Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (261)

Search Parameters:
Keywords = dustiness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4865 KiB  
Article
Mathematical Modeling, Bifurcation Theory, and Chaos in a Dusty Plasma System with Generalized (r, q) Distributions
by Beenish, Maria Samreen and Fehaid Salem Alshammari
Axioms 2025, 14(8), 610; https://doi.org/10.3390/axioms14080610 - 5 Aug 2025
Abstract
This study investigates the dynamics of dust acoustic periodic waves in a three-component, unmagnetized dusty plasma system using generalized (r,q) distributions. First, boundary conditions are applied to reduce the model to a second-order nonlinear ordinary differential equation. [...] Read more.
This study investigates the dynamics of dust acoustic periodic waves in a three-component, unmagnetized dusty plasma system using generalized (r,q) distributions. First, boundary conditions are applied to reduce the model to a second-order nonlinear ordinary differential equation. The Galilean transformation is subsequently applied to reformulate the second-order ordinary differential equation into an unperturbed dynamical system. Next, phase portraits of the system are examined under all possible conditions of the discriminant of the associated cubic polynomial, identifying regions of stability and instability. The Runge–Kutta method is employed to construct the phase portraits of the system. The Hamiltonian function of the unperturbed system is subsequently derived and used to analyze energy levels and verify the phase portraits. Under the influence of an external periodic perturbation, the quasi-periodic and chaotic dynamics of dust ion acoustic waves are explored. Chaos detection tools confirm the presence of quasi-periodic and chaotic patterns using Basin of attraction, Lyapunov exponents, Fractal Dimension, Bifurcation diagram, Poincaré map, Time analysis, Multi-stability analysis, Chaotic attractor, Return map, Power spectrum, and 3D and 2D phase portraits. In addition, the model’s response to different initial conditions was examined through sensitivity analysis. Full article
(This article belongs to the Special Issue Trends in Dynamical Systems and Applied Mathematics)
Show Figures

Figure 1

19 pages, 5488 KiB  
Article
Treatment of Recycled Metallurgical By-Products for the Recovery of Fe and Zn Through a Plasma Reactor and RecoDust
by Wolfgang Reiter, Loredana Di Sante, Vincenzo Pepe, Marta Guzzon and Klaus Doschek-Held
Metals 2025, 15(8), 867; https://doi.org/10.3390/met15080867 (registering DOI) - 1 Aug 2025
Viewed by 130
Abstract
The 1.9 billion metric tons of steel globally manufactured in 2023 justify the steel industry’s pivotal role in modern society’s growth. Considering the rapid development of countries that have not fully taken part in the global market, such as Africa, steel production is [...] Read more.
The 1.9 billion metric tons of steel globally manufactured in 2023 justify the steel industry’s pivotal role in modern society’s growth. Considering the rapid development of countries that have not fully taken part in the global market, such as Africa, steel production is expected to increase in the next decade. However, the environmental burden associated with steel manufacturing must be mitigated to achieve sustainable production, which would align with the European Green Deal pathway. Such a burden is associated both with the GHG emissions and with the solid residues arising from steel manufacturing, considering both the integrated and electrical routes. The valorisation of the main steel residues from the electrical steelmaking is the central theme of this work, referring to the steel electric manufacturing in the Dalmine case study. The investigation was carried out from two different points of view, comprising the action of a plasma electric reactor and a RecoDust unit to optimize the recovery of iron and zinc, respectively, being the two main technologies envisioned in the EU-funded research project ReMFra. This work focuses on those preliminary steps required to detect the optimal recipes to consider for such industrial units, such as thermodynamic modelling, testing the mechanical properties of the briquettes produced, and the smelting trials carried out at pilot scale. However, tests for the usability of the dusty feedstock for RecoDust are carried out, and, with the results, some recommendations for pretreatment can be made. The outcomes show the high potential of these streams for metal and mineral recovery. Full article
15 pages, 1929 KiB  
Article
A Stochastic Corrosion Fatigue Model for Assessing the Airworthiness of the Front Flanges of Fleet Aero Engines Using an Automated Data Analysis Method
by Govindarajan Narayanan and Andrej Golowin
Corros. Mater. Degrad. 2025, 6(3), 32; https://doi.org/10.3390/cmd6030032 - 15 Jul 2025
Viewed by 213
Abstract
Corrosion, combined with cyclic loading, is inevitable and becomes a challenging problem, even when inherently corrosion-protected materials have been selected and applied based on established in-house experience. Aero engine mount structures are exposed to dusty and salty environmental conditions during both operational and [...] Read more.
Corrosion, combined with cyclic loading, is inevitable and becomes a challenging problem, even when inherently corrosion-protected materials have been selected and applied based on established in-house experience. Aero engine mount structures are exposed to dusty and salty environmental conditions during both operational and non-operational periods. It is becoming tough to predict the remaining useful corrosion fatigue life due to the unascertainable material strength degradations under service conditions. As such, a rationalized approach is currently being used to assess their structural integrity, which produces more wastages of the flying parts. This paper presents a novel approach for predicting corrosion fatigue by proposing a random-parameter model in combination with validated experimental data. The two-random-parameter model is employed here with the probability method to determine the time-independent corrosion fatigue life of a magnesium structural casting, which is used heavily in engine front-mount aircraft systems. This is also correlated with experimental data from the literature, validating the proposed stochastic corrosion fatigue model that addresses the technical variances that occur during service to increase optimal mount structure usage using an automated data system. Full article
Show Figures

Figure 1

11 pages, 1002 KiB  
Article
Unveiling the Evolution of MWC 728: Non-Conservative Mass Transfer in an FS CMa Binary
by Nadezhda L. Vaidman, Serik A. Khokhlov and Aldiyar T. Agishev
Galaxies 2025, 13(4), 78; https://doi.org/10.3390/galaxies13040078 - 7 Jul 2025
Viewed by 432
Abstract
We combine corrected Gaia DR3 astrometry with non-conservative MESA modelling to retrace the evolution of the FS-CMa binary MWC 728. The revised parallax sets the distance at d=1.2±0.1 kpc, leading—after Monte-Carlo error propagation—to luminosities of [...] Read more.
We combine corrected Gaia DR3 astrometry with non-conservative MESA modelling to retrace the evolution of the FS-CMa binary MWC 728. The revised parallax sets the distance at d=1.2±0.1 kpc, leading—after Monte-Carlo error propagation—to luminosities of log(L/L)acc=2.6±0.1 and log(L/L)don=1.5±0.1, corresponding to the accretor and donor, respectively. A fiducial binary track that starts with Mdon=3.6±0.1M, Macc=1.8±0.1M, and P0=21.0±0.2 d reproduces the observations provided the Roche-lobe overflow, which is moderately non-conservative: only 39% of the transferred mass is retained by the accretor, while the remainder leaves the system via (i) a fast isotropic wind from the donor (α=0.01), (ii) isotropic re-emission near the accretor (β=0.45), and (iii) outflow into a circumbinary torus (δ=0.15, lever arm γ=1.3). These channels remove sufficient angular momentum to expand the orbit to the observed Pobs=27.5±0.1 d while sustaining the dusty circumbinary outflow. At t223 Myr, the model matches every current observable: Mdon=1.30±0.05M, Macc=2.67±0.05M, mass ratio q=2.0±0.1, and an ongoing transfer rate of M˙(1±0.3)×106Myr1. MWC 728 thus serves as a benchmark intermediate-mass binary for testing how non-conservative outflows regulate angular-momentum loss and orbital growth. Full article
Show Figures

Figure 1

17 pages, 2261 KiB  
Article
Impact of Multiple Factors on Temperature Distribution and Output Performance in Dusty Photovoltaic Modules: Implications for Sustainable Solar Energy
by Weiping Zhao, Shuai Hu and Zhiguang Dong
Energies 2025, 18(13), 3411; https://doi.org/10.3390/en18133411 - 28 Jun 2025
Viewed by 346
Abstract
Enhancing solar photovoltaic (PV) power generation is fundamental to achieving energy sustainability goals. However, elevated module temperatures can diminish photoelectric conversion efficiency and output power, impacting the safe and efficient operation of PV modules. Therefore, understanding module temperature distribution is crucial for predicting [...] Read more.
Enhancing solar photovoltaic (PV) power generation is fundamental to achieving energy sustainability goals. However, elevated module temperatures can diminish photoelectric conversion efficiency and output power, impacting the safe and efficient operation of PV modules. Therefore, understanding module temperature distribution is crucial for predicting power generation performance and optimizing cleaning schedules in PV power plants. To investigate the combined effects of multiple factors on the temperature distribution and output power of dusty PV modules, a heat transfer model was developed. Validation against experimental data and comparisons with the NOCT model demonstrated the validity and advantages of the proposed model in accurately predicting PV module behavior. This validated model was then employed to simulate and analyze the influence of various parameters on the temperature of dusty modules and to evaluate the module output power, providing insights into sustainable PV energy generation. Results indicate that the attenuation of PV glass transmittance due to dust accumulation constitutes the primary determinant of the lower temperature observed in dusty modules compared to clean modules. This highlights a significant factor impacting long-term performance and resource utilization efficiency. Dusty module temperature exhibits a positive correlation with irradiance and ambient temperature, while displaying a negative correlation with wind speed and dust accumulation. Notably, alignment of wind direction and module orientation enhances module heat dissipation, representing a passive cooling strategy that promotes efficient and sustainable operation. At an ambient temperature of 25 °C and a wind speed of 3 m/s, the dusty module exhibits a temperature reduction of approximately 11.0% compared to the clean module. Furthermore, increasing the irradiance from 200 W/m2 to 800 W/m2 results in an increase in output power attenuation from 51.4 W to 192.6 W (approximately 30.4% attenuation rate) for a PV module with a dust accumulation of 25 g/m2. This underscores the imperative for effective dust mitigation strategies to ensure long-term viability, economic sustainability, and optimized energy yields from solar energy investments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

26 pages, 4473 KiB  
Review
Red Supergiant Mass Loss and Mass-Loss Rates
by Jacco Th. van Loon
Galaxies 2025, 13(4), 72; https://doi.org/10.3390/galaxies13040072 - 20 Jun 2025
Viewed by 850
Abstract
This review discusses the causes, nature, importance and observational evidence of mass loss by red supergiants. It arrives at the perception that mass loss finds its origin in the gravity which makes the star a star in the first place, and is a [...] Read more.
This review discusses the causes, nature, importance and observational evidence of mass loss by red supergiants. It arrives at the perception that mass loss finds its origin in the gravity which makes the star a star in the first place, and is a mechanism for the star to equilibrate. This is corroborated by a careful examination of various popular historical and recent empirical mass-loss rate prescriptions and theoretical works, and which provides no evidence for an explicit dependence of red supergiant mass loss on metallicity though dust-associated mass loss becomes less prevalent at lower metallicity. It also identifies a common problem in methods that use tracers of mass loss, which do not correct for varying scaling factors (often because there is no information available on which to base such correction) and as a result tend to underestimate mass-loss rates at the lower end. Conversely, dense, extended chromospheres in themselves do not translate into high mass-loss rates, and the significance of stochastic mass loss can be overstated. On a population scale, on the other hand, binary interaction acts as a stochastic agent of mass loss of great import. In all, evidence is overwhelming that points at red supergiants at the lower mass end losing mass at insufficient rates to shed their mantles before core collapse, but massive (at birth) red supergiants to be prone to intense, dusty mass loss which sees them become hotter stars before meeting their fate. This is consistent with the identified progenitors of hydrogen-rich supernovae. Supernova evolution holds great promise to probe the mass loss but we caution against confusing atmospheres with winds. Finally, promising avenues are looked into, which could forge step-change progress in what has been a long and arduous search for the holy grail of red supergiant mass loss. We may yet find it! Full article
(This article belongs to the Special Issue The Red Supergiants: Crucial Signposts for the Fate of Massive Stars)
Show Figures

Figure 1

32 pages, 2523 KiB  
Review
Dust at the Cosmic Dawn
by Yuri A. Shchekinov and Biman B. Nath
Galaxies 2025, 13(3), 64; https://doi.org/10.3390/galaxies13030064 - 23 May 2025
Viewed by 2425
Abstract
Observations provided by the Hubble Space Telescope (HST) and James Webb Space Telescope (JWST) have revealed a surprising abundance of galaxies at the “cosmic dawn” epoch, z>7. Some of them are found even in a more distant universe at z [...] Read more.
Observations provided by the Hubble Space Telescope (HST) and James Webb Space Telescope (JWST) have revealed a surprising abundance of galaxies at the “cosmic dawn” epoch, z>7. Some of them are found even in a more distant universe at z ≃ 14–16. Most of these galaxies appear to be intriguing: they are found to be either super-bright in the rest-frame ultraviolet (UV) band or super-dusty with a heavily reddened stellar population. The transition from the super-bright and super-dusty regimes seems to occur in the redshift range from z∼10.5 to z∼9.5 within a time range of ∼50 Myr. If confirmed, then the origin of this transition is far from being clear. In the review, we discuss possible mechanisms that can make z>10 galaxies free of dust and also explain the origin of apparently excessive dust in galaxies at intermediate and lower redshifts z<10. Full article
(This article belongs to the Special Issue The Observation and Detection of Dusty Star-Forming Galaxies)
Show Figures

Figure 1

16 pages, 2855 KiB  
Article
Optimization of a Newly Developed Chamber Setup for Spatial Dust Measurements in the Context of Containment
by Hendrik Küllmar, Martin Schöler and Claudia S. Leopold
Pharmaceutics 2025, 17(5), 565; https://doi.org/10.3390/pharmaceutics17050565 - 25 Apr 2025
Viewed by 515
Abstract
Background/Objectives: A specially designed chamber setup for containment investigations of pharmaceutical dusts was recently developed. The aim of the present study was to optimize the measurement procedure with this chamber setup, focusing on the atomization parameters. The optimization was aimed at a maximization [...] Read more.
Background/Objectives: A specially designed chamber setup for containment investigations of pharmaceutical dusts was recently developed. The aim of the present study was to optimize the measurement procedure with this chamber setup, focusing on the atomization parameters. The optimization was aimed at a maximization of the amount of detected dust and a minimization of the required sample mass. Methods: For this purpose, the safe surrogate substance acetaminophen was used for dust measurements. In addition to the atomization parameters investigated by a design of experiments, the cleaning of the chamber setup and the selection of two different types of acetaminophen with different physicochemical properties were examined. Results: By altering the cleaning method of the chamber setup, more than a tenfold increase of detected acetaminophen was observed. In addition, by selecting the more appropriate acetaminophen type, the totally detected acetaminophen amount was further increased by more than 25%. By means of the design of experiments two models were developed, one dealing with the atomization parameters with regard to the atomization effectiveness and the other describing their influence on the spatial dust distribution of acetaminophen. Based on the model for atomization effectiveness, the totally detected acetaminophen amount may be increased by more than double at a constant sample mass. Conclusions: In summary, the measurement procedure of the chamber setup was optimized in terms of the cleaning method, surrogate choice, and the adjustment of the atomization parameters, giving valuable insights to deepen our understanding of dustiness and the spatial distribution of dust in the context of containment. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

16 pages, 1546 KiB  
Review
Red and Yellow Hypergiants
by Terry Jones
Galaxies 2025, 13(2), 43; https://doi.org/10.3390/galaxies13020043 - 18 Apr 2025
Viewed by 799
Abstract
The red and yellow hypergiants are a rare and important phase in the evolution of the most massive stars that can reach the cool part of the HR Diagram. The hypergiant phase is commonly characterized by high, often episodic mass-loss rates and significant [...] Read more.
The red and yellow hypergiants are a rare and important phase in the evolution of the most massive stars that can reach the cool part of the HR Diagram. The hypergiant phase is commonly characterized by high, often episodic mass-loss rates and significant changes in spectral type, probably due to the formation of a pseudo photopsphere during a high mass-loss episode. Many of the yellow hypergiants are the immediate successors to the most luminous red supergiants, and often show evidence in their dusty, circumstellar envelopes from past red supergiant activity. In this paper we review the yellow and red hypergiants with an emphasis on how they differ from more normal red supergiants. Full article
(This article belongs to the Special Issue The Red Supergiants: Crucial Signposts for the Fate of Massive Stars)
Show Figures

Figure 1

15 pages, 685 KiB  
Review
An Updated Repository of Sub-mJy Extragalactic Source-Count Measurements in the Radio Domain
by Vincenzo Galluzzi, Meriem Behiri, Marika Giulietti and Andrea Lapi
Galaxies 2025, 13(2), 34; https://doi.org/10.3390/galaxies13020034 - 2 Apr 2025
Viewed by 455
Abstract
We present an updated repository of sub-mJy extragalactic radio source counts between 150 MHz and 10 GHz, incorporating recent advances in radio surveys and observational techniques. By compiling and refining previous datasets, we provide a comprehensive catalog that enhances the understanding of faint [...] Read more.
We present an updated repository of sub-mJy extragalactic radio source counts between 150 MHz and 10 GHz, incorporating recent advances in radio surveys and observational techniques. By compiling and refining previous datasets, we provide a comprehensive catalog that enhances the understanding of faint radio-source populations, including Dusty Star-Forming Galaxies (DSFGs) and Radio-Quiet Active Galactic Nuclei (RQAGNs), from intermediate to high redshifts. Our analysis accounts for observational biases, such as resolution effects and Eddington bias, ensuring improved accuracy in flux-density estimations. We also discuss the implications of new-generation radio telescopes, such as the Square-Kilometer Array Observatory (SKAO) and its precursors and pathfinders, to further resolve these populations. Our collection contributes to constraining evolutionary models of radio sources, highlighting the increasing role of polarization studies in distinguishing different classes. This work serves as a key reference for future deep radio surveys targeting the faintest end of the extragalactic radio sky. Full article
(This article belongs to the Special Issue The Observation and Detection of Dusty Star-Forming Galaxies)
Show Figures

Figure 1

11 pages, 2062 KiB  
Article
IRAS 17449+2320: A Possible Binary System with the B[e] Phenomenon and a Strong Magnetic Field
by Sergey Zharikov, Anatoly Miroshnichenko, Inna Reva, Raushan Kokumbaeva, Chingis Omarov, Steve Danford, Alicia Aarnio, Nadine Manset, Ashish Raj, S. Drew Chojnowski and Joseph Daglen
Galaxies 2025, 13(2), 32; https://doi.org/10.3390/galaxies13020032 - 31 Mar 2025
Cited by 1 | Viewed by 509
Abstract
We report the recent results of a long-term spectroscopic and photometric monitoring of IRAS 17449+2320, a member of the least studied group of objects with the B[e] phenomenon called FS CMa-type objects. The main hypothesis for explaining the strong emission-line spectra and infrared [...] Read more.
We report the recent results of a long-term spectroscopic and photometric monitoring of IRAS 17449+2320, a member of the least studied group of objects with the B[e] phenomenon called FS CMa-type objects. The main hypothesis for explaining the strong emission-line spectra and infrared excesses of these objects assumes an ongoing or past mass transfer between the components in binary systems. The object is the only star with a gaseous and dusty envelope, where a strong and variable magnetic field (5.5–7.2 kG) was found through the splitting of some spectral lines. Additionally, we discovered the regular appearance of a red-shifted absorption component in spectral lines of neutral hydrogen, helium, and oxygen as well as one of ionized silicon with a period of 36.13 ± 0.20 days. We show that the magnetic field strength also followed this period. The process was accompanied by increasing emission component strengths for the hydrogen lines as well as the helium and metallic absorption lines. We refined the fundamental parameters of the optical counterpart of IRAS 17449+2320 (Teff=9800±300 K, log L/L=1.86±0.06, vsini=9±2 km s−1) and concluded that the star was slightly metal-deficient and viewed nearly pole-on. No signs of a secondary component were found. Possible interpretations of the observed phenomena are suggested, and some earlier findings about the object’s nature are revised. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

22 pages, 19397 KiB  
Article
An Evaluation of the Applicability of a Microwave Radiometer Under Different Weather Conditions at the Southern Edge of the Taklimakan Desert
by Jiawei Guo, Meiqi Song, Ali Mamtimin, Yayong Xue, Jian Peng, Hajigul Sayit, Yu Wang, Junjian Liu, Jiacheng Gao, Ailiyaer Aihaiti, Cong Wen, Fan Yang, Wen Huo and Chenglong Zhou
Remote Sens. 2025, 17(7), 1171; https://doi.org/10.3390/rs17071171 - 26 Mar 2025
Viewed by 439
Abstract
As an important means to monitor atmospheric vertical temperature and humidity, the ground-based microwave radiometer has been widely used in environmental monitoring, climate prediction, and other fields, but its application in desert areas is particularly limited. At Minfeng Station on the southern edge [...] Read more.
As an important means to monitor atmospheric vertical temperature and humidity, the ground-based microwave radiometer has been widely used in environmental monitoring, climate prediction, and other fields, but its application in desert areas is particularly limited. At Minfeng Station on the southern edge of the Taklimakan Desert, Global Telecommunications System (GTS) detection technology was used to evaluate the microwave radiometer observations under different weather conditions and at different altitudes. The planetary boundary layer height (PBLH) was calculated using the potential temperature gradient method, and the planetary boundary layer results were calculated by analyzing dust and rainfall events. The results show that the determination coefficients (R2) of the overall observed temperature (T), specific humidity (q), and water vapor density (ρv) of the microwave radiometer are all above 0.8 under different weather conditions. When the relative humidity is 0–10%, the temperature is the best, and the R2 is 0.9819. When the relative humidity is 70–80%, the R2 of q and ρv is the best, and the R2 is 0.9630 and 0.9777, respectively. This is in good agreement with the temperature observed by the FY–4A satellite; the observation effect is the best in May, and its R2 is 0.9142. Under the conditions of clear sky, precipitation day, and dusty weather, the R2 of the atmospheric boundary layer height calculated by the microwave radiometer is greater than 0.7 compared to the GTS sounding calculation results. These results demonstrate the reliability of microwave radiometry in extremely arid environments, providing valuable insights for boundary layer studies in desert regions. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

18 pages, 3658 KiB  
Article
Bioactive Metabolites from the Dusty Seeds of Gastrodia elata Bl., Based on Metabolomics and UPLC-Q-TOF-MS Combined with Molecular Network Strategy
by Yanduo Wang, Liwen Zhong, Huiqi Fang, Zhao Liu, Peng Wang, Longfei Li, Lin Chen and Gang Ding
Plants 2025, 14(6), 916; https://doi.org/10.3390/plants14060916 - 14 Mar 2025
Cited by 1 | Viewed by 537
Abstract
Orchids produce tiny, light seeds (dust-like seeds without endosperm) that rely on specific symbiotic fungi for successful germination. Plant roots often release small signaling molecules or bioactive compounds to attract arbuscular mycorrhizal (AM) fungi, promoting fungal growth and hyphal branching. However, until now, [...] Read more.
Orchids produce tiny, light seeds (dust-like seeds without endosperm) that rely on specific symbiotic fungi for successful germination. Plant roots often release small signaling molecules or bioactive compounds to attract arbuscular mycorrhizal (AM) fungi, promoting fungal growth and hyphal branching. However, until now, no such bioactive or signaling molecules have been identified in orchids that help recruit fungi for seed germination. In this study, we used metabolomics and UPLC-Q-TOF-MS/MS, combined with a molecular network approach, to explore potential bioactive/signaling molecules in the seeds of the achlorophyllous orchid Gastrodia elata Bl. Our analysis revealed the presence of amino acids, nucleotides, lipids, organic acids, saccharides, phospholipids, and lignanamides. Specifically, organic acids, saccharides, and lignanamides were shown to promote the growth of Mycena osmundicola, a fungus important for seed germination. Additionally, lignanamides inhibited the plant pathogen Fusarium oxysporum and exhibited strong antioxidant and anti-inflammatory activities. This is the first systematic identification of bioactive/signaling molecules in G. elata Bl. seeds, providing new insights into the symbiotic relationship between orchids and fungi. Full article
(This article belongs to the Special Issue Phytochemistry, Pharmacology, and Toxicity of Medicinal Plants)
Show Figures

Figure 1

28 pages, 18392 KiB  
Article
CALIPSO Overpasses During Three Atmospheric Pollen Events Detected by Hirst-Type Volumetric Samplers in Two Urban Cities in Greece
by Archontoula Karageorgopoulou, Elina Giannakaki, Christos Stathopoulos, Thanasis Georgiou, Eleni Marinou, Vassilis Amiridis, Ioanna Pyrri, Maria-Christina Gatou, Xiaoxia Shang, Athanasios Charalampopoulos, Despoina Vokou and Athanasios Damialis
Atmosphere 2025, 16(3), 317; https://doi.org/10.3390/atmos16030317 - 10 Mar 2025
Viewed by 1603
Abstract
Vertically retrieved optical properties by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were investigated in the case of three selected events over Athens and Thessaloniki with documented high pollen concentrations. Hirst-type volumetric samplers were used to detect and characterize the pollen during [...] Read more.
Vertically retrieved optical properties by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were investigated in the case of three selected events over Athens and Thessaloniki with documented high pollen concentrations. Hirst-type volumetric samplers were used to detect and characterize the pollen during the CALIPSO overpasses. Only cases with a total pollen concentration greater than 400 grains m−3 for at least two hours per day were considered severe pollen events, while model simulations were used to exclude the presence of other depolarizing aerosol types. This study provides mean values of lidar-derived optical properties inside the detected pollen layers; i.e., optical values represent the atmosphere with the presence of pollen, in urban cities of Greece. Specifically, three observed aerosol layers, one over Athens and two over Thessaloniki with particulate color ratios of 0.652 ± 0.194, 0.638 ± 0.362, and 0.456 ± 0.284, and depolarization ratios of 8.70 ± 6.26%, 28.30 ± 14.16%, and 8.96 ± 6.87%, respectively, were misclassified by CALIPSO as marine-dusty marine, dust, and polluted dust. In cases of intense pollen presence, CALIPSO vertical profiles and aerobiological monitoring methods may be used synergistically to better characterize the atmospheric pollen layers. Full article
Show Figures

Graphical abstract

23 pages, 5994 KiB  
Article
Three-Dimensional Distribution of Arctic Aerosols Based on CALIOP Data
by Yukun Sun and Liang Chang
Remote Sens. 2025, 17(5), 903; https://doi.org/10.3390/rs17050903 - 4 Mar 2025
Viewed by 855
Abstract
Tropospheric aerosols play an important role in the notable warming phenomenon and climate change occurring in the Arctic. The accuracy of Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol optical depth (AOD) and the distribution of Arctic AOD based on the CALIOP Level 2 [...] Read more.
Tropospheric aerosols play an important role in the notable warming phenomenon and climate change occurring in the Arctic. The accuracy of Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol optical depth (AOD) and the distribution of Arctic AOD based on the CALIOP Level 2 aerosol products and the Aerosol Robotic Network (AERONET) AOD data during 2006–2021 were analyzed. The distributions, trends, and three-dimensional (3D) structures of the frequency of occurrences (FoOs) of different aerosol subtypes during 2006–2021 are also discussed. We found that the CALIOP AOD exhibited a high level of agreement with AERONET AOD, with a correlation coefficient of approximately 0.67 and an RMSE of less than 0.1. However, CALIOP usually underestimated AOD over the Arctic, especially in wet conditions during the late spring and early summer. Moreover, the Arctic AOD was typically higher in winter than in autumn, summer, and spring. Specifically, polluted dust (PD), dust, and clean marine (CM) were the dominant aerosol types in spring, autumn, and winter, while in summer, ES (elevated smoke) from frequent wildfires reached the highest FoOs. There were increasing trends in the FoOs of CM and dust, with decreasing trends in the FoOs of PD, PC (polluted continental), and DM (dusty marine) due to Arctic amplification. In general, the vertical distribution patterns of different aerosol types showed little seasonal variation, but their horizontal distribution patterns at various altitudes varied by season. Furthermore, locally sourced aerosols such as dust in Greenland, PD in eastern Siberia, and ES in middle Siberia can spread to surrounding areas and accumulate further north, affecting a broader region in the Arctic. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

Back to TopTop