Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = dolabellane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1849 KiB  
Article
Dolabellane Diterpenoids from Soft Coral Clavularia viridis with Anti-Inflammatory Activities
by Chufan Gu, Hongli Jia, Kang Zhou, Bin Wang, Wenhan Lin and Wei Cheng
Mar. Drugs 2025, 23(8), 312; https://doi.org/10.3390/md23080312 - 30 Jul 2025
Viewed by 178
Abstract
A chemical investigation of the EtOAc fraction from soft coral Clavularia viridis resulted in the isolation of 12 undescribed dolabellane-type diterpenoids, namely clavirolides W–Z (14), clavularols A–H (512), and three known analogs (13 [...] Read more.
A chemical investigation of the EtOAc fraction from soft coral Clavularia viridis resulted in the isolation of 12 undescribed dolabellane-type diterpenoids, namely clavirolides W–Z (14), clavularols A–H (512), and three known analogs (1315). Their structures were characterized by an extensive analysis of spectroscopic data, including X-ray diffraction and ECD calculations for the assignment of absolute configurations. The structures of 2 and 46 are feathered as peroxyl-substituted derivatives, while compounds 712 possess additional oxidative cyclization, including epoxide or furan that are rare in the dolabellane family. All these compounds were evaluated for activities on cytotoxic and anti-inflammatory models. Compound 10 exhibited most potential against NO production in the BV2 cell induced by LPS with an IC50 value of 18.3 μM. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Figure 1

13 pages, 1518 KiB  
Article
Marine Prostanoids with Cytotoxic Activity from Octocoral Clavularia spp.
by Ming-Ya Cheng, I-Chi Hsu, Shi-Ying Huang, Ya-Ting Chuang, Tzi-Yi Ke, Hsueh-Wei Chang, Tian-Huei Chu, Ching-Yeu Chen and Yuan-Bin Cheng
Mar. Drugs 2024, 22(5), 219; https://doi.org/10.3390/md22050219 - 14 May 2024
Cited by 1 | Viewed by 1859
Abstract
Octocoral of the genus Clavularia is a kind of marine invertebrate possessing abundant cytotoxic secondary metabolites, such as prostanoids and dolabellanes. In our continuous natural product study of C. spp., two previously undescribed prostanoids [clavulone I-15-one (1) and 12-O-deacetylclavulone [...] Read more.
Octocoral of the genus Clavularia is a kind of marine invertebrate possessing abundant cytotoxic secondary metabolites, such as prostanoids and dolabellanes. In our continuous natural product study of C. spp., two previously undescribed prostanoids [clavulone I-15-one (1) and 12-O-deacetylclavulone I (2)] and eleven known analogs (313) were identified. The structures of these new compounds were elucidated based on analysis of their 1D and 2D NMR, HRESIMS, and IR data. Additionally, all tested prostanoids (1 and 313) showed potent cytotoxic activities against the human oral cancer cell line (Ca9-22). The major compound 3 showed cytotoxic activity against the Ca9-22 cells with the IC50 value of 2.11 ± 0.03 μg/mL, which echoes the cytotoxic effect of the coral extract. In addition, in silico tools were used to predict the possible effects of isolated compounds on human tumor cell lines and nitric oxide production, as well as the pharmacological potentials. Full article
(This article belongs to the Special Issue Bioactive Compounds from Soft Corals and Their Derived Microorganisms)
Show Figures

Figure 1

12 pages, 1083 KiB  
Article
Chemical Constituents from Soft Coral Clavularia spp. Demonstrate Antiproliferative Effects on Oral Cancer Cells
by Ming-Ya Cheng, Ya-Ting Chuang, Hsueh-Wei Chang, Zheng-Yu Lin, Ching-Yeu Chen and Yuan-Bin Cheng
Mar. Drugs 2023, 21(10), 529; https://doi.org/10.3390/md21100529 - 8 Oct 2023
Cited by 6 | Viewed by 2187
Abstract
Five new eudensamane-type sesquiterpene lactones, clasamanes A–E (15), three new dolabellane-type diterpenes, clabellanes A–C (68), and fifteen known compounds (923) were isolated from the ethanolic extract of Taiwanese soft coral Clavularia [...] Read more.
Five new eudensamane-type sesquiterpene lactones, clasamanes A–E (15), three new dolabellane-type diterpenes, clabellanes A–C (68), and fifteen known compounds (923) were isolated from the ethanolic extract of Taiwanese soft coral Clavularia spp. The structures of all undescribed components (18) were determined by analysis of IR, mass, NMR, and UV spectroscopic data. The absolute configuration of new compounds was determined by using circular dichroism and DP4+ calculations. The cytotoxic activities of all isolated marine natural products were evaluated. Compound 7 showed a significant cytotoxic effect against oral cancer cell line (Ca9-22) with an IC50 value of 7.26 ± 0.17 μg/mL. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Figure 1

75 pages, 8490 KiB  
Review
Stachybotrys chartarum—A Hidden Treasure: Secondary Metabolites, Bioactivities, and Biotechnological Relevance
by Sabrin R. M. Ibrahim, Hani Choudhry, Amer H. Asseri, Mahmoud A. Elfaky, Shaimaa G. A. Mohamed and Gamal A. Mohamed
J. Fungi 2022, 8(5), 504; https://doi.org/10.3390/jof8050504 - 12 May 2022
Cited by 31 | Viewed by 6029
Abstract
Fungi are renowned as a fountainhead of bio-metabolites that could be employed for producing novel therapeutic agents, as well as enzymes with wide biotechnological and industrial applications. Stachybotrys chartarum (black mold) (Stachybotriaceae) is a toxigenic fungus that is commonly found in damp environments. [...] Read more.
Fungi are renowned as a fountainhead of bio-metabolites that could be employed for producing novel therapeutic agents, as well as enzymes with wide biotechnological and industrial applications. Stachybotrys chartarum (black mold) (Stachybotriaceae) is a toxigenic fungus that is commonly found in damp environments. This fungus has the capacity to produce various classes of bio-metabolites with unrivaled structural features, including cyclosporins, cochlioquinones, atranones, trichothecenes, dolabellanes, phenylspirodrimanes, xanthones, and isoindoline and chromene derivatives. Moreover, it is a source of various enzymes that could have variable biotechnological and industrial relevance. The current review highlights the formerly published data on S. chartarum, including its metabolites and their bioactivities, as well as industrial and biotechnological relevance dated from 1973 to the beginning of 2022. In this work, 215 metabolites have been listed and 138 references have been cited. Full article
Show Figures

Figure 1

9 pages, 1462 KiB  
Article
Sangiangols A and B, Two New Dolabellanes from an Indonesian Marine Soft Coral, Anthelia sp.
by Novriyandi Hanif, Anggia Murni and Junichi Tanaka
Molecules 2020, 25(17), 3803; https://doi.org/10.3390/molecules25173803 - 21 Aug 2020
Cited by 9 | Viewed by 2805
Abstract
A new, rare trinor-dolabellane diterpenoid, sangiangol A (1), and one new dolabellane diterpenoid, sangiangol B (2), together with known cembranes and dolabellanes (38), were isolated from the ethyl acetate layer of an extract of an [...] Read more.
A new, rare trinor-dolabellane diterpenoid, sangiangol A (1), and one new dolabellane diterpenoid, sangiangol B (2), together with known cembranes and dolabellanes (38), were isolated from the ethyl acetate layer of an extract of an Indonesian marine soft coral, Anthelia sp. Compounds 18 exhibited moderate cytotoxicity against an NBT-T2 cell line (0.5–10 µg/mL). The structures of the new compounds were determined by analyzing their spectra and a molecular modelling study. A possible biosynthetic pathway for sangiangols A (1) and B (2) is presented. Cytotoxicity requires two epoxide rings or a chlorine atom, as in 4 (stolonidiol) and 5 (clavinflol B). Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

9 pages, 2154 KiB  
Article
Ubiquitin-Proteasome Modulating Dolabellanes and Secosteroids from Soft Coral Clavularia flava
by Che-Yen Chiu, Xue-Hua Ling, Shang-Kwei Wang and Chang-Yih Duh
Mar. Drugs 2020, 18(1), 39; https://doi.org/10.3390/md18010039 - 3 Jan 2020
Cited by 6 | Viewed by 2850
Abstract
We performed a high-content screening (HCS) assay aiming to discover bioactive molecules with proteasome inhibitory activity. By structural elucidation, we identified six compounds purified from soft coral Clavularia flava, which potentiates proteasome inhibition. Chemical structure elucidation revealed they are dolabellane- and secosteroid-based [...] Read more.
We performed a high-content screening (HCS) assay aiming to discover bioactive molecules with proteasome inhibitory activity. By structural elucidation, we identified six compounds purified from soft coral Clavularia flava, which potentiates proteasome inhibition. Chemical structure elucidation revealed they are dolabellane- and secosteroid-based compounds including a new dolabellane, clavinflol C (1), three known dolabellanes, stolonidiol (2), stolonidiol-17-acetate (3), and clavinflol B (4) as well as two new secosteroids, 3β,11-dihydroxy-24-methyl-9,11-secocholest-5-en-9,23-dione (5) and 3β,11-dihydroxy-24-methylene-9,11-secocholest-5-en-9,23-dione (6). All six compounds show less cytotoxicity than those of known proteasome inhibitors, bortezomib and MG132. In summary, the high-content measurements of control inhibitors, bortezomib and MG132, manifest the highest ratio >2 in high-content measurement. Of the isolated compounds, 2 and 5 showed higher activity, followed by 3 and 6, and then 1 and 4 exhibited moderate inhibition. Full article
(This article belongs to the Special Issue Selected Papers from XVI MaNaPro and XI ECMNP)
Show Figures

Figure 1

11 pages, 1790 KiB  
Article
Spiralyde A, an Antikinetoplastid Dolabellane from the Brown Alga Dictyota spiralis
by Olfa Chiboub, Ines Sifaoui, Jacob Lorenzo-Morales, Manef Abderrabba, Mondher Mejri, José Javier Fernández, José E. Piñero and Ana R. Díaz-Marrero
Mar. Drugs 2019, 17(3), 192; https://doi.org/10.3390/md17030192 - 25 Mar 2019
Cited by 21 | Viewed by 4219
Abstract
Bioassay-guided fractionation of the antikinetoplastid extract of the brown alga Dictyota spiralis has led to the isolation of spiralyde A (1), a new dolabellane aldehyde, along with other five known related diterpenes (26). Their structures were determined [...] Read more.
Bioassay-guided fractionation of the antikinetoplastid extract of the brown alga Dictyota spiralis has led to the isolation of spiralyde A (1), a new dolabellane aldehyde, along with other five known related diterpenes (26). Their structures were determined by HRESIMS, 1D and 2D NMR spectroscopy, and comparison with data reported in the literature. The antiparasitic activity of all compounds was evaluated. Spiralyde A (1) and the known compound 3,4-epoxy-7,18-dolabelladiene (2) were the most active compounds against Leishmania amazonensis and Trypanosoma cruzi. Spiralyde A (1) was the most potent compound, comparable to benznidazole, the reference drug for trypanocidal activity. Full article
(This article belongs to the Special Issue Marine Natural Products with Antiprotozoal Activity)
Show Figures

Figure 1

11 pages, 1507 KiB  
Article
Uprolides N, O and P from the Panamanian Octocoral Eunicea succinea
by Daniel Torres-Mendoza, Yisett González, José Félix Gómez-Reyes, Héctor M. Guzmán, José Luis López-Perez, William H. Gerwick, Patricia L. Fernandez and Marcelino Gutiérrez
Molecules 2016, 21(6), 819; https://doi.org/10.3390/molecules21060819 - 22 Jun 2016
Cited by 11 | Viewed by 6337
Abstract
Three new diterpenes, uprolide N (1), uprolide O (2), uprolide P (3) and a known one, dolabellane (4), were isolated from the CH2Cl2-MeOH extract of the gorgonian octocoral Eunicea succinea, [...] Read more.
Three new diterpenes, uprolide N (1), uprolide O (2), uprolide P (3) and a known one, dolabellane (4), were isolated from the CH2Cl2-MeOH extract of the gorgonian octocoral Eunicea succinea, collected from Bocas del Toro, on the Caribbean coast of Panama. Their structures were determined using spectroscopic analyses, including 1D and 2D NMR and high-resolution mass spectrometry (HRMS) together with molecular modeling studies. Compounds 13 displayed anti-inflammatory properties by inhibiting production of Tumor Necrosis Factor (TNF) and Interleukin (IL)-6 induced by lipopolysaccharide (LPS) in murine macrophages. Full article
(This article belongs to the Special Issue Diterpene and Its Significance in Natural Medicine)
Show Figures

Graphical abstract

13 pages, 758 KiB  
Article
Dolabelladienols A–C, New Diterpenes Isolated from Brazilian Brown Alga Dictyota pfaffii
by Alonso Pardo-Vargas, Ingrid De Barcelos Oliveira, Paulo Roberto Soares Stephens, Claudio Cesar Cirne-Santos, Izabel Christina Nunes De Palmer Paixão, Freddy Alejandro Ramos, Carlos Jiménez, Jaime Rodríguez, Jackson Antonio Lamounier Camargos Resende, Valeria Laneuville Teixeira and Leonardo Castellanos
Mar. Drugs 2014, 12(7), 4247-4259; https://doi.org/10.3390/md12074247 - 23 Jul 2014
Cited by 41 | Viewed by 6921
Abstract
The marine brown alga Dictyota pfaffii from Atol das Rocas, in Northeast Brazil is a rich source of dolabellane diterpene, which has the potential to be used in future antiviral drugs by inhibiting reverse transcriptase (RT) of HIV-1. Reexamination of the minor diterpene [...] Read more.
The marine brown alga Dictyota pfaffii from Atol das Rocas, in Northeast Brazil is a rich source of dolabellane diterpene, which has the potential to be used in future antiviral drugs by inhibiting reverse transcriptase (RT) of HIV-1. Reexamination of the minor diterpene constituents yielded three new dolabellane diterpenes, (1R*,2E,4R*,7S,10S*,11S*,12R*)10,18-diacetoxy-7-hydroxy-2,8(17)-dolabelladiene (1), (1R*,2E,4R*,7R*,10S*,11S*,12R*)10,18-diacetoxy-7-hydroxy-2,8(17)-dolabelladiene (2), (1R*,2E,4R*,8E,10S*,11S,12R*)10,18-diacetoxy-7-hydroxy-2,8-dolabelladiene (3), termed dolabelladienols A–C (13) respectively, in addition to the known dolabellane diterpenes (46). The elucidation of the compounds 13 was assigned by 1D and 2D NMR, MS, optical rotation and molecular modeling, along with the relative configuration of compound 4 and the absolute configuration of 5 by X-ray diffraction. The potent anti-HIV-1 activities displayed by compounds 1 and 2 (IC50 = 2.9 and 4.1 μM), which were more active than even the known dolabelladienetriol 4, and the low cytotoxic activity against MT-2 lymphocyte tumor cells indicated that these compounds are promising anti-HIV-1 agents. Full article
Show Figures

Figure 1

Back to TopTop