Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,570)

Search Parameters:
Keywords = disease pathogenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 365 KiB  
Review
Precision Oncology in Hodgkin’s Lymphoma: Immunotherapy and Emerging Therapeutic Frontiers
by Adit Singhal, David Mueller, Benjamin Ascherman, Pratik Shah, Wint Yan Aung, Edward Zhou and Maria J. Nieto
Lymphatics 2025, 3(3), 24; https://doi.org/10.3390/lymphatics3030024 (registering DOI) - 6 Aug 2025
Abstract
Hodgkin’s Lymphoma (HL) affects approximately 8500 individuals annually in the United States. The 5-year relative survival rate has improved to 88.5%, driven by transformative advances in immunotherapy and precision oncology. The integration of Brentuximab vedotin (BV) and immune checkpoint inhibitors (ICIs) has redefined [...] Read more.
Hodgkin’s Lymphoma (HL) affects approximately 8500 individuals annually in the United States. The 5-year relative survival rate has improved to 88.5%, driven by transformative advances in immunotherapy and precision oncology. The integration of Brentuximab vedotin (BV) and immune checkpoint inhibitors (ICIs) has redefined treatment paradigms. The phase III SWOG S1826 trial established nivolumab plus doxorubicin, vinblastine, and dacarbazine (N + AVD) as an emerging new standard for advanced-stage HL, achieving a 2-year progression-free survival (PFS) of 92% compared to 83% for BV plus AVD (HR 0.48, 95% CI: 0.33–0.70), with superior safety, particularly in patients over 60. In relapsed/refractory HL, pembrolizumab outperforms BV, with a median PFS of 13.2 versus 8.3 months (HR 0.65, 95% CI: 0.48–0.88), as demonstrated in the KEYNOTE-204 trial. Emerging strategies, including novel ICI combinations, minimal residual disease (MRD) monitoring via circulating tumor DNA (ctDNA), and artificial intelligence (AI)-driven diagnostics, promise to further personalize therapy. This review synthesizes HL’s epidemiology, pathogenesis, diagnostic innovations, and therapeutic advances, highlighting the role of precision medicine in addressing unmet needs and disparities in HL care. Full article
Show Figures

Figure 1

34 pages, 1221 KiB  
Review
Unmasking Pediatric Asthma: Epigenetic Fingerprints and Markers of Respiratory Infections
by Alessandra Pandolfo, Rosalia Paola Gagliardo, Valentina Lazzara, Andrea Perri, Velia Malizia, Giuliana Ferrante, Amelia Licari, Stefania La Grutta and Giusy Daniela Albano
Int. J. Mol. Sci. 2025, 26(15), 7629; https://doi.org/10.3390/ijms26157629 - 6 Aug 2025
Abstract
Pediatric asthma is a multifactorial and heterogeneous disease determined by the dynamic interplay of genetic susceptibility, environmental exposures, and immune dysregulation. Recent advances have highlighted the pivotal role of epigenetic mechanisms, in particular, DNA methylation, histone modifications, and non-coding RNAs, in the regulation [...] Read more.
Pediatric asthma is a multifactorial and heterogeneous disease determined by the dynamic interplay of genetic susceptibility, environmental exposures, and immune dysregulation. Recent advances have highlighted the pivotal role of epigenetic mechanisms, in particular, DNA methylation, histone modifications, and non-coding RNAs, in the regulation of inflammatory pathways contributing to asthma phenotypes and endotypes. This review examines the role of respiratory viruses such as respiratory syncytial virus (RSV), rhinovirus (RV), and other bacterial and fungal infections that are mediators of infection-induced epithelial inflammation that drive epithelial homeostatic imbalance and induce persistent epigenetic alterations. These alterations lead to immune dysregulation, remodeling of the airways, and resistance to corticosteroids. A focused analysis of T2-high and T2-low asthma endotypes highlights unique epigenetic landscapes directing cytokines and cellular recruitment and thereby supports phenotype-specific aspects of disease pathogenesis. Additionally, this review also considers the role of miRNAs in the control of post-transcriptional networks that are pivotal in asthma exacerbation and the severity of the disease. We discuss novel and emerging epigenetic therapies, such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, miRNA-based treatments, and immunomodulatory probiotics, that are in preclinical or early clinical development and may support precision medicine in asthma. Collectively, the current findings highlight the translational relevance of including pathogen-related biomarkers and epigenomic data for stratifying pediatric asthma patients and for the personalization of therapeutic regimens. Epigenetic dysregulation has emerged as a novel and potentially transformative approach for mitigating chronic inflammation and long-term morbidity in children with asthma. Full article
(This article belongs to the Special Issue Molecular Research in Airway Diseases)
23 pages, 3665 KiB  
Communication
Drug Repurposing for Kala-Azar
by Biljana Arsić, Budimir S. Ilić, Andreas Maier, Michael Hartung, Jovana Janjić, Jelena Milićević and Jan Baumbach
Pharmaceutics 2025, 17(8), 1021; https://doi.org/10.3390/pharmaceutics17081021 - 6 Aug 2025
Abstract
Objective: Visceral leishmaniasis (VL), a Neglected Tropical Disease caused by Leishmania donovani, remains insufficiently addressed by current therapies due to high toxicity, poor efficacy, and immunosuppressive complications. This study aimed to identify and characterize repurposed drugs that simultaneously target parasite-encoded and host-associated [...] Read more.
Objective: Visceral leishmaniasis (VL), a Neglected Tropical Disease caused by Leishmania donovani, remains insufficiently addressed by current therapies due to high toxicity, poor efficacy, and immunosuppressive complications. This study aimed to identify and characterize repurposed drugs that simultaneously target parasite-encoded and host-associated mechanisms essential for VL pathogenesis. Methods: Two complementary in silico drug repurposing strategies were employed. The first method utilized electron–ion interaction potential (EIIP) screening followed by molecular docking and molecular dynamics (MD) simulations targeting two L. donovani proteins: Rab5a and pteridine reductase 1 (PTR1). The second approach employed network-based drug repurposing using the Drugst.One platform, prioritizing candidates via STAT3-associated gene networks. Predicted drug–target complexes were validated by 100 ns MD simulations, and pharmacokinetic parameters were assessed via ADMET profiling using QikProp v7.0 and SwissADME web server. Results: Entecavir and valganciclovir showed strong binding to Rab5a and PTR1, respectively, with Glide Scores of −9.36 and −9.10 kcal/mol, and corresponding MM-GBSA ΔG_bind values of −14.00 and −13.25 kcal/mol, confirming their stable interactions and repurposing potential. Network-based analysis identified nifuroxazide as the top candidate targeting the host JAK2/TYK2–STAT3 axis, with high stability confirmed in MD simulations. Nifuroxazide also displayed the most favorable ADMET profile, including oral bioavailability, membrane permeability, and absence of PAINS alerts. Conclusions: This study highlights the potential of guanine analogs such as entecavir and valganciclovir, and the nitrofuran derivative nifuroxazide, as promising multi-target drug repurposing candidates for VL. Their mechanisms support a dual strategy targeting both parasite biology and host immunoregulation, warranting further preclinical investigation. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

22 pages, 9750 KiB  
Article
SIK2 Drives Pulmonary Fibrosis by Enhancing Fibroblast Glycolysis and Activation
by Jianhan He, Ruihan Dong, Huihui Yue, Fengqin Zhang, Xinran Dou, Xuan Li, Hui Li and Huilan Zhang
Biomedicines 2025, 13(8), 1919; https://doi.org/10.3390/biomedicines13081919 - 6 Aug 2025
Abstract
Background: Pulmonary fibrosis (PF), the end-stage manifestation of interstitial lung disease, is defined by excessive extracellular matrix deposition and alveolar destruction. Activated fibroblasts, the primary matrix producers, rely heavily on dysregulated glucose metabolism for their activation. While Salt Inducible Kinase 2 (SIK2) regulates [...] Read more.
Background: Pulmonary fibrosis (PF), the end-stage manifestation of interstitial lung disease, is defined by excessive extracellular matrix deposition and alveolar destruction. Activated fibroblasts, the primary matrix producers, rely heavily on dysregulated glucose metabolism for their activation. While Salt Inducible Kinase 2 (SIK2) regulates glycolytic pathways in oncogenesis, its specific contributions to fibroblast activation and therapeutic potential in PF pathogenesis remain undefined. This study elucidates the functional role of SIK2 in PF and assesses its viability as a therapeutic target. Methods: SIK2 expression/localization in fibrosis was assessed by Western blot and immunofluorescence. Fibroblast-specific Sik2 KO mice evaluated effects on bleomycin-induced fibrosis. SIK2’s role in fibroblast activation and glucose metabolism impact (enzyme expression, metabolism assays, metabolites) were tested. SIK2 inhibitors were screened and evaluated therapeutically in fibrosis models. Results: It demonstrated significant SIK2 upregulation, specifically within activated fibroblasts of fibrotic lungs from both PF patients and murine models. Functional assays demonstrated that SIK2 is crucial for fibroblast activation, proliferation, and migration. Mechanistically, SIK2 enhances fibroblast glucose metabolism by increasing the expression of glycolysis-related enzymes. Additionally, this study demonstrated that the SIK2 inhibitor YKL06-061 effectively inhibited PF in both bleomycin and FITC-induced PF mouse models with the preliminary safety profile. Furthermore, we identified a novel therapeutic application for the clinically approved drug fostamatinib, demonstrating it inhibits fibroblast activation via SIK2 targeting and alleviates PF in mice. Conclusions: Our findings highlight SIK2 as a promising therapeutic target and provide compelling preclinical evidence for two distinct anti-fibrotic strategies with significant potential for future PF treatment. Full article
(This article belongs to the Special Issue New Insights in Respiratory Diseases)
Show Figures

Figure 1

28 pages, 3613 KiB  
Review
Epigenetic Alterations in Age-Related Macular Degeneration: Mechanisms and Implications
by Dana Kisswani, Christina Carroll, Fatima Valdes-Mora and Matt Rutar
Int. J. Mol. Sci. 2025, 26(15), 7601; https://doi.org/10.3390/ijms26157601 - 6 Aug 2025
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of irreversible vision loss among the elderly, and is influenced by a combination of genetic and environmental risk factors. While genetic associations in AMD are well-established, the molecular mechanisms underlying disease [...] Read more.
Age-related macular degeneration (AMD) is one of the leading causes of irreversible vision loss among the elderly, and is influenced by a combination of genetic and environmental risk factors. While genetic associations in AMD are well-established, the molecular mechanisms underlying disease onset and progression remain poorly understood. A growing body of evidence suggests that epigenetic modifications may serve as a potential missing link regulating gene–environment interactions. This review incorporates recent findings on DNA methylation, including both hypermethylation and hypomethylation patterns affecting genes such as silent mating type information regulation 2 homolog 1 (SIRT1), glutathione S-transferase isoform (GSTM), and SKI proto-oncogene (SKI), which may influence key pathophysiological drivers of AMD. We also examine histone modification patterns, chromatin accessibility, the status of long non-coding RNAs (lncRNAs) in AMD pathogenesis and in regulating pathways pertinent to the pathophysiology of the disease. While the field of ocular epigenetics remains in its infancy, accumulating evidence to date points to a burgeoning role for epigenetic regulation in AMD, pre-clinical studies have yielded promising findings for the prospect of epigenetics as a future therapeutic avenue. Full article
Show Figures

Figure 1

19 pages, 332 KiB  
Review
Redefining Treatment Paradigms in Thyroid Eye Disease: Current and Future Therapeutic Strategies
by Nicolò Ciarmatori, Flavia Quaranta Leoni and Francesco M. Quaranta Leoni
J. Clin. Med. 2025, 14(15), 5528; https://doi.org/10.3390/jcm14155528 - 6 Aug 2025
Abstract
Background: Thyroid eye disease (TED) is a rare autoimmune orbital disorder predominantly associated with Graves’ disease. It is characterized by orbital inflammation, tissue remodeling, and potential visual morbidity. Conventional therapies, particularly systemic glucocorticoids, offer only partial symptomatic relief, failing to reverse chronic structural [...] Read more.
Background: Thyroid eye disease (TED) is a rare autoimmune orbital disorder predominantly associated with Graves’ disease. It is characterized by orbital inflammation, tissue remodeling, and potential visual morbidity. Conventional therapies, particularly systemic glucocorticoids, offer only partial symptomatic relief, failing to reverse chronic structural changes such as proptosis and diplopia, and are associated with substantial adverse effects. This review aims to synthesize recent developments in understandings of TED pathogenesis and to critically evaluate emerging therapeutic strategies. Methods: A systematic literature review was conducted using MEDLINE, Embase, and international clinical trial registries focusing on pivotal clinical trials and investigational therapies targeting core molecular pathways involved in TED. Results: Current evidence suggests that TED pathogenesis is primarily driven by the autoimmune activation of orbital fibroblasts (OFs) through thyrotropin receptor (TSH-R) and insulin-like growth factor-1 receptor (IGF-1R) signaling. Teprotumumab, a monoclonal IGF-1R inhibitor and the first therapy approved by the U.S. Food and Drug Administration for TED, has demonstrated substantial clinical benefit, including improvements in proptosis, diplopia, and quality of life. However, concerns remain regarding relapse rates and treatment-associated adverse events, particularly hearing impairment. Investigational therapies, including next-generation IGF-1R inhibitors, small-molecule antagonists, TSH-R inhibitors, neonatal Fc receptor (FcRn) blockers, cytokine-targeting agents, and gene-based interventions, are under development. These novel approaches aim to address both inflammatory and fibrotic components of TED. Conclusions: Teprotumumab has changed TED management but sustained control and toxicity reduction remain challenges. Future therapies should focus on targeted, mechanism-based, personalized approaches to improve long-term outcomes and patient quality of life. Full article
(This article belongs to the Section Ophthalmology)
39 pages, 1858 KiB  
Review
Mechanistic Insights into the Pathogenesis of Polycystic Kidney Disease
by Qasim Al-orjani, Lubna A. Alshriem, Gillian Gallagher, Raghad Buqaileh, Neela Azizi and Wissam AbouAlaiwi
Cells 2025, 14(15), 1203; https://doi.org/10.3390/cells14151203 - 5 Aug 2025
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic ciliopathy resulting from loss-of-function mutations in the PKD1 and PKD2 genes, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC1 and PC2 regulate mechanosensation, calcium signaling, and key pathways controlling tubular epithelial structure and [...] Read more.
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic ciliopathy resulting from loss-of-function mutations in the PKD1 and PKD2 genes, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC1 and PC2 regulate mechanosensation, calcium signaling, and key pathways controlling tubular epithelial structure and function. Loss of PC1/PC2 disrupts calcium homeostasis, elevates cAMP, and activates proliferative cascades such as PKA–B-Raf–MEK–ERK, mTOR, and Wnt, driving cystogenesis via epithelial proliferation, impaired apoptosis, fluid secretion, and fibrosis. Recent evidence also implicates novel signaling axes in ADPKD progression including, the Hippo pathway, where dysregulated YAP/TAZ activity enhances c-Myc-mediated proliferation; the stimulator of interferon genes (STING) pathway, which is activated by mitochondrial DNA release and linked to NF-κB-driven inflammation and fibrosis; and the TWEAK/Fn14 pathway, which mediates pro-inflammatory and pro-apoptotic responses via ERK and NF-κB activation in tubular cells. Mitochondrial dysfunction, oxidative stress, and maladaptive extracellular matrix remodeling further exacerbate disease progression. A refined understanding of ADPKD’s complex signaling networks provides a foundation for precision medicine and next-generation therapeutics. This review gathers recent molecular insights and highlights both established and emerging targets to guide targeted treatment strategies in ADPKD. Full article
15 pages, 1353 KiB  
Review
Fyn Kinase: A Potential Target in Glucolipid Metabolism and Diabetes Mellitus
by Ruifeng Xiao, Cong Shen, Wen Shen, Xunan Wu, Xia Deng, Jue Jia and Guoyue Yuan
Curr. Issues Mol. Biol. 2025, 47(8), 623; https://doi.org/10.3390/cimb47080623 - 5 Aug 2025
Abstract
Fyn is widely involved in diverse cellular physiological processes, including cell growth and survival, and has been implicated in the regulation of energy metabolism and the pathogenesis of diabetes mellitus through multiple pathways. Fyn plays a role in increasing fat accumulation and promoting [...] Read more.
Fyn is widely involved in diverse cellular physiological processes, including cell growth and survival, and has been implicated in the regulation of energy metabolism and the pathogenesis of diabetes mellitus through multiple pathways. Fyn plays a role in increasing fat accumulation and promoting insulin resistance, and it also contributes to the development of diabetic complications such as diabetic kidney disease and diabetic retinopathy. The primary mechanism by which Fyn modulates lipid metabolism is that it inhibits AMP-activated protein kinase (AMPK). Additionally, it affects energy homeostasis through regulating specific signal pathways affecting lipid metabolism including pathways related to CD36, through enhancement of adipocyte differentiation, and through modulating insulin signal transduction. Inflammatory stress is one of the fundamental mechanisms in diabetes mellitus and its complications. Fyn also plays a role in inflammatory stress-related signaling cascades such as the Akt/GSK-3β/Fyn/Nrf2 pathway, exacerbating inflammation in diabetes mellitus. Therefore, Fyn emerges as a promising therapeutic target for regulating glucolipid metabolism and alleviating type 2 diabetes mellitus. This review synthesizes research on the role of Fyn in the regulation of energy metabolism and the development of diabetes mellitus, while exploring its specific regulatory mechanisms. Full article
Show Figures

Figure 1

21 pages, 432 KiB  
Review
Interplay Between Depression and Inflammatory Bowel Disease: Shared Pathogenetic Mechanisms and Reciprocal Therapeutic Impacts—A Comprehensive Review
by Amalia Di Petrillo, Agnese Favale, Sara Onali, Amit Kumar, Giuseppe Abbracciavento and Massimo Claudio Fantini
J. Clin. Med. 2025, 14(15), 5522; https://doi.org/10.3390/jcm14155522 - 5 Aug 2025
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract. Although the aetiology of IBD remains largely unknown, several studies suggest that an individual’s genetic susceptibility, external environmental factors, intestinal microbial flora, and immune responses are all factors involved in [...] Read more.
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract. Although the aetiology of IBD remains largely unknown, several studies suggest that an individual’s genetic susceptibility, external environmental factors, intestinal microbial flora, and immune responses are all factors involved in and functionally linked to the pathogenesis of IBD. Beyond the gastrointestinal manifestations, IBD patients frequently suffer from psychiatric comorbidities, particularly depression and anxiety. It remains unclear whether these disorders arise solely from reduced quality of life or whether they share overlapping biological mechanisms with IBD. This review aims to explore the bidirectional relationship between IBD and depressive disorders (DDs), with a focus on four key shared mechanisms: immune dysregulation, genetic susceptibility, alterations in gut microbiota composition, and dysfunction of the hypothalamic–pituitary–adrenal (HPA) axis. By examining recent literature, we highlight how these interconnected systems may contribute to both intestinal inflammation and mood disturbances. Furthermore, we discuss the reciprocal pharmacologic interactions between IBD and DDs: treatments for IBD, such as TNF-alpha and integrin inhibitors, have demonstrated effects on mood and anxiety symptoms, while certain antidepressants appear to exert independent anti-inflammatory properties, potentially reducing the risk or severity of IBD. Overall, this review underscores the need for a multidisciplinary approach to the care of IBD patients, integrating psychological and gastroenterological assessment. A better understanding of the shared pathophysiology may help refine therapeutic strategies and support the development of personalized, gut–brain-targeted interventions. Full article
Show Figures

Figure 1

21 pages, 690 KiB  
Review
Diabetes and Sarcopenia: Metabolomic Signature of Pathogenic Pathways and Targeted Therapies
by Anamaria Andreea Danciu, Cornelia Bala, Georgeta Inceu, Camelia Larisa Vonica, Adriana Rusu, Gabriela Roman and Dana Mihaela Ciobanu
Int. J. Mol. Sci. 2025, 26(15), 7574; https://doi.org/10.3390/ijms26157574 - 5 Aug 2025
Abstract
Diabetes mellites (DM) is a chronic disease with increasing prevalence worldwide and multiple health implications. Among them, sarcopenia is a metabolic disorder characterized by loss of muscle mass and function. The two age-related diseases, DM and sarcopenia, share underlying pathophysiological pathways. This narrative [...] Read more.
Diabetes mellites (DM) is a chronic disease with increasing prevalence worldwide and multiple health implications. Among them, sarcopenia is a metabolic disorder characterized by loss of muscle mass and function. The two age-related diseases, DM and sarcopenia, share underlying pathophysiological pathways. This narrative literature review aims to provide an overview of the existing evidence on metabolomic studies evaluating DM associated with sarcopenia. Advancements in targeted and untargeted metabolomics techniques could provide better insight into the pathogenesis of sarcopenia in DM and describe their entangled and fluctuating interrelationship. Recent evidence showed that sarcopenia in DM induced significant changes in protein, lipid, carbohydrate, and in energy metabolisms in humans, animal models of DM, and cell cultures. Newer metabolites were reported, known metabolites were also found significantly modified, while few amino acids and lipids displayed a dual behavior. In addition, several therapeutic approaches proved to be promising interventions for slowing the progression of sarcopenia in DM, including physical activity, newer antihyperglycemic classes, D-pinitol, and genetic USP21 ablation, although none of them were yet validated for clinical use. Conversely, ceramides had a negative impact. Further research is needed to confirm the utility of these findings and to provide potential metabolomic biomarkers that might be relevant for the pathogenesis and treatment of sarcopenia in DM. Full article
Show Figures

Figure 1

31 pages, 1732 KiB  
Review
GLUT4 Trafficking and Storage Vesicles: Molecular Architecture, Regulatory Networks, and Their Disruption in Insulin Resistance
by Hana Drobiova, Ghadeer Alhamar, Rasheed Ahmad, Fahd Al-Mulla and Ashraf Al Madhoun
Int. J. Mol. Sci. 2025, 26(15), 7568; https://doi.org/10.3390/ijms26157568 - 5 Aug 2025
Abstract
Insulin-regulated glucose uptake is a central mechanism in maintaining systemic glucose homeostasis, primarily occurring in skeletal muscle and adipose tissue. This process relies on the insulin-stimulated translocation of the glucose transporter, GLUT4, from specialized intracellular compartments, known as GLUT4 storage vesicles (GSVs), to [...] Read more.
Insulin-regulated glucose uptake is a central mechanism in maintaining systemic glucose homeostasis, primarily occurring in skeletal muscle and adipose tissue. This process relies on the insulin-stimulated translocation of the glucose transporter, GLUT4, from specialized intracellular compartments, known as GLUT4 storage vesicles (GSVs), to the plasma membrane. Disruption of this pathway is a hallmark of insulin resistance and a key contributor to the pathogenesis of type 2 diabetes. Recent advances have provided critical insights into both the insulin signalling cascades and the complex biogenesis, as well as the trafficking and fusion dynamics of GSVs. This review synthesizes the current understanding of the molecular mechanisms governing GSV mobilization and membrane fusion, highlighting key regulatory nodes that may become dysfunctional in metabolic disease. By elucidating these pathways, we propose new therapeutic avenues targeting GSV trafficking to improve insulin sensitivity and combat type 2 diabetes. Full article
Show Figures

Figure 1

25 pages, 1708 KiB  
Review
miRNAs in Pulmonary Hypertension: Mechanistic Insights and Therapeutic Potential
by Jindong Fang, Hongyang Chen, Zhuangzhuang Jia, Jinjin Dai and Fengli Ma
Biomedicines 2025, 13(8), 1910; https://doi.org/10.3390/biomedicines13081910 - 5 Aug 2025
Abstract
Pulmonary hypertension (PH) is a serious pulmonary vascular disease. Vascular remodeling, metabolic reprogramming, inflammation, and fibrosis are all major pathogenic mechanisms in PH. MicroRNAs (miRNAs) are small RNAs, about 20–24 nucleotides long, that play important regulatory roles in biological processes, and in recent [...] Read more.
Pulmonary hypertension (PH) is a serious pulmonary vascular disease. Vascular remodeling, metabolic reprogramming, inflammation, and fibrosis are all major pathogenic mechanisms in PH. MicroRNAs (miRNAs) are small RNAs, about 20–24 nucleotides long, that play important regulatory roles in biological processes, and in recent years, miRNAs have been found to potentially play a regulatory role in the pathogenesis of PH, and also serve as biomarkers and therapeutic agents for PH. However, there is still a long way to go from these experimental findings to their implementation in clinical practice. This study reviews the potential role of miRNAs in the pathogenesis of PH and suggests future applications of miRNAs in PH. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

16 pages, 4074 KiB  
Article
Exploring 6-aza-2-Thiothymine as a MALDI-MSI Matrix for Spatial Lipidomics of Formalin-Fixed Paraffin-Embedded Clinical Samples
by Natalia Shelly Porto, Simone Serrao, Greta Bindi, Nicole Monza, Claudia Fumagalli, Vanna Denti, Isabella Piga and Andrew Smith
Metabolites 2025, 15(8), 531; https://doi.org/10.3390/metabo15080531 - 5 Aug 2025
Abstract
Background/Objectives: In recent years, lipids have emerged as critical regulators of different disease processes, being involved in cancer pathogenesis, progression, and outcome. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) has significantly expanded the technology’s reach, enabling spatially resolved profiling of lipids directly [...] Read more.
Background/Objectives: In recent years, lipids have emerged as critical regulators of different disease processes, being involved in cancer pathogenesis, progression, and outcome. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) has significantly expanded the technology’s reach, enabling spatially resolved profiling of lipids directly from tissue, including formalin-fixed paraffin-embedded (FFPE) specimens. In this context, MALDI matrix selection is crucial for lipid extraction and ionization, influencing key aspects such as molecular coverage and sensitivity, especially in such specimens with already depleted lipid content. Thus, in this work, we aim to explore the feasibility of mapping lipid species in FFPE clinical samples with MALDI-MSI using 6-aza-2-thiothymine (ATT) as a matrix of choice. Methods: To do so, ATT performances were first compared to those two other matrices commonly used for lipidomic analyses, 2′,5′-dihydroxybenzoic acid (DHB) and Norharmane (NOR), on lipid standards. Results: As a proof-of-concept, we then assessed ATT’s performance for the MALDI-MSI analysis of lipids in FFPE brain sections, both in positive and negative ion modes, comparing results with those obtained from other commonly used dual-polarity matrices. In this context, ATT enabled the putative annotation of 98 lipids while maintaining a well-balanced detection of glycerophospholipids (60.2%) and sphingolipids (32.7%) in positive ion mode. It outperformed both DHB and NOR in the identification of glycolipids (3%) and fatty acids (4%). Additionally, ATT exceeded DHB in terms of total lipid count (62 vs. 21) and class diversity and demonstrated performance comparable to NOR in negative ion mode. Moreover, ATT was applied to a FFPE glioblastoma tissue microarray (TMA) evaluating the ability of this matrix to reveal biologically relevant lipid features capable of distinguishing normal brain tissue from glioblastoma regions. Conclusions: Altogether, the results presented in this work suggest that ATT is a suitable matrix for pathology imaging applications, even at higher lateral resolutions of 20 μm, not only for proteomic but also for lipidomic analysis. This could enable the use of the same matrix type for the analysis of both lipids and peptides on the same tissue section, offering a unique strategic advantage for multi-omics studies, while also supporting acquisition in both positive and negative ionization modes. Full article
Show Figures

Graphical abstract

23 pages, 1642 KiB  
Review
The Multifaceted Role of Autophagy in Nasopharyngeal Carcinoma: Translational Perspectives on Pathogenesis, Biomarkers, Treatment Resistance, and Emerging Therapies
by Abdul L. Shakerdi, Emma Finnegan, Yin-Yin Sheng and Graham P. Pidgeon
Cancers 2025, 17(15), 2577; https://doi.org/10.3390/cancers17152577 - 5 Aug 2025
Abstract
Background: Nasopharyngeal carcinoma (NPC) is an epithelial malignancy arising from the nasopharyngeal mucosa. Despite treatment advances such as the use of intensity-modulated radiotherapy and immune checkpoint inhibitors, resistance remains a significant clinical challenge. Many tumours are also diagnosed at an advanced stage associated [...] Read more.
Background: Nasopharyngeal carcinoma (NPC) is an epithelial malignancy arising from the nasopharyngeal mucosa. Despite treatment advances such as the use of intensity-modulated radiotherapy and immune checkpoint inhibitors, resistance remains a significant clinical challenge. Many tumours are also diagnosed at an advanced stage associated with poor prognosis. Objective: This review aims to explore the biological roles of autophagy in NPC, primarily highlighting its involvement in disease pathogenesis and treatment resistance. Methods: We performed a review of the recent literature examining the role of autophagy-related pathways in NPC pathogenesis, biomarker discovery, and therapeutic targeting. Results: Autophagy plays a dual role in NPC as it contributes to both tumour suppression and progression. It is involved in tumour initiation, metastasis, immune modulation, and treatment resistance. Autophagy-related genes such as SQSTM1, Beclin-1, and AURKA may serve as prognostic and therapeutic biomarkers. Various strategies are being investigated for their role to modulate autophagy using pharmacologic inhibitors, RNA interventions, and natural compounds. Conclusions: Further research into autophagy’s context-dependent roles in NPC may inform the development of personalised therapies and allow progress in translational and precision oncology. Full article
Show Figures

Figure 1

21 pages, 1370 KiB  
Review
The Therapeutic Potential of Glymphatic System Activity to Reduce the Pathogenic Accumulation of Cytotoxic Proteins in Alzheimer’s Disease
by Kamila Kopeć, Dariusz Koziorowski and Stanisław Szlufik
Int. J. Mol. Sci. 2025, 26(15), 7552; https://doi.org/10.3390/ijms26157552 - 5 Aug 2025
Abstract
Neurodegenerative disorders, including Alzheimer’s disease (AD), are a growing problem in aging society. The amyloid cascade hypothesis has recently been questioned, and therapies based on it have not yielded the expected results. However, the role of amyloid-β (Aβ) in AD pathogenesis cannot be [...] Read more.
Neurodegenerative disorders, including Alzheimer’s disease (AD), are a growing problem in aging society. The amyloid cascade hypothesis has recently been questioned, and therapies based on it have not yielded the expected results. However, the role of amyloid-β (Aβ) in AD pathogenesis cannot be rejected. It appears that some of the key players in the pathogenesis of the disease are the soluble amyloid-β oligomers. Soluble amyloid-β oligomers have neurotoxic effects by disrupting intracellular Ca2+ homeostasis and impairing mitochondrial function. The glymphatic system is an important pathway for the removal of soluble amyloid forms from the brain. The decline in the activity of this system is observed in aging brains, which is correlated with the occurrence of Alzheimer’s disease, primarily among the elderly population. Therefore, the question arises as to whether the glymphatic system could be another potential target for therapeutic interventions in Alzheimer’s disease. In this regard, it is imperative to pay attention to the factors that contribute to the pathogenesis of Alzheimer’s disease and also impact the glymphatic system, such as sleep, physical activity, alcohol consumption, and supplementation with polyunsaturated fatty acids. The question remains whether the glymphatic system will become the key to treating Alzheimer’s disease. Full article
(This article belongs to the Special Issue Advances in Molecular Mechanisms of Neurodegenerative Diseases)
Show Figures

Figure 1

Back to TopTop