear. This study investigated the temporal profiles of plasma leptin and adiponectin in a longitudinal rat model of BIPT. Adult male Sprague Dawley rats were subjected to either a single (B) or repeated (BB) blast exposure (20 psi) or served as sham controls. Plasma samples were collected at 24 h, 1 month, 6 months, and 12 months post-exposure, and adipokine levels were measured using Enzyme-linked Immunosorbent Assay. Adiponectin levels exhibited a biphasic response: both B and BB groups showed significant early decrease at 24 h and 1 month compared to sham animals, followed by robust elevation at 6 and 12 months, particularly in the repeated blast group. In contrast, leptin levels remained unchanged acutely but rose significantly at 6 and 12 months post-blast, with the BB group again showing the highest levels. These patterns indicate sustained, exposure-dependent dysregulation of adipokine signaling after blast trauma. The study provides the first longitudinal profile of systemic adipokine responses to BIPT, revealing their potential as accessible biomarkers and therapeutic targets. These findings support a model of chronic metabolic and inflammatory imbalance in BIPT and warrant further investigation in human cohorts and mechanistic studies. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

12 pages, 276 KiB  
Review
Minimally Invasive and Proactive Approaches for Treatment of Acute Traumatic Brain Injury in Elderly Patients
by Eiichi Suehiro, Tatsuya Tanaka and Akira Matsuno
J. Clin. Med. 2025, 14(14), 5028; https://doi.org/10.3390/jcm14145028 - 16 Jul 2025
Viewed by 333
Abstract
The elderly population in Japan was 29.3% in 2024, the highest in the world, making medical care for elderly patients an urgent social issue. There are challenges in providing care for elderly patients with head injury, since the buffering effect of the expansion [...] Read more.
The elderly population in Japan was 29.3% in 2024, the highest in the world, making medical care for elderly patients an urgent social issue. There are challenges in providing care for elderly patients with head injury, since the buffering effect of the expansion of the subdural space due to brain atrophy masks the neurological symptoms caused by a hematoma, making detection difficult. However, brain damage can be detected with high sensitivity and specificity using blood D-dimer as a biomarker without the need for head computed tomography (CT). Also, about 30% of elderly patients with traumatic brain injury (TBI) are taking antithrombotic drugs, and the effects of these drugs on TBI may include an increase in intracranial hematomas and an increased risk of deterioration. Reversal therapy is used as a countermeasure to prevent hematoma expansion, but this requires the administration of a reversal agent early after injury and before hematoma expansion. In decompression surgery, the use of a mini-craniotomy with neuroendoscopic assistance under local anesthesia can reduce invasiveness, and this method significantly reduces intraoperative bleeding and operation times compared to a major craniotomy. These innovations have improved mortality for TBI in elderly patients, but there is still a need for improvements in functional outcomes. Full article
(This article belongs to the Section Brain Injury)
Show Figures

Graphical abstract

17 pages, 554 KiB  
Review
Post-Concussion Syndrome and Functional Neurological Disorder: Diagnostic Interfaces, Risk Mechanisms, and the Functional Overlay Model
by Ioannis Mavroudis, Foivos Petridis, Eleni Karantali, Alin Ciobica, Sotirios Papagiannopoulos and Dimitrios Kazis
Brain Sci. 2025, 15(7), 755; https://doi.org/10.3390/brainsci15070755 - 16 Jul 2025
Viewed by 559
Abstract
Background: Post-concussion syndrome (PCS) and Functional Neurological Disorder (FND), including Functional Cognitive Disorder (FCD), are two frequently encountered but diagnostically complex conditions. While PCS is conceptualized as a sequela of mild traumatic brain injury (mTBI), FND/FCD encompasses symptoms incompatible with recognized neurological disease, [...] Read more.
Background: Post-concussion syndrome (PCS) and Functional Neurological Disorder (FND), including Functional Cognitive Disorder (FCD), are two frequently encountered but diagnostically complex conditions. While PCS is conceptualized as a sequela of mild traumatic brain injury (mTBI), FND/FCD encompasses symptoms incompatible with recognized neurological disease, often arising in the absence of structural brain damage. Yet, both conditions exhibit considerable clinical overlap—particularly in the domains of cognitive dysfunction, emotional dysregulation, and symptom persistence despite negative investigations. Objective: This review critically examines the shared and divergent features of PCS and FND/FCD. We explore their respective epidemiology, diagnostic criteria, and risk factors—including personality traits and trauma exposure—as well as emerging insights from neuroimaging and biomarkers. We propose the “Functional Overlay Model” as a clinical tool for navigating diagnostic ambiguity in patients with persistent post-injury symptoms. Results: PCS and FND/FCD frequently share features such as subjective cognitive complaints, fatigue, anxiety, and heightened somatic vigilance. High neuroticism, maladaptive coping, prior psychiatric history, and trauma exposure emerge as common risk factors. Neuroimaging studies show persistent network dysfunction in both PCS and FND, with overlapping disruption in fronto-limbic and default mode systems. The Functional Overlay Model helps to identify cases where functional symptomatology coexists with or replaces an initial organic insult—particularly in patients with incongruent symptoms and normal objective testing. Conclusions: PCS and FND/FCD should be conceptualized along a continuum of brain dysfunction, shaped by injury, psychology, and contextual factors. Early recognition of functional overlays and stratified psychological interventions may improve outcomes for patients with persistent, medically unexplained symptoms after head trauma. This review introduces the Functional Overlay Model as a novel framework to enhance diagnostic clarity and therapeutic planning in patients presenting with persistent post-injury symptoms. Full article
Show Figures

Figure 1

21 pages, 523 KiB  
Review
Wired for Intensity: The Neuropsychological Dynamics of Borderline Personality Disorders—An Integrative Review
by Eleni Giannoulis, Christos Nousis, Maria Krokou, Ifigeneia Zikou and Ioannis Malogiannis
J. Clin. Med. 2025, 14(14), 4973; https://doi.org/10.3390/jcm14144973 - 14 Jul 2025
Viewed by 614
Abstract
Background: Borderline personality disorder (BPD) is a severe psychiatric condition characterised by emotional instability, impulsivity, interpersonal dysfunction, and self-injurious behaviours. Despite growing clinical interest, the neuropsychological mechanisms underlying these symptoms are still not fully understood. This review aims to summarise findings from neuroimaging, [...] Read more.
Background: Borderline personality disorder (BPD) is a severe psychiatric condition characterised by emotional instability, impulsivity, interpersonal dysfunction, and self-injurious behaviours. Despite growing clinical interest, the neuropsychological mechanisms underlying these symptoms are still not fully understood. This review aims to summarise findings from neuroimaging, psychophysiological, and neurodevelopmental studies in order to clarify the neurobiological and physiological basis of BPD, with a particular focus on emotional dysregulation and implications for the treatment of adolescents. Methods: A narrative review was conducted, integrating results from longitudinal neurodevelopmental studies, functional and structural neuroimaging research (e.g. FMRI and PET), and psychophysiological assessments (e.g., heart rate variability and cortisol reactivity). Studies were selected based on their contribution to understanding the neural correlates of BPD symptom dimensions, particularly emotion dysregulation, impulsivity, interpersonal dysfunction, and self-harm. Results: Findings suggest that early reductions in amygdala volume, as early as age 13 predict later BPD symptoms. Hyperactivity of the amygdala, combined with hypoactivity in the prefrontal cortex, underlies deficits in emotion regulation. Orbitofrontal abnormalities correlate with impulsivity, while disruptions in the default mode network and oxytocin signaling are related to interpersonal dysfunction. Self-injurious behaviour appears to serve a neuropsychological function in regulating emotional pain and trauma-related arousal. This is linked to disruption of the hypothalamic-pituitary-adrenal (HPA) axis and structural brain alterations. The Unified Protocol for Adolescents (UP-A) was more effective to Mentalization-Based Therapy for Adolescents (MBT-A) at reducing emotional dysregulation compared, though challenges in treating identity disturbance and relational difficulties remain. Discussion: The reviewed evidence suggests that BPD has its in early neurodevelopmental vulnerability and is sustained by maladaptive neurophysiological processes. Emotional dysregulation emerges as a central transdiagnostic mechanism. Self-harm may serve as a strategy for regulating emotions in response to trauma-related neural dysregulation. These findings advocate for the integration of neuroscience into psychotherapeutic practice, including the application of neuromodulation techniques and psychophysiological monitoring. Conclusions: A comprehensive understanding of BPD requires a neuropsychologically informed framework. Personalised treatment approaches combining pharmacotherapy, brain-based interventions, and developmentally adapted psychotherapies—particularly DBT, psychodynamic therapy, and trauma-informed care—are essential. Future research should prioritise interdisciplinary, longitudinal studies to further bridge the gap between neurobiological findings and clinical innovation. Full article
(This article belongs to the Special Issue Neuro-Psychiatric Disorders: Updates on Diagnosis and Treatment)
Show Figures

Figure 1

31 pages, 1549 KiB  
Systematic Review
Impact of Early-Life Brain Injury on Gut Microbiota Composition in Rodents: Systematic Review with Implications for Neurodevelopment
by Vanessa da Silva Souza, Raul Manhães-de-Castro, Sabrina da Conceição Pereira, Beatriz Souza de Silveira, Caio Matheus Santos da Silva Calado, Henrique José Cavalcanti Bezerra Gouveia, Jacques-Olivier Coq and Ana Elisa Toscano
Cells 2025, 14(14), 1063; https://doi.org/10.3390/cells14141063 - 11 Jul 2025
Viewed by 521
Abstract
Early-life brain injuries are major causes of long-term neurodevelopmental disorders such as cerebral palsy. Emerging evidence suggests these injuries can alter the gut microbiota composition, intestinal integrity, and neuroinflammatory responses. This systematic review evaluated the impact of early-life brain injuries on the gut [...] Read more.
Early-life brain injuries are major causes of long-term neurodevelopmental disorders such as cerebral palsy. Emerging evidence suggests these injuries can alter the gut microbiota composition, intestinal integrity, and neuroinflammatory responses. This systematic review evaluated the impact of early-life brain injuries on the gut microbiota in rodent models. A scientific literature search was conducted across Medline/PubMed, Web of Science, Scopus, and Embase. Initially, 7419 records were identified, and 21 eligible studies were included. Eligible studies focused on evaluating the microbiota alterations and related gut–brain axis markers at the neonatal or post-weaning stages. The data extraction and synthesis followed PRISMA guidelines. Most studies reported gut dysbiosis characterized by a decreased abundance of Bacteroidetes, and Lactobacillus. Alterations were associated with an increased gut permeability, reduced tight junction proteins, and elevated pro-inflammatory cytokines. Several studies showed reduced levels of short-chain fatty acids and metabolic pathway disruptions. Brain outcomes included neuroinflammation, white matter injury, altered gene expression, and impaired structural integrity. These results suggest that early-life brain injury induces complex alterations in the gut microbiota and its metabolic products, which may contribute to systemic and neuroinflammatory processes. Understanding these interactions offers insights into the pathophysiology of neurodevelopmental disorders and highlights the gut–brain axis as a potential target for early interventions. Full article
Show Figures

Figure 1

25 pages, 1050 KiB  
Review
Calprotectin as a Biomarker for Infectious Diseases: A Comparative Review with Conventional Inflammatory Markers
by Kristina Sejersen, Mats B. Eriksson and Anders O. Larsson
Int. J. Mol. Sci. 2025, 26(13), 6476; https://doi.org/10.3390/ijms26136476 - 4 Jul 2025
Viewed by 845
Abstract
Calprotectin, the most abundant cytosolic protein in neutrophils, is a S100A8/S100A9 heterodimer released during immune activation. It inhibits bacterial growth by binding to essential metal ions and contributes to inflammation and leukocyte migration. This review highlights calprotectin’s potential as a diagnostic marker for [...] Read more.
Calprotectin, the most abundant cytosolic protein in neutrophils, is a S100A8/S100A9 heterodimer released during immune activation. It inhibits bacterial growth by binding to essential metal ions and contributes to inflammation and leukocyte migration. This review highlights calprotectin’s potential as a diagnostic marker for bacterial infections and inflammation. Clinical trials demonstrate that calprotectin is at least as effective as C-reactive protein, procalcitonin, and white blood cell counts in predicting bacterial infections. The rapid elevation of calprotectin levels in the early stages of sepsis, pneumonia, brain injury, and transplant complications underscores its diagnostic value. Predictive use of calprotectin may reduce ICU stays, mortality, and costs. However, challenges remain, including assay standardization and bacterial–viral differentiation. Advanced methods, such as the particle-enhanced turbidimetric immunoassay, enable faster and more reliable measurements. While calprotectin shows promise, further standardization and clinical validation are necessary to optimize its diagnostic utility. Full article
(This article belongs to the Special Issue Role of Calprotectin in Human Health and Disease)
Show Figures

Figure 1

Back to TopTop