Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = dust analogue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 6135 KiB  
Article
Synthesis of Si-Fe Chondrule-like Dust Analogues in RF Discharge Plasmas
by Akdaulet Baikaliyev, Assan Abdirakhmanov, Sagi Orazbayev, Yerbolat Ussenov, Alexander Brodsky, Madi Aitzhanov, Nazym Akhanova, Merlan Dosbolayev, Maratbek Gabdullin, Tlekkabul Ramazanov and Didar Batryshev
Appl. Sci. 2024, 14(19), 8714; https://doi.org/10.3390/app14198714 - 27 Sep 2024
Viewed by 1250
Abstract
Chondrules are tiny particles that occur in stony meteorites and are considered as the building blocks of early asteroids and planets. It is believed that they were formed by the fast heating of the dust in the solar nebula. To date, there is [...] Read more.
Chondrules are tiny particles that occur in stony meteorites and are considered as the building blocks of early asteroids and planets. It is believed that they were formed by the fast heating of the dust in the solar nebula. To date, there is no lab-scale experimental study of the formation of chondrules from the initial gas phase precursors following fast heating and crystallisation. The motivation of this work is a pre-trial study of the formation of chnodrule-like particles. The formation of meteorites in the space environment is associated with the aggregation of small particles or molecular clouds under the influence of shock waves or high-energy gas discharges in the solar nebula. In this work, the properties of product formation at the nanoscale-level were investigated using different feedstock materials which are the dominant elements in the meteorite. The structural and morphological properties of the synthesised Si-Fe nanomaterials were analysed by scanning/transmission electron microscopy (SEM/TEM), and chemical composition was analysed by X-ray energy-dispersive spectroscopy (EDS). The identification of crystalline phases was carried out by X-ray diffraction (XRD), whereas the presence of an Fe-Si system in the synthesised particles was demonstrated by Mössbauer spectroscopy. The obtained materials were exposed to the relatively high-energy pulsed plasma beam on the substrate with the aim to emulate the possible fast heating and melting of the formed nanoparticles. The formation steps of growing synthetic (engineered) chondro-like particles and nanostructures in laboratory conditions is discussed. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Figure 1

11 pages, 1161 KiB  
Article
Bisphenol S and Its Chlorinated Derivatives in Indoor Dust and Human Exposure
by Yi Qian, Jianqiang Zhu, Ruyue Guo and Hangbiao Jin
Toxics 2024, 12(7), 448; https://doi.org/10.3390/toxics12070448 - 21 Jun 2024
Cited by 2 | Viewed by 1549
Abstract
Bisphenol S (BPS), an environmental endocrine disruptor, has been identified in global environmental matrices. Nevertheless, limited studies have investigated the presence of chlorinated analogues of BPS (Clx-BPSs) with potential estrogenic activities in environmental matrices. In this study, the occurrence of BPS and five [...] Read more.
Bisphenol S (BPS), an environmental endocrine disruptor, has been identified in global environmental matrices. Nevertheless, limited studies have investigated the presence of chlorinated analogues of BPS (Clx-BPSs) with potential estrogenic activities in environmental matrices. In this study, the occurrence of BPS and five types of Clx-BPSs was characterized in indoor dust (n = 178) from Hangzhou City. BPS was measurable in 94% of indoor dust samples, with an average level of 0.63 μg/g (<LD–2.4 μg/g). Among the detected Clx-BPSs homologues, Cl1-BPS (2-chloro-4-(4-hydroxyphenyl)sulfonylphenol; detection frequency 70%), Cl2-BPS-2 (2-chloro-4-(3-chloro-4-hydroxyphenyl)sulfonylphenol; 65%), and Cl2-BPS-1 (2,6-dichloro-4-(4-hydroxyphenyl)sulfonylphenol; 61%) were among the frequently detected Clx-BPSs. Cl1-BPS was the most abundant analyte, with an average of 0.048 μg/g (<LD—0.24 μg/g), followed by Cl2-BPS-1 (0.035 μg/g, <LD—0.14 μg/g), and Cl2-BPS-2 (0.031 μg/g, <LD—0.13 μg/g). Significant correlations in indoor dust concentrations were observed between BPS and Cl1-BPS (p < 0.01), as well as between BPS and Cl2-BPS-1 (p < 0.01). Moreover, an estimation was made for the total daily intake of Clx-BPSs via the ingestion of indoor dust by infants, children, and adults. This study presents the first evidence of the existence of Clx-BPSs in indoor dust, concurrently highlighting the necessity to address their potential human exposure risks. Full article
Show Figures

Figure 1

12 pages, 2453 KiB  
Article
Efficacy of Contact Insecticides for the Control of the Larger Grain Borer, Prostephanus truncatus (Horn), on Stored Maize
by Anastasios Panagiotakis, Georgia V. Baliota, Christos I. Rumbos and Christos G. Athanassiou
Agriculture 2023, 13(8), 1502; https://doi.org/10.3390/agriculture13081502 - 27 Jul 2023
Cited by 4 | Viewed by 2043
Abstract
One of the most destructive insect species for stored maize is the larger grain borer, Prostephanus truncatus. Its control is challenging, as it seems to have a natural tolerance to active ingredients that are effective for other stored-product insect species that cause [...] Read more.
One of the most destructive insect species for stored maize is the larger grain borer, Prostephanus truncatus. Its control is challenging, as it seems to have a natural tolerance to active ingredients that are effective for other stored-product insect species that cause infestations in maize. The objective of the present study was to comparatively evaluate a wide range of insecticides that are currently in use in stored product protection for the control of P. truncatus. Specifically, three inert dusts—namely, a kaolin, a zeolite and a diatomaceous earth formulation—and three residual insecticides—i.e., the pyrethroid deltamethrin, the bacterial insecticide spinosad and the juvenile hormone analogue S-Methoprene—were evaluated against adults of P. truncatus. Adult mortality was assessed after 7, 14, 21 and 28 d of exposure, whereas progeny production was measured after an additional interval of 28 d for inert dusts and 65 d for the contact insecticides. Moreover, the number and weight of infested and uninfested kernels per vial was measured. Low mortality levels were recorded for the three inert dusts even for the highest application rate and after 28 d of exposure. Moreover, the inert dusts tested failed to suppress the progeny production of P. truncatus. In contrast, high mortality levels were recorded for deltamethrin and spinosad that exceeded 95% already after 7 d of exposure at the lowest application rate (0.5 ppm). The application of S-Methoprene did not result in high adult mortality rates, irrespective of the application rate and the evaluation interval. Deltamethrin, spinosad and S-Methoprene significantly suppressed progeny production of the species at the doses tested. Full article
(This article belongs to the Special Issue Integrated Pest Management in Stored-Product Protection)
Show Figures

Figure 1

13 pages, 484 KiB  
Article
Spectroscopic Constants and Anharmonic Vibrational Frequencies of C(O)OC, c-C2O2 and Their Silicon-Containing Analogues
by Olivia A. Harwick and Ryan C. Fortenberry
Molecules 2023, 28(11), 4563; https://doi.org/10.3390/molecules28114563 - 5 Jun 2023
Viewed by 3079
Abstract
Comets are likely to contain various carbon oxide molecules potentially including C(O)OC and c-C2O2 on their surfaces and comae, as well as their silicon-substituted analogues possibly playing a role in the formation of interstellar dust grains. In this work, high-level [...] Read more.
Comets are likely to contain various carbon oxide molecules potentially including C(O)OC and c-C2O2 on their surfaces and comae, as well as their silicon-substituted analogues possibly playing a role in the formation of interstellar dust grains. In this work, high-level quantum chemical data are provided to support such potential future astrophysical detection through the generation of predicted rovibrational data. Laboratory-based chemistry would also benefit from such aforementioned computational benchmarking considering these molecules’ historic computational and experimental elusiveness. Coupled-cluster singles, doubles, and perturbative triples, the F12b formalism, and the cc-pCVTZ-F12 basis set garner the rapid, yet highly trusted F12-TcCR level of theory leveraged presently. This current work points to all four molecules’ strong IR activity, coupled with large intensities, thus suggesting the potential for JWST detection. Although Si(O)OSi possesses a permanent dipole moment significantly larger than those of the other molecules of present interest, the significant abundance of the potential precursor carbon monoxide suggests that the dicarbon dioxide molecules may yet be observable in the microwave region of the electromagnetic spectrum. Thus, this present work details the likely existence and detectability of these four cyclic molecules, providing updated implications compared to previous work performed both experimentally and computationally. Full article
Show Figures

Figure 1

14 pages, 477 KiB  
Article
Adjustment of Matrix Effects in Analysis of 36 Secondary Metabolites of Microbial and Plant Origin in Indoor Floor Dust Using Liquid Chromatography-Tandem Mass Spectrometry
by Cornelius Rimayi and Ju-Hyeong Park
Buildings 2023, 13(5), 1112; https://doi.org/10.3390/buildings13051112 - 22 Apr 2023
Cited by 3 | Viewed by 1814
Abstract
Exposure to microbial agents in water-damaged buildings is a major public health concern. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become a primary tool for testing environmental samples for microbial secondary metabolites (SMs); however, matrix effects can lead to inaccurate results in exposure assessment. [...] Read more.
Exposure to microbial agents in water-damaged buildings is a major public health concern. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become a primary tool for testing environmental samples for microbial secondary metabolites (SMs); however, matrix effects can lead to inaccurate results in exposure assessment. Applying a universal internal standard (ISTD) and a matrix-matched calibration can adjust for matrix effects, as shown by our previous study. However, there are only few isotope-labeled internal standards for SMs available on the market. In this study, we determined the best-performing ISTDs among ten candidates (nine 13C-labeled isotopes and one unlabeled analogue) for each of 36 SMs. We analyzed school floor dust spiked with the 36 SMs to identify the best-performing ISTDs (initial experiment) and examined reproducibility with the selected ISTDs and the same spiked dust (validation 1). We also tested applicability for the selected ISTDs using spiked dust collected from different schools (validation 2). The three experiments showed that 26, 17, and 19 SMs had recoveries within the range 100 ± 40%. 13C-ochratoxin A and 13C-citrinin were most frequently selected as the best ISTDs for the 36 SMs, followed by deepoxy-deoxynivalenol, 13C-sterigmatocystin, and 13C-deoxynivalenol. Our study shows that using the identified, best-performing analogous ISTDs for those metabolites may improve testing accuracy for indoor dust and help better estimate exposure effects on potential health. Full article
(This article belongs to the Special Issue Advances in the Indoor Environments and Respiratory Health)
Show Figures

Figure 1

14 pages, 14194 KiB  
Article
Understanding the Early Stage of Planet Formation: Design and Demonstration of the Space Experimental Apparatus
by Chenyang Huang, Yang Yu, Zhijun Song, Bin Cheng and Wenyue Dai
Aerospace 2023, 10(3), 285; https://doi.org/10.3390/aerospace10030285 - 13 Mar 2023
Cited by 1 | Viewed by 2193
Abstract
Planet formation begins with the collision and growth of dust in protoplanetary disks. Concerning the basic cognition of the early stage of planet formation, a long-standing weakness of the research is a comprehensive physical model describing the collisional evolution of dust particles. Microgravity [...] Read more.
Planet formation begins with the collision and growth of dust in protoplanetary disks. Concerning the basic cognition of the early stage of planet formation, a long-standing weakness of the research is a comprehensive physical model describing the collisional evolution of dust particles. Microgravity experiments providing original data are crucial in developing related theories. In this work, we propose an experimental scheme for observing the collisional growth of dust analogues under a unidirectional and continuous shearing process, aiming at a future implementation in space experiments. The experimental process is simulated using the discrete element method, and the atlas of the design parameter versus the evolutionary path is depicted. We notice fractal structures and growth stalling as remarkable outcomes in the process of collisional growth, which is analogous to the evolutionary mechanism in the ancient protoplanetary disks. Based on these phenomena, we determine the sensitive design parameters, i.e., the shear velocity and the filling factor, which serve as the recommended parameters in future space experiments. The validation using numerical experiments shows that the experimental scheme with proper design parameters is feasible, which promises to generate constructive data that will facilitate the development of planet formation theory. Full article
(This article belongs to the Special Issue Dynamics and Control Problems on Asteroid Explorations)
Show Figures

Figure 1

16 pages, 3571 KiB  
Article
Effects of Dry and Wet Negev Soil–Dust Deposition on the Induction of Autoxidation of Soil–Dust Lipid Components
by Jean-François Rontani, Bruno Charriere, Christophe Menniti, Itzhak Katra and Dominique Aubert
Water 2022, 14(24), 4092; https://doi.org/10.3390/w14244092 - 15 Dec 2022
Cited by 1 | Viewed by 1796
Abstract
Lipids and their oxidation products were quantified in loess samples from the Negev Desert (Israel), well known to be a source of desert dusts in the eastern Mediterranean Basin. The results obtained showed the presence of higher plant material (angiosperms and gymnosperms), but [...] Read more.
Lipids and their oxidation products were quantified in loess samples from the Negev Desert (Israel), well known to be a source of desert dusts in the eastern Mediterranean Basin. The results obtained showed the presence of higher plant material (angiosperms and gymnosperms), but also bacteria and fungi. Although a strong autoxidation of lipids could be demonstrated, the resulting oxidation products appeared to be weakly accumulated, likely due to the high temperatures and solar irradiance observed in the Negev Desert. Incubation of this dust analogue in fresh water (to mimic their behavior in rainwater) resulted in the release of metal ions (mainly iron), but also a fast heterolytic degradation of their weak content of hydroperoxides. Induction of autoxidation processes in dry and wet atmospheric dusts arising from the Negev Desert in seawater (needing simultaneous presence of metal ions and hydroperoxides) seems thus very unlikely due to the relatively high pH of seawater hindering metal dissolution and the degradation of hydroperoxides in rainwater. Full article
Show Figures

Figure 1

16 pages, 1919 KiB  
Article
Electrically Conductive Biocomposites Based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Wood-Derived Carbon Fillers
by Christoph Unterweger, Matija Ranzinger, Jiri Duchoslav, Francesco Piana, Igor Pasti, Franz Zeppetzauer, Stefan Breitenbach, David Stifter and Christian Fürst
J. Compos. Sci. 2022, 6(8), 228; https://doi.org/10.3390/jcs6080228 - 4 Aug 2022
Cited by 4 | Viewed by 2220
Abstract
In this paper, biobased carbons were used as fillers in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The mechanical and electrical properties of these 100% biocomposites were analyzed. First, biocarbons were prepared from wood dust and cellulose fibers using carbonization temperatures ranging 900–2300 °C. XRD revealed significant improvements [...] Read more.
In this paper, biobased carbons were used as fillers in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The mechanical and electrical properties of these 100% biocomposites were analyzed. First, biocarbons were prepared from wood dust and cellulose fibers using carbonization temperatures ranging 900–2300 °C. XRD revealed significant improvements of the graphitic structure with increasing temperatures for both precursors, with slightly higher ordering in wood-dust-based carbons. An increase of the carbon content with continuous removal of other elements was observed with increasing temperature. The carbonized cellulose fiber showed an accumulation of Na and O on the fiber surface at a carbonization temperature of 1500 °C. Significant degradation of PHBV was observed when mixed with this specific filler, which can, most probably, be attributed to this exceptional surface chemistry. With any other fillers, the preparation of injection-molded PHBV composites was possible without any difficulties. Small improvements in the mechanical performance were observed, with carbonized fibers being slightly superior to the wood dust analogues. Improvements at higher filler content were observed. These effects were even more pronounced in the electrical conductivity. In the range of 15–20 vol.% carbonized fibers, the percolation threshold could be reached, resulting in an electrical conductivity of 0.7 S/cm. For comparison, polypropylene composites were prepared using cellulose fibers carbonized at 2000 °C. Due to longer fibers retained in the composites, percolation could be reached in the range of 5–10 vol.%. The electrical conductivity was even higher compared to that of composites using commercial carbon fibers, showing a great potential for carbonized cellulose fibers in electrical applications. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2022)
Show Figures

Figure 1

18 pages, 5094 KiB  
Article
A Note on the Influence of Smectite Coating on the Coefficient of Restitution of Natural Sand Particles Impacting Granitic Blocks
by Lina Luo, Jing Ren, Sathwik S. Kasyap and Kostas Senetakis
Coatings 2021, 11(8), 996; https://doi.org/10.3390/coatings11080996 - 20 Aug 2021
Cited by 7 | Viewed by 2901
Abstract
The study of the collision behavior of solid objects has received a significant amount of research in various fields such as industrial applications of powders and grains, impacts of proppants and between proppant and rocks during hydraulic fracturing, and the study of debris [...] Read more.
The study of the collision behavior of solid objects has received a significant amount of research in various fields such as industrial applications of powders and grains, impacts of proppants and between proppant and rocks during hydraulic fracturing, and the study of debris flows and avalanches and the interactions of landslide materials with protective barriers. This problem has predominantly been studied through the coefficient of restitution (COR), which is computed from the dropping and rebound paths of particles; its value corresponds to 1 for perfectly elastic impacts and 0 for perfectly plastic impacts (i.e., at the collision there is no rebound of the particle). Often, the colliding particles (or particle–block systems) are not perfectly clean, and there is debris (or dust) on their surfaces, forming a coating, which is a highly possible scenario in the debris flows of natural particles and fragments; however, the topic of the influence of natural coatings on the surfaces of particles on the collision behavior of particle–block systems has been largely overlooked. Thus, the present study attempts to provide preliminary results with respect to the influence of natural coating on the surfaces of sand grains in the COR values of grain–block systems using a stiff granitic block as an analogue wall. Montmorillonite powder, which belongs to the smectite clay group, was used and a sample preparation method was standardized to provide a specific amount of clay coating on the surfaces of the sand grains. The results from the study showed a significant influence of the smectite coating in the COR values of the grain–block systems, which was predominantly attributed to the dissipation of energy at the collision moment because of the compression of the soft coating of microparticles. Additionally, the method of analysis for calculating the COR values based on one and two high-speed cameras was explored, as the impacts of natural grains involve deviations from the vertical, which influences the rebound paths. Thus, a sensitivity analysis was performed investigating the differences in the COR values in two-dimensional and three-dimensional analysis of the impact tests. Full article
Show Figures

Figure 1

11 pages, 722 KiB  
Communication
Effects of Radiation Intensity, Mineral Matrix, and Pre-Irradiation on the Bacterial Resistance to Gamma Irradiation under Low Temperature Conditions
by Vladimir S. Cheptsov, Andrey A. Belov, Elena A. Vorobyova, Anatoli K. Pavlov and Vladimir N. Lomasov
Microorganisms 2021, 9(1), 198; https://doi.org/10.3390/microorganisms9010198 - 19 Jan 2021
Cited by 2 | Viewed by 4035
Abstract
Ionizing radiation is one of the main factors limiting the survival of microorganisms in extraterrestrial conditions. The survivability of microorganisms under irradiation depends significantly on the conditions, in which the irradiation occurs. In particular, temperature, pressure, oxygen and water concentrations are of great [...] Read more.
Ionizing radiation is one of the main factors limiting the survival of microorganisms in extraterrestrial conditions. The survivability of microorganisms under irradiation depends significantly on the conditions, in which the irradiation occurs. In particular, temperature, pressure, oxygen and water concentrations are of great influence. However, the influence of factors such as the radiation intensity (in low-temperature conditions) and the type of mineral matrix, in which microorganisms are located, has been practically unstudied. It has been shown that the radioresistance of bacteria can increase after their exposure to sublethal doses and subsequent repair of damage under favorable conditions, however, such studies are also few and the influence of other factors of extraterrestrial space (temperature, pressure) was not studied in them. The viability of bacteria Arthrobacter polychromogenes, Kocuria rosea and Xanthomonas sp. after irradiation with gamma radiation at a dose of 1 kGy under conditions of low pressure (1 Torr) and low temperature (−50 °C) at different radiation intensities (4 vs. 0.8 kGy/h) with immobilization of bacteria on various mineral matrices (montmorillonite vs. analogue of lunar dust) has been studied. Native, previously non-irradiated strains, and strains that were previously irradiated with gamma radiation and subjected to 10 passages of cultivation on solid media were irradiated. The number of survived cells was determined by culturing on a solid medium. It has been shown that the radioresistance of bacteria depends significantly on the type of mineral matrix, on which they are immobilized, wherein montmorillonite contributes to an increased survivability in comparison with a silicate matrix. Survivability of the studied bacteria was found to increase with decreasing radiation intensity, despite the impossibility of active reparation processes under experimental conditions. Considering the low intensity of radiation on various space objects in comparison with radiobiological experiments, this suggests a longer preservation of the viable microorganisms outside the Earth than is commonly believed. An increase in bacterial radioresistance was revealed even after one cycle of irradiation of the strains and their subsequent cultivation under favourable conditions. This indicates the possibility of hypothetical microorganisms on Mars increasing their radioresistance. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

14 pages, 1522 KiB  
Article
Combined Cytotoxicity of the Phycotoxin Okadaic Acid and Mycotoxins on Intestinal and Neuroblastoma Human Cell Models
by Aiko Hayashi, Juan José Dorantes-Aranda, John P. Bowman and Gustaaf Hallegraeff
Toxins 2018, 10(12), 526; https://doi.org/10.3390/toxins10120526 - 8 Dec 2018
Cited by 19 | Viewed by 6274
Abstract
Mycotoxins are emerging toxins in the marine environment, which can co-occur with algal toxins to exert synergistic or antagonistic effects for human seafood consumption. The current study assesses the cytotoxicity of the algal toxin okadaic acid, shellfish, and dust storm-associated mycotoxins alone or [...] Read more.
Mycotoxins are emerging toxins in the marine environment, which can co-occur with algal toxins to exert synergistic or antagonistic effects for human seafood consumption. The current study assesses the cytotoxicity of the algal toxin okadaic acid, shellfish, and dust storm-associated mycotoxins alone or in combination on human intestinal (HT-29) and neuroblastoma (SH-SY5Y) cell lines. Based on calculated IC50 (inhibitory concentration 50%) values, mycotoxins and the algal toxin on their own exhibited increased cytotoxicity in the order of sydowinin A < sydowinin B << patulin < alamethicin < sydowinol << gliotoxin ≈ okadaic acid against the HT-29 cell line, and sydowinin B < sydowinin A << alamethicin ≈ sydowinol < patulin, << gliotoxin < okadaic acid against the SH-SY5Y cell line. Combinations of okadaic acid–sydowinin A, –alamethicin, –patulin, and –gliotoxin exhibited antagonistic effects at low-moderate cytotoxicity, but became synergistic at high cytotoxicity, while okadaic acid–sydowinol displayed an antagonistic relationship against HT-29 cells. Furthermore, only okadaic acid–sydowinin A showed synergism, while okadaic acid–sydowinol, –alamethicin, –patulin, and –gliotoxin combinations demonstrated antagonism against SH-SY5Y. While diarrhetic shellfish poisoning (DSP) from okadaic acid and analogues in many parts of the world is considered to be a comparatively minor seafood toxin syndrome, our human cell model studies suggest that synergisms with certain mycotoxins may aggravate human health impacts, depending on the concentrations. These findings highlight the issues of the shortcomings of current regulatory approaches, which do not regulate for mycotoxins in shellfish and treat seafood toxins as if they occur as single toxins. Full article
(This article belongs to the Special Issue Marine Biotoxins and Seafood Poisoning)
Show Figures

Graphical abstract

Back to TopTop