Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = distributed computing, smart neighborhoods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7814 KB  
Article
Optimal Placement of Wireless Smart Concentrators in Power Distribution Networks Using a Metaheuristic Approach
by Cristoercio André Silva, Richard Wilcamango-Salas, Joel D. Melo, Jesús M. López-Lezama and Nicolás Muñoz-Galeano
Energies 2025, 18(17), 4604; https://doi.org/10.3390/en18174604 - 30 Aug 2025
Viewed by 605
Abstract
The optimal allocation of Wireless Smart Concentrators (WSCs) in low-voltage (LV) distribution networks poses significant challenges due to signal attenuation caused by varying building densities and vegetation. This paper proposes a Variable Neighborhood Search (VNS) algorithm to optimize the placement of WSCs in [...] Read more.
The optimal allocation of Wireless Smart Concentrators (WSCs) in low-voltage (LV) distribution networks poses significant challenges due to signal attenuation caused by varying building densities and vegetation. This paper proposes a Variable Neighborhood Search (VNS) algorithm to optimize the placement of WSCs in LV distribution networks. To comprehensively assess the proposed approach, both linear and nonlinear mathematical formulations are considered, depending on whether the distance between meters and concentrators is treated as a fixed parameter or as a decision variable. The performance of the proposed VNS algorithm is benchmarked against both exact solvers and metaheuristics such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Tabu Search (TS). In the linear formulation, VNS achieved the exact optimal solution with execution times up to 75% faster than competing methods. For the more complex nonlinear model, VNS consistently identified superior solutions while requiring less computational effort. These results underscore the algorithm’s ability to balance solution quality and efficiency, making it particularly well-suited for large-scale, resource-constrained utility planning. Full article
Show Figures

Figure 1

34 pages, 977 KB  
Review
Autonomous Cyber-Physical Systems Enabling Smart Positive Energy Districts
by Dimitrios Siakas, Georgios Lampropoulos and Kerstin Siakas
Appl. Sci. 2025, 15(13), 7502; https://doi.org/10.3390/app15137502 - 3 Jul 2025
Cited by 2 | Viewed by 1165
Abstract
The European Union (EU) is striving to achieve its goal of being climate-neutral by 2050. Aligned with the European Green Deal and in search of means to decarbonize its urban environments, the EU advocates for smart positive energy districts (PEDs). PEDs contribute to [...] Read more.
The European Union (EU) is striving to achieve its goal of being climate-neutral by 2050. Aligned with the European Green Deal and in search of means to decarbonize its urban environments, the EU advocates for smart positive energy districts (PEDs). PEDs contribute to the United Nations’ (UN) sustainable development goals (SDGs) of “Sustainable Cities and Communities”, “Affordable and Clean Energy”, and “Climate Action”. PEDs are urban neighborhoods that generate renewable energy to a higher extent than they consume, mainly through the utilization of innovative technologies and renewable energy sources. In accordance with the EU 2050 aim, the PED concept is attracting growing research interest. PEDs can transform existing energy systems and aid in achieving carbon neutrality and sustainable urban development. PED is a novel concept and its implementation is challenging. This study aims to present the emerging technologies enabling the proliferation of PEDs by identifying the main challenges and potential solutions to effective adoption and implementation of PEDs. This paper examines the importance and utilization of cyber-physical systems (CPSs), digital twins (DTs), artificial intelligence (AI), the Internet of Things (IoT), edge computing, and blockchain technologies, which are all fundamental to the creation of PEDs for enhancing energy efficiency, sustainable energy, and user engagement. These systems combine physical infrastructure with digital technologies to create intelligent and autonomous systems to optimize energy production, distribution, and consumption, thus positively contributing to achieving smart and sustainable development. Full article
Show Figures

Figure 1

21 pages, 21383 KB  
Article
Parallel Structure from Motion for Sparse Point Cloud Generation in Large-Scale Scenes
by Yongtang Bao, Pengfei Lin, Yao Li, Yue Qi, Zhihui Wang, Wenxiang Du and Qing Fan
Sensors 2021, 21(11), 3939; https://doi.org/10.3390/s21113939 - 7 Jun 2021
Cited by 11 | Viewed by 5363
Abstract
Scene reconstruction uses images or videos as input to reconstruct a 3D model of a real scene and has important applications in smart cities, surveying and mapping, military, and other fields. Structure from motion (SFM) is a key step in scene reconstruction, which [...] Read more.
Scene reconstruction uses images or videos as input to reconstruct a 3D model of a real scene and has important applications in smart cities, surveying and mapping, military, and other fields. Structure from motion (SFM) is a key step in scene reconstruction, which recovers sparse point clouds from image sequences. However, large-scale scenes cannot be reconstructed using a single compute node. Image matching and geometric filtering take up a lot of time in the traditional SFM problem. In this paper, we propose a novel divide-and-conquer framework to solve the distributed SFM problem. First, we use the global navigation satellite system (GNSS) information from images to calculate the GNSS neighborhood. The number of images matched is greatly reduced by matching each image to only valid GNSS neighbors. This way, a robust matching relationship can be obtained. Second, the calculated matching relationship is used as the initial camera graph, which is divided into multiple subgraphs by the clustering algorithm. The local SFM is executed on several computing nodes to register the local cameras. Finally, all of the local camera poses are integrated and optimized to complete the global camera registration. Experiments show that our system can accurately and efficiently solve the structure from motion problem in large-scale scenes. Full article
Show Figures

Figure 1

28 pages, 5276 KB  
Article
Fog Computing for Realizing Smart Neighborhoods in Smart Grids
by Rituka Jaiswal, Reggie Davidrajuh and Chunming Rong
Computers 2020, 9(3), 76; https://doi.org/10.3390/computers9030076 - 21 Sep 2020
Cited by 17 | Viewed by 6176
Abstract
Cloud Computing provides on-demand computing services like software, networking, storage, analytics, and intelligence over the Internet (“the cloud”). But it is facing challenges because of the explosion of the Internet of Things (IoT) devices and the volume, variety, veracity and velocity of the [...] Read more.
Cloud Computing provides on-demand computing services like software, networking, storage, analytics, and intelligence over the Internet (“the cloud”). But it is facing challenges because of the explosion of the Internet of Things (IoT) devices and the volume, variety, veracity and velocity of the data generated by these devices. There is a need for ultra-low latency, reliable service along with security and privacy. Fog Computing is a promising solution to overcome these challenges. The originality, scope and novelty of this paper is the definition and formulation of the problem of smart neighborhoods in context of smart grids. This is achieved through an extensive literature study, firstly on Fog Computing and its foundation technologies, its applications and the literature review of Fog Computing research in various application domains. Thereafter, we introduce smart grid and community MicroGrid concepts and, their challenges to give the in depth background of the problem and hence, formalize the problem. The smart grid, which ensures reliable, secure, and cost-effective power supply to the smart neighborhoods, effectively needs Fog Computing architecture to achieve its purpose. This paper also identifies, without rigorous analysis, potential solutions to address the problem of smart neighborhoods. The challenges in the integration of Fog Computing and smart grids are also discussed. Full article
(This article belongs to the Special Issue Feature Paper in Computers)
Show Figures

Figure 1

13 pages, 1328 KB  
Article
Smart Microgrids Operation Considering a Variable Neighborhood Search: The Differential Evolutionary Particle Swarm Optimization Algorithm
by Julian Garcia-Guarin, Diego Rodriguez, David Alvarez, Sergio Rivera, Camilo Cortes, Alejandra Guzman, Arturo Bretas, Julio Romero Aguero and Newton Bretas
Energies 2019, 12(16), 3149; https://doi.org/10.3390/en12163149 - 16 Aug 2019
Cited by 35 | Viewed by 4856
Abstract
Increased use of renewable energies in smart microgrids (SMGs) present new technical challenges to system operation. SMGs must be self-sufficient and operate independently; however, when more elements are integrated into SMGs, as distributed energy resources (DER), traditional explicit mathematical formulations will demand too [...] Read more.
Increased use of renewable energies in smart microgrids (SMGs) present new technical challenges to system operation. SMGs must be self-sufficient and operate independently; however, when more elements are integrated into SMGs, as distributed energy resources (DER), traditional explicit mathematical formulations will demand too much data from the network and become intractable. In contrast, tools based on optimization with metaheuristics can provide near optimal solutions in acceptable times. Considering this, this paper presents the variable neighborhood search differential evolutionary particle swarm optimization (VNS-DEEPSO) algorithm to solve multi-objective stochastic control models, as SMGs system operation. The goal is to control DER while maximizing profit. In this work, DER considered the bidirectional communication between energy storage systems (ESS) and electric vehicles (EVs). They can charge/discharge power and buy/sell energy in the electricity markets. Also, they have elements such as traditional generators (e.g., reciprocating engines) and loads, with demand response/control capability. Sources of uncertainty are associated with weather conditions, planned EV trips, load forecasting and the market prices. The VNS-DEEPSO algorithm was the winner of the IEEE Congress on Evolutionary Computation/The Genetic and Evolutionary Computation Conference (IEEE-CEC/GECCO 2019) smart grid competition (with encrypted code) and also won the IEEE World Congress on Computational Intelligence (IEEE-WCCI) 2018 smart grid competition (these competitions were developed by the group GECAD, based at the Polytechnic Institute of Porto, in collaboration with Delft University and Adelaide University). In the IEEE-CEC/GECCO 2019, the relative error improved between 32% and 152% in comparison with other algorithms. Full article
(This article belongs to the Special Issue Heuristic Optimization Techniques Applied to Power Systems)
Show Figures

Graphical abstract

20 pages, 9647 KB  
Article
Transforming Data Centers in Active Thermal Energy Players in Nearby Neighborhoods
by Marcel Antal, Tudor Cioara, Ionut Anghel, Claudia Pop and Ioan Salomie
Sustainability 2018, 10(4), 939; https://doi.org/10.3390/su10040939 - 23 Mar 2018
Cited by 25 | Viewed by 5830
Abstract
In this paper, we see the Data Centers (DCs) as producers of waste heat integrated with smart energy infrastructures, heat which can be re-used for nearby neighborhoods. We provide a model of the thermo-electric processes within DCs equipped with heat reuse technology, allowing [...] Read more.
In this paper, we see the Data Centers (DCs) as producers of waste heat integrated with smart energy infrastructures, heat which can be re-used for nearby neighborhoods. We provide a model of the thermo-electric processes within DCs equipped with heat reuse technology, allowing them to adapt their thermal response profile to meet various levels of hot water demand. On top of the model, we have implemented computational fluid dynamics-based simulations to determine the cooling system operational parameters settings, which allow the heat to build up without endangering the servers’ safety operation as well as the distribution of the workload on the servers to avoid hot spots. This will allow for setting higher temperature set points for short periods of time and using pre-cooling and post-cooling as flexibility mechanisms for DC thermal profile adaptation. To reduce the computational time complexity, we have used neural networks, which are trained using the simulation results. Experiments have been conducted considering a small operational DC featuring a server room of 24 square meters and 60 servers organized in four racks. The results show the DCs’ potential to meet different levels of thermal energy demand by re-using their waste heat in nearby neighborhoods. Full article
Show Figures

Figure 1

Back to TopTop