Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (548)

Search Parameters:
Keywords = double excitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5417 KiB  
Article
SE-TFF: Adaptive Tourism-Flow Forecasting Under Sparse and Heterogeneous Data via Multi-Scale SE-Net
by Jinyuan Zhang, Tao Cui and Peng He
Appl. Sci. 2025, 15(15), 8189; https://doi.org/10.3390/app15158189 - 23 Jul 2025
Viewed by 209
Abstract
Accurate and timely forecasting of cross-regional tourist flows is essential for sustainable destination management, yet existing models struggle with sparse data, complex spatiotemporal interactions, and limited interpretability. This paper presents SE-TFF, a multi-scale tourism-flow forecasting framework that couples a Squeeze-and-Excitation (SE) network with [...] Read more.
Accurate and timely forecasting of cross-regional tourist flows is essential for sustainable destination management, yet existing models struggle with sparse data, complex spatiotemporal interactions, and limited interpretability. This paper presents SE-TFF, a multi-scale tourism-flow forecasting framework that couples a Squeeze-and-Excitation (SE) network with reinforcement-driven optimization to adaptively re-weight environmental, economic, and social features. A benchmark dataset of 17.8 million records from 64 countries and 743 cities (2016–2024) is compiled from the Open Travel Data repository in github (OPTD) for training and validation. SE-TFF introduces (i) a multi-channel SE module for fine-grained feature selection under heterogeneous conditions, (ii) a Top-K attention filter to preserve salient context in highly sparse matrices, and (iii) a Double-DQN layer that dynamically balances prediction objectives. Experimental results show SE-TFF attains 56.5% MAE and 65.6% RMSE reductions over the best baseline (ARIMAX) at 20% sparsity, with 0.92 × 103 average MAE across multi-task outputs. SHAP analysis ranks climate anomalies, tourism revenue, and employment as dominant predictors. These gains demonstrate SE-TFF’s ability to deliver real-time, interpretable forecasts for data-limited destinations. Future work will incorporate real-time social media signals and larger multimodal datasets to enhance generalizability. Full article
Show Figures

Figure 1

20 pages, 7276 KiB  
Article
Research on the Heavy Gas Setting Method of Oil-Immersed Transformer Based on Oil Flow Acceleration Characteristics
by Yuangang Sun, Zhixiang Tong, Jian Mao, Junchao Wang, Shixian He, Tengbo Zhang and Shuting Wan
Energies 2025, 18(14), 3859; https://doi.org/10.3390/en18143859 - 20 Jul 2025
Viewed by 213
Abstract
As the key non-electric protection equipment of an oil-immersed transformer, the gas relay plays an important role in ensuring the safe operation of the transformer. To further enhance the sensitivity of gas relays for the heavy gas alarm, this paper takes the BF [...] Read more.
As the key non-electric protection equipment of an oil-immersed transformer, the gas relay plays an important role in ensuring the safe operation of the transformer. To further enhance the sensitivity of gas relays for the heavy gas alarm, this paper takes the BF type double float gas relay as the research object and proposes a new method for heavy gas setting, which is based on the internal oil flow acceleration characteristics of the gas relay. Firstly, the analytical derivation of the force acting on the gas relay baffle is carried out, and through theoretical analysis, the internal mechanism of heavy gas action under transient oil flow excitation is revealed. Then, the numerical simulation and experimental research on the variation of oil flow velocity and acceleration under different fault energies are carried out. The results show that with the increase of fault energy, the oil flow velocity fluctuates up and down during heavy gas action, but the oil flow acceleration shows a linear correlation. The oil flow acceleration can be set as the threshold of heavy gas action, and the severity of the fault can be judged. At the same time, the alarm time of the heavy gas setting method based on the oil flow acceleration characteristics is greatly shortened, which can reflect the internal fault of the transformer in time and significantly improve the sensitivity of the heavy gas alarm. Full article
Show Figures

Figure 1

18 pages, 4389 KiB  
Article
Acoustic Wave Propagation Characteristics of Maize Seed and Surrounding Region with the Double Media of Seed–Soil
by Yadong Li, Caiyun Lu, Hongwen Li, Jin He, Zhinan Wang and Chengkun Zhai
Agriculture 2025, 15(14), 1540; https://doi.org/10.3390/agriculture15141540 - 17 Jul 2025
Viewed by 337
Abstract
When monitoring seed positions in soil using ultrasonic waves, the main challenge is obtaining acoustic wave characteristics at the seed locations. This study developed a three-dimensional ultrasonic model with the double media of seed–soil using the discrete element method to visualize signal variations [...] Read more.
When monitoring seed positions in soil using ultrasonic waves, the main challenge is obtaining acoustic wave characteristics at the seed locations. This study developed a three-dimensional ultrasonic model with the double media of seed–soil using the discrete element method to visualize signal variations and analyze propagation characteristics. The effects of the compression ratio (0/6/12%), excitation frequency (20/40/60 kHz), and amplitude (5/10/15 μm) on signal variation and attenuation were analyzed. The results show consistent trends: time/frequency domain signal intensity increased with a higher compression ratio and amplitude but decreased with frequency. Comparing ultrasonic signals at soil particles before and after the seed along the propagation path shows that the seed significantly absorbs and attenuates ultrasonic waves. Time domain intensity drops 93.99%, and first and residual wave frequency peaks decrease by 88.06% and 96.39%, respectively. Additionally, comparing ultrasonic propagation velocities in the double media of seed–soil and the single soil medium reveals that the velocity in the seed is significantly higher than that in the soil. At compression ratios of 0%, 6%, and 12%, the sound velocity in the seed is 990.47%, 562.72%, and 431.34% of that in the soil, respectively. These findings help distinguish seed presence and provide a basis for ultrasonic seed position monitoring after sowing. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

12 pages, 2348 KiB  
Article
A Compact Self-Decoupled In-Band Full-Duplex Monopole Antenna Based on Common- and Differential-Mode Theory
by Yuejian Li, Yao Hu and Yu Luo
Electronics 2025, 14(14), 2770; https://doi.org/10.3390/electronics14142770 - 10 Jul 2025
Viewed by 257
Abstract
In-band full-duplex (IBFD) technology has attracted significant attention for its potential to double the spectral efficiency by enabling a simultaneous transmission and reception over the same frequency channel. However, achieving high isolation between closely spaced transmit and receive paths remains a critical challenge. [...] Read more.
In-band full-duplex (IBFD) technology has attracted significant attention for its potential to double the spectral efficiency by enabling a simultaneous transmission and reception over the same frequency channel. However, achieving high isolation between closely spaced transmit and receive paths remains a critical challenge. In this paper, a novel compact co-polarized monopole antenna with self-decoupling capability is proposed based on common-mode/differential-mode (CM/DM) theory. By innovatively folding the ends of the monopole elements, the antenna exploits the distinct behaviors under CM and DM excitations at a close spacing to achieve simultaneous impedance matching in both modes. This effectively enhances the isolation between antenna elements. The design enables self-interference suppression without requiring any additional decoupling structures, even under compact antenna and port spacing. Measurement results confirm that the proposed antenna achieves over 20 dB isolation within the 3.4–3.6 GHz operating band, with a compact spacing of 0.008 λ00 corresponds to the wavelength at the center frequency). Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

13 pages, 3092 KiB  
Article
Carbon Dioxide Gas Sensor Based on Terahertz Metasurface with Asymmetric Cross-Shaped Holes Empowered by Quasi-Bound States in the Continuum
by Kai He and Tian Ma
Sensors 2025, 25(13), 4178; https://doi.org/10.3390/s25134178 - 4 Jul 2025
Viewed by 359
Abstract
In this paper, a novel type of polarization-insensitive terahertz metal metasurface with cross-shaped holes is presented, which is designed based on the theory of bound states in continuous media. The fundamental unit of the metasurface comprises a metal tungsten sheet with a cross-shaped [...] Read more.
In this paper, a novel type of polarization-insensitive terahertz metal metasurface with cross-shaped holes is presented, which is designed based on the theory of bound states in continuous media. The fundamental unit of the metasurface comprises a metal tungsten sheet with a cross-shaped hole structure. A thorough analysis of the optical properties and the quasi-BIC response is conducted using the finite element method. Utilizing the symmetry-breaking theory, the symmetry of the metal metasurface is broken, allowing the excitation of double quasi-BIC resonance modes with a high quality factor and high sensitivity to be achieved. Analysis of the multipole power distribution diagram and the spatial distribution of the electric field at the two quasi-BIC resonances verifies that the two quasi-BIC resonances of the metasurface are excited by electric dipoles and electric quadrupoles, respectively. Further simulation analysis demonstrates that the refractive index sensitivities of the two quasi-BIC modes of the metasurface reach 404.5 GHz/RIU and 578.6 GHz/RIU, respectively. Finally, the functional material PHMB is introduced into the metasurface to achieve highly sensitive sensing and detection of CO2 gas concentrations. The proposed metallic metasurface structure exhibits significant advantages, including high sensitivity, ease of preparation, and a high Q-value, which renders it highly promising for a broad range of applications in the domains of terahertz biosensing and highly sensitive gas sensing. Full article
(This article belongs to the Special Issue The Advanced Flexible Electronic Devices: 2nd Edition)
Show Figures

Figure 1

12 pages, 2545 KiB  
Article
Optical Characteristics of GaAs Spherical Quantum Dots Based on Single and Double Quartic Anharmonic Potentials: The Role of Structural Parameters
by Najah Abdullah Alashqar, Walid Belhadj, Najla S. Al-Shameri, Hassen Dakhlaoui, Fatih Ungan and Sake Wang
Photonics 2025, 12(7), 675; https://doi.org/10.3390/photonics12070675 - 4 Jul 2025
Viewed by 306
Abstract
This is a numerical investigation of optical and electronic characteristics of GaAs spherical quantum dots based on single and double quartic potentials and presenting a hydrogenic impurity at their center. The radial Schrödinger equation was solved using the finite difference method (FDM) to [...] Read more.
This is a numerical investigation of optical and electronic characteristics of GaAs spherical quantum dots based on single and double quartic potentials and presenting a hydrogenic impurity at their center. The radial Schrödinger equation was solved using the finite difference method (FDM) to obtain the energy levels and the wavefunctions. These physical quantities were then used to compute the dipole matrix elements, the total optical absorption coefficient (TOAC), and the binding energies. The impact of the structural parameters in the confining potentials on the red and blue shifts of the TOAC is discussed in the presence and absence of hydrogenic impurity. Our results indicate that the structural parameter k in both potentials plays a crucial role in tuning the TOAC. In the case of single quartic potential, increasing k produces a blue shift; however, its augmentation in the case of double quartic potential displays a blue shift at first, and then a red shift. Furthermore, the augmentation of the parameter k can control the binding energies of the two lowest states, (1s) and (1p). In fact, enlarging this parameter reduces the binding energies and converges them to constant values. In general, the modification of the potential’s parameters, which can engender two shapes of confining potentials (single quartic and double quartic), enables the experimenters to control the desired energy levels and consequently to adjust and select the suitable TOAC between the two lowest energy states (ground (1s) and first excited (1p)). Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

25 pages, 3702 KiB  
Article
The Stochastic Hopf Bifurcation and Vibrational Response of a Double Pendulum System Under Delayed Feedback Control
by Ruichen Qi, Shaoyi Chen, Caiyun Huang and Qiubao Wang
Mathematics 2025, 13(13), 2161; https://doi.org/10.3390/math13132161 - 2 Jul 2025
Viewed by 345
Abstract
In this paper, we investigate the nonlinear dynamic behavior of a cart–double pendulum system with single time delay feedback control. Based on the center manifold theorem and stochastic averaging method, a reduced-order dynamic model of the system is established, with a focus on [...] Read more.
In this paper, we investigate the nonlinear dynamic behavior of a cart–double pendulum system with single time delay feedback control. Based on the center manifold theorem and stochastic averaging method, a reduced-order dynamic model of the system is established, with a focus on analyzing the influence of time delay parameters and stochastic excitation on the system’s Hopf bifurcation characteristics. By introducing stochastic differential equation theory, the system is transformed into the form of an Itô equation, revealing bifurcation phenomena in the parameter space. Numerical simulation results demonstrate that decreasing the time delay and increasing the time delay feedback gain can effectively enhance system stability, whereas increasing the time delay and decreasing the time delay feedback gain significantly improves dynamic performance. Additionally, it is observed that Gaussian white noise intensity modulates the bifurcation threshold. This study provides a novel theoretical framework for the stochastic stability analysis of time delay-controlled multibody systems and offers a theoretical basis for subsequent research. Full article
Show Figures

Figure 1

21 pages, 1882 KiB  
Review
A Review of Vibration Control Studies of Double-Layered Cylindrical Shells Under Transient Excitation in Water
by Zhen Zhang, Yinglong Zhao and Feng Chen
J. Mar. Sci. Eng. 2025, 13(7), 1238; https://doi.org/10.3390/jmse13071238 - 27 Jun 2025
Viewed by 501
Abstract
In recent years, with the wide application of underwater vehicles, the vibration and noise problems generated during their operation have attracted great attention from the academic community. Compared with the field of traditional mechanical noise, research on vibration control of the noise that [...] Read more.
In recent years, with the wide application of underwater vehicles, the vibration and noise problems generated during their operation have attracted great attention from the academic community. Compared with the field of traditional mechanical noise, research on vibration control of the noise that is transiently excited underwater still has significant deficiencies in terms of its theoretical depth and systematicity. In this paper, we take transient noise control for underwater vehicles as the engineering entry point; systematically explain the vibration mechanisms and dynamic characteristics of underwater double-layered cylindrical shell structures; and discuss the vibration transmission paths and the development trends in the control technology in depth. This study mainly includes the following contents. Firstly, the vibration response mechanisms of underwater double-layered cylindrical shells are sorted through a bibliometric analysis, and the evolution laws for plate–shell structures and the vibration transmission paths for single–double-shell structures are summarized systematically; secondly, the multi-path vibration transmission characteristics of double-layered cylindrical shells are analyzed based on energy transfer theory, and the contribution to transient noise through different transmission paths is quantitatively evaluated; and thirdly, the vibration transmission characteristics of active control, passive control, and hybrid control are evaluated systematically in terms of the dimensions of the control mechanism. Then, the engineering applicability of active, passive, and hybrid control technologies is systematically reviewed. Finally, combined with the development of new intelligent materials and adaptive algorithms, the prospective outlook for vibration control technology for shell structures under transient excitation conditions is presented. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 5284 KiB  
Article
Experimental Study of a Broadband Vibration Energy Harvester Based on Orthogonal Magnetically Coupled Double Cantilever Beam
by Yanhao Feng, Jianhua Wang, Xiangye Chen and Peng Liu
Micromachines 2025, 16(6), 722; https://doi.org/10.3390/mi16060722 - 19 Jun 2025
Viewed by 2054
Abstract
Purpose: The aim of this study is to achieve automated energy capture and charging for the ADXL355 accelerometer, enhance the vibration energy collection efficiency, and widen the energy trapping frequency band of a system in a working environment for bridge health state [...] Read more.
Purpose: The aim of this study is to achieve automated energy capture and charging for the ADXL355 accelerometer, enhance the vibration energy collection efficiency, and widen the energy trapping frequency band of a system in a working environment for bridge health state detection. Methods: A vibration energy harvester based on a magnetic coupling cantilever beam in an orthogonal direction was proposed. The harvester works by adjusting the angle and magnetic spacing between the two cantilever-beam piezoelectric oscillators, enabling the oscillators to produce large-scale and stable vibrations when excited by an external broadband vibration source. Results: Sinusoidal frequency sweep experiments showed that, under an excitation amplitude of 0.2 g, the proposed broadband vibration energy harvester based on orthogonal magnetic coupling double cantilever beams achieved the best energy harvesting performance when the magnetic angle of the double cantilever beam system was 130°, and the radius was 16 mm. In the frequency range of 5–20 Hz, the system can effectively capture higher effective voltages across all frequency bands, with a total captured voltage value of approximately 15.3 V. Compared with the control group, the system’s energy harvesting capacity under this working condition increases by 770%. Additionally, the effective frequency band of the system was broadened by 3.7 Hz. Conclusions: Unlike previous studies, which often limited the angles of the magnetic fields generated by the magnets at the ends of piezoelectric beams to specific values, this study explores the influence of rotating these magnetic fields to general angles on the working frequency band of the structure. The findings provide a new perspective and theoretical basis for the optimal design of broadband vibration energy harvesters. Full article
Show Figures

Figure 1

23 pages, 5541 KiB  
Article
Innovative Double Dumbbell-Shaped Flux-Switching Linear Tube Generator for Ocean Wave Energy Conversion: Design, Simulation, and Experimental Validation
by Pooja Khatri, Zhenwei Liu, James Rudolph, Elie Al Shami and Xu Wang
Vibration 2025, 8(2), 32; https://doi.org/10.3390/vibration8020032 - 13 Jun 2025
Viewed by 490
Abstract
This study introduces a novel double dumbbell-shaped flux-switching linear tube generator (DDFSLG) for ocean wave energy conversion. The innovative architecture features a uniquely shaped stator and translator, distinguishing it from conventional linear generators. Unlike traditional systems, the DDFSLG is housed in a cylindrical [...] Read more.
This study introduces a novel double dumbbell-shaped flux-switching linear tube generator (DDFSLG) for ocean wave energy conversion. The innovative architecture features a uniquely shaped stator and translator, distinguishing it from conventional linear generators. Unlike traditional systems, the DDFSLG is housed in a cylindrical buoy. The translator oscillates axially within the stator. This eliminates the need for motion rectification and reduces mechanical friction losses in the power take-off (PTO) system. These design advancements result in high power output and improved performance. The DDFSLG’s three-phase coil circuit is another key innovation, improving electrical performance and stability in irregular wave conditions. We conducted comprehensive experimental validation using an MTS-250 kN testing system, which demonstrated strong agreement between theoretical predictions and measured results. We compared star and delta coil connections to assess how circuit configuration affects power output and efficiency. Furthermore, hydrodynamic simulations using the JONSWAP spectrum and ANSYS AQWA software (Ansys 13.0) provide detailed insight into the system’s dynamic response under realistic oceanic conditions. Full article
Show Figures

Figure 1

20 pages, 5870 KiB  
Article
An Ab Initio Electronic Structure Investigation of the Ground and Excited States of ScH+, YH+, and LaH+
by Isuru R. Ariyarathna
Molecules 2025, 30(11), 2435; https://doi.org/10.3390/molecules30112435 - 2 Jun 2025
Viewed by 570
Abstract
Multireference configuration interaction (MRCI), Davidson-corrected MRCI (MRCI+Q), coupled-cluster singles, doubles, and perturbative triples [CCSD(T)], and frozen-core full configuration interaction (fcFCI) calculations were carried out using large, correlation-consistent basis sets to investigate the excited states of the Sc atom and the spin–free and spin–orbit [...] Read more.
Multireference configuration interaction (MRCI), Davidson-corrected MRCI (MRCI+Q), coupled-cluster singles, doubles, and perturbative triples [CCSD(T)], and frozen-core full configuration interaction (fcFCI) calculations were carried out using large, correlation-consistent basis sets to investigate the excited states of the Sc atom and the spin–free and spin–orbit coupled potential energy profiles, energetics, spectroscopic constants, and electron populations of low-lying states of MH+ (M = Sc, Y, La). The core electron correlation effects, complete basis set effects, and spin–orbit coupling effects were also evaluated. The first four electronic states of all MH+ are 12Δ, 12Σ+, 12Π, and 22Σ+ with 1σ21, 1σ21, 1σ21, and 1σ21 single-reference electron configurations, respectively. These states of MH+ can be represented by the M2+H ionic structure. The ground states of ScH+, YH+, and LaH+ are 12Δ3/2, 12Σ+1/2, and 12Δ3/2 with 55.45, 60.54, and 62.34 kcal/mol bond energies, respectively. The core electron correlation was found to be vital for gaining accurate predictions on the ground and excited state properties of MH+. The spin–orbit coupling effects are minor for ScH+ but become substantial moving to YH+ and LaH+. Overall, the results of this work are in good agreement with the limited set of experimental findings of MH+ available in the literature and will be of use for future investigations. Furthermore, the theoretical approaches, findings, and trends reported here are expected to aid studies of similar species. Full article
Show Figures

Figure 1

14 pages, 2289 KiB  
Article
Propagation Regimes and Signal Enhancement Mechanisms of Collinear Double-Pulse Plasma with Varying Inter-Pulse Delays
by Yang Zhao, Lei Zhang, Zhihui Tian, Xiuqing Zhang, Jiandong Bai and Wangbao Yin
Sensors 2025, 25(11), 3409; https://doi.org/10.3390/s25113409 - 28 May 2025
Viewed by 402
Abstract
Laser-induced breakdown spectroscopy (LIBS) is an in situ analytical technique. Compared to traditional single-pulse LIBS (SP-LIBS), collinear double-pulse LIBS (DP-LIBS) is a promising technique due to its lower limit of detection for trace elements. In this paper, we analyze the spectral and image [...] Read more.
Laser-induced breakdown spectroscopy (LIBS) is an in situ analytical technique. Compared to traditional single-pulse LIBS (SP-LIBS), collinear double-pulse LIBS (DP-LIBS) is a promising technique due to its lower limit of detection for trace elements. In this paper, we analyze the spectral and image information obtained from the emissions emitted by single/double pulse (SP/DP) laser-induced plasmas. The types of laser-supported absorption (LSA) waves of the plasmas were determined according to the interactions among the ablation vapor, the ambient gas, and the laser. Furthermore, the influence mechanisms of plasma shielding on DP-LIBS signal intensity enhancement with different inter-pulse delay were investigated. In our experimental conditions, the propagation regime of SP plasma is a laser-supported combustion (LSC) wave. The DP plasmas with short inter-pulse delays show the characteristics of a laser-supported detonation (LSD) wave, and the enhancement mechanism is mainly reheating for pre-plasma. On the contrary, the DP plasmas with longer inter-pulse delays show the characteristics of a LSC wave, and the increase in laser ablation is a major contributing factor to the signal improvement. In addition, the spectral lines, which are difficult to excite by SP-LIBS, can be obtained by selecting an appropriate inter-pulse delay and setting a short delay, which provides a new idea for the measurement of trace elements. Full article
(This article belongs to the Special Issue Spectral Detection Technology, Sensors and Instruments, 2nd Edition)
Show Figures

Figure 1

19 pages, 10561 KiB  
Article
Environmental Effects of Moisture and Elevated Temperatures on the Mode I and Mode II Interlaminar Fracture Toughness of a Toughened Epoxy Carbon Fibre Reinforced Polymer
by Anna Williams, Ian Hamerton and Giuliano Allegri
Polymers 2025, 17(11), 1503; https://doi.org/10.3390/polym17111503 - 28 May 2025
Cited by 1 | Viewed by 628
Abstract
The use of composite materials within extreme environments is an exciting frontier in which a wealth of cutting-edge developments have taken place recently. Although there is vast knowledge of composites’ behaviour in standard room temperature and humidity, there is a great need to [...] Read more.
The use of composite materials within extreme environments is an exciting frontier in which a wealth of cutting-edge developments have taken place recently. Although there is vast knowledge of composites’ behaviour in standard room temperature and humidity, there is a great need to understand their performance in ‘hot/wet’ conditions, as these are the conditions of their envisaged applications. One of the key failure mechanisms within composites is interlaminar fracture, commonly referred to as delamination. The environmental effects of moisture and elevated temperatures on interlaminar fracture toughness are therefore essential design considerations for laminated aerospace-grade composite materials. IM7/8552, a toughened epoxy/carbon fibre reinforced polymer, was experimentally characterised in both ‘Dry’ and ‘Wet’ conditions at 23 °C and 90 °C. A moisture uptake study was conducted during the ‘Wet’ conditioning of the material in a 70 °C/85% relative humidity environment. Dynamic mechanical thermal analysis was carried out to determine the effect of moisture on the glass transition temperature of the material. Mode I initiation and propagation fracture properties were determined using double cantilevered beam specimens and Mode II initiation fracture properties were deduced using end-notched flexure specimens. The effects of precracking and the methodology of high-temperature testing are discussed in this report. Mode I interlaminar fracture toughness, GIC, was found to increase with elevated temperatures and moisture content, with GIC=0.205kJ/m2 in ‘Dry 23 °C’ conditions increasing by 26% to GIC=0.259kJ/m2 in ‘Wet 90 °C’ conditions, demonstrating that the material exhibited its toughest behaviour in ‘hot/wet’ conditions. Increased ductility due to matrix softening and fibre bridging caused by temperature and moisture were key contributors to the elevated GIC values. Mode II interlaminar fracture toughness, GIIC, was observed to decrease most significantly when moisture or elevated temperature was applied individually, with the combination of ‘hot/wet’ conditions resulting in an 8% drop in GIIC, with GIIC=0.586kJ/m2 in ‘Dry 23 °C’ conditions and GIIC=0.541kJ/m2 in ‘Wet 90 °C’ conditions. The coupled effect of fibre-matrix interface degradation and increased plasticity due to moisture resulted in a relatively small knockdown on GIIC compared to GIC in ‘hot/wet’ conditions. Fractographic studies of the tested specimens were conducted using scanning electron microscopy. Noteworthy surface topography features were observed on specimens of different fracture modes, moisture saturation levels, and test temperature conditions, including scarps, cusps, broken fibres and river markings. The qualitative features identified during microscopy are critically examined to extrapolate the differences in quantitative results in the various environmental conditions. Full article
Show Figures

Graphical abstract

22 pages, 14181 KiB  
Article
Vibration Characteristics of Double-Shield TBM Cutterhead Under Rock–Machine Interaction Excitation
by Guang Zhang, Qing Song, Qiuming Gong, Dongxing Liu, Dongwei Li and Minghao Sun
Buildings 2025, 15(11), 1824; https://doi.org/10.3390/buildings15111824 - 26 May 2025
Viewed by 502
Abstract
During the tunneling process of a double-shield TBM, vibrations generated by rock–machine interaction can affect its safe, efficient, and stable operation. This study was based on the Eping Water Diversion TBM Project. By deploying a vibration monitoring system, the original vibration signals of [...] Read more.
During the tunneling process of a double-shield TBM, vibrations generated by rock–machine interaction can affect its safe, efficient, and stable operation. This study was based on the Eping Water Diversion TBM Project. By deploying a vibration monitoring system, the original vibration signals of the double-shield TBM were acquired. A denoising method combining Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) and Multi-scale Permutation Entropy (MPE) was applied for signals reconstruct. The time-domain and frequency-domain characteristics of the reconstructed signals were extracted, and the three-directional vibration characteristics of the cutterhead were analyzed. The influence of surrounding rock classes and tunneling parameters on the vibration characteristics of the double-shield TBM cutterhead was investigated. The results indicate that cutterhead vibration exhibits anisotropy, with the tangential vibration amplitude being the largest, followed by the axial and radial components. The vibration energy is primarily concentrated in the high-frequency range. As the surrounding rock changes from Class II to Class V, the vibration intensity gradually decreases. During the transition from Class II to Class IV rock, the axial vibration frequency decreases while the tangential vibration frequency increases due to changes in rock-breaking patterns. In Class V rock, lower thrust leads to uneven load distribution at the cutterhead-fragmented rock interface, which increases axial vibration frequency. Meanwhile, lower rotational speed results in smoother cutting and reduces tangential vibration frequency. Increasing cutterhead rotational speed or thrust amplifies vibration intensity. Higher rotational speed shifts vibration energy toward lower frequencies, whereas increased thrust introduces more high-frequency components. The findings of this study provide valuable insights for the structural design, tunneling parameter optimization, geological condition perception, fault diagnosis and prediction of double-shield TBMs, thereby promoting green and intelligent tunneling construction. Full article
Show Figures

Figure 1

16 pages, 5422 KiB  
Article
Fluorinated Carbon Nanofibrous Aerogel Electrode Material Derived from Hydrofluoric Acid Treatment on Stabilized Polyacrylonitrile for High-Performance Supercapacitors
by Victor Charles, Kingsford Asare, Md Faruque Hasan and Lifeng Zhang
Molecules 2025, 30(11), 2282; https://doi.org/10.3390/molecules30112282 - 22 May 2025
Viewed by 448
Abstract
Carbon nanofibrous materials from electrospinning are good candidate electrode materials for supercapacitor applications due to their straightforward processability, chemical stability, high porosity, and large surface area. In this research, a straightforward and effective way was revealed to significantly enhance the electrochemical performance of [...] Read more.
Carbon nanofibrous materials from electrospinning are good candidate electrode materials for supercapacitor applications due to their straightforward processability, chemical stability, high porosity, and large surface area. In this research, a straightforward and effective way was revealed to significantly enhance the electrochemical performance of carbon nanofibrous electrode material from electrospinning of polyacrylonitrile (PAN). Fluorination of the electrospun carbon nanofibers (ECNF) was studied by comparing two types of hydrofluoric acid (HF) treatment, i.e., direct HF acid treatment on ECNF (Type I) vs. HF acid treatment on the stabilized PAN (Type II) followed by carbonization. The latter was found to be an advantageous way to introduce C-F bonds in the resultant carbon nanofibrous electrode material that contributed to pseudocapacitance. Furthermore, the Type II HF acid treatment demonstrated exciting synergistic effects with ECNF aerogel formation on carbon structure and porosity development and generated a superior fluorinated electrospun carbon nanofibrous aerogel (ECNA-F) electrode material for supercapacitor uses. The resultant ECNA-F electrode material demonstrated excellent electrochemical performance with great cyclic stability due to the large improvements in both pseudocapacitance and electrical double-layer capacitance. ECNA-F achieved a specific capacitance of 372 F/g at a current density of 0.5 A/g with 1 M H2SO4 electrolyte, and the device with ECNA-F and 1 M Na2SO4 electrolyte possessed an energy density of 29.1 Wh/kg at a power density of 275 W/kg. This study provided insight into developing high-performance and stable carbon nanofibrous electrode materials for supercapacitors. Full article
(This article belongs to the Special Issue Development and Design of Novel Electrode Materials)
Show Figures

Figure 1

Back to TopTop