Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = direct current cathodic vacuum arc deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6070 KiB  
Article
A Non-Vacuum Coating Process That Fully Achieves Technical Goals of Bipolar Plates via Synergistic Control of Multiple Layer-by-Layer Strategy
by Qiaoling Liu, Xiaole Chen, Menghan Wu, Weihao Wang, Yinru Lin, Zilong Chen, Shuhan Yang, Yuhui Zheng and Qianming Wang
Molecules 2025, 30(12), 2543; https://doi.org/10.3390/molecules30122543 - 11 Jun 2025
Viewed by 440
Abstract
The primary challenge associated with stainless steel in fuel cell operation is its susceptibility to corrosion, which leads to increased contact resistance and subsequent degradation of electrochemical performance. In general, the protective layers have been loaded onto the metal surface by widely used [...] Read more.
The primary challenge associated with stainless steel in fuel cell operation is its susceptibility to corrosion, which leads to increased contact resistance and subsequent degradation of electrochemical performance. In general, the protective layers have been loaded onto the metal surface by widely used traditional techniques such as physical vapor deposition (PVD), or cathode arc ion plating. However, the above sputtering and evaporation ways require a high-vacuum condition, complicated experimental setups, higher costs, and an elevated temperature. Therefore, herein the achievement for uniform coatings over a large surface area has been realized by using a cost-effective strategy through a complete wet chemical process. The synergistic regulation of two conductive components and a plastic additive has been employed together with the entrapment of a surfactant to optimize the microstructure of the coating surface. The assembly of layered graphite and a polystyrene sphere could maintain both the high corrosion resistance feature and excellent electrical conductivity. In particular, the intrinsic vacant space in the above physical barriers has been filled with fine powders of indium tin oxide (ITO) due to its small size, and the interconnected conductive network with vertical/horizontal directions would be formed. All the key technical targets based on the U.S. Department of Energy (DOE) have been achieved under the simulated operating environments of a proton exchange membrane fuel cell. The corrosion current density has been measured as low as 0.52 μA/cm2 (for the sample of graphite/mixed layer) over the applied potentials from −0.6 V to 1.2 V and its protective efficiency is evaluated to be 99.8%. The interfacial contact resistance between the sample and the carbon paper is much less than 10 mΩ·cm2 (3.4 mΩ·cm2) under a contact pressure of 165 N/cm2. The wettability has been investigated and its contact angle has been evolved from 48° (uncoated sample) to even 110°, providing superior hydrophobicity to prevent water penetration. Such an innovative approach opens up new possibilities for improving the durability and reducing the costs of carbon-based coatings. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

17 pages, 8502 KiB  
Article
The Influence of Nitrogen Partial Pressure on the Microstructure and Mechanical Properties of HfNbTaTiVZr High-Entropy Nitride Coating Deposited via Direct Current Cathodic Vacuum Arc Deposition
by Tim Krülle, Martin Kuczyk, Michael Leonhardt, Otmar Zimmer and Christoph Leyens
Coatings 2024, 14(4), 398; https://doi.org/10.3390/coatings14040398 - 28 Mar 2024
Cited by 2 | Viewed by 1613
Abstract
In recent years, high-entropy alloys have attracted increasing scientific interest. Due to their promising combination of properties, such as high hardness and high temperature stability, they are attractive for use as tool coatings for machining applications, to give but one example. Previous studies [...] Read more.
In recent years, high-entropy alloys have attracted increasing scientific interest. Due to their promising combination of properties, such as high hardness and high temperature stability, they are attractive for use as tool coatings for machining applications, to give but one example. Previous studies often focused on layer deposition using magnetron sputtering. Comparatively little research has been carried out to date on coating deposition using direct current cathodic vacuum arc deposition (CAE), with higher achievable rates and almost completely ionized plasmas. The aim of this work is to investigate (HfNbTaTiZr)N-coatings produced by CAE. The nitrogen content was varied and the effects on the coating properties were investigated. Changing the N2/(N2 + Ar) ratio between 0.1 and 1.0 and varying the working pressure in the chamber from 2 Pa to 5 Pa resulted in variations of the nitrogen content of the coatings, ranging from 30 at% to 50 at%. Although different microstructures of the coatings were obtained, there was only a minor influence on the hardness and Young’s modulus. Full article
(This article belongs to the Special Issue High Entropy Alloy Films)
Show Figures

Figure 1

13 pages, 4396 KiB  
Article
The Formation of Composite Ti-Al-N Coatings Using Filtered Vacuum Arc Deposition with Separate Cathodes
by Ivan A. Shulepov, Egor B. Kashkarov, Igor B. Stepanov, Maxim S. Syrtanov, Alina N. Sutygina, Ivan Shanenkov, Aleksei Obrosov and Sabine Weiß
Metals 2017, 7(11), 497; https://doi.org/10.3390/met7110497 - 12 Nov 2017
Cited by 14 | Viewed by 5513
Abstract
Ti-Al-N coatings were deposited on high-speed steel substrates by filtered vacuum arc deposition (FVAD) during evaporation of aluminum and titanium cathodes. Distribution of elements, phase composition, and mechanical properties of Ti-Al-N coatings were investigated using Auger electron spectroscopy (AES), X-ray diffraction (XRD), transmission [...] Read more.
Ti-Al-N coatings were deposited on high-speed steel substrates by filtered vacuum arc deposition (FVAD) during evaporation of aluminum and titanium cathodes. Distribution of elements, phase composition, and mechanical properties of Ti-Al-N coatings were investigated using Auger electron spectroscopy (AES), X-ray diffraction (XRD), transmission electron microscopy (TEM) and nanoindentation, respectively. Additionally, tribological tests and scratch tests of the coatings were performed. The stoichiometry of the coating changes from Ti0.6Al0.4N to Ti0.48Al0.52N with increasing aluminum arc current from 70 A to 90 A, respectively. XRD and TEM showed only face-centered cubic Ti-Al-N phase with preferred orientation of the crystallites in (220) direction with respect to the sample normal and without precipitates of AlN or intermetallics inside the coatings. Incorporation of Al into the TiN lattice caused shifting of the (220) reflex to a higher 2θ angle with increasing Al content. Low content and size of microdroplets were obtained using coaxial plasma filters, which provides good mechanical and tribological properties of the coatings. The highest value of microhardness (36 GPa) and the best wear-resistance were achieved for the coating with higher Al content, thus for Ti0.48Al0.52N. These coatings exhibit good adhesive properties up to 30 N load in the scratch tests. Full article
Show Figures

Figure 1

Back to TopTop