Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = direct bioautography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1721 KiB  
Article
Bioassay-Guided Isolation of cis-Clerodane Diterpenoids and Monoglycerides from the Leaves of Solidago gigantea and Their Antimicrobial Activities
by Márton Baglyas, Péter G. Ott, Zoltán Bozsó, Ildikó Schwarczinger, József Bakonyi, Dénes Dlauchy, András Darcsi, Szilárd Varga and Ágnes M. Móricz
Plants 2025, 14(14), 2152; https://doi.org/10.3390/plants14142152 - 11 Jul 2025
Viewed by 452
Abstract
A previously undescribed cis-clerodane diterpenoid, diangelate solidagoic acid J (1), along with two known cis-clerodane diterpenoids, solidagoic acid C (2) and solidagoic acid D (3), as well as two known unsaturated monoacylglycerols, 1-linoleoyl glycerol ( [...] Read more.
A previously undescribed cis-clerodane diterpenoid, diangelate solidagoic acid J (1), along with two known cis-clerodane diterpenoids, solidagoic acid C (2) and solidagoic acid D (3), as well as two known unsaturated monoacylglycerols, 1-linoleoyl glycerol (4) and 1-α-linolenoyl glycerol (5), were isolated and characterized from the n-hexane leaf extract of Solidago gigantea (giant goldenrod). Compounds 25 were identified first in this species, and compounds 4 and 5 are reported here for the first time in the Solidago genus. The bioassay-guided isolation procedure included thin-layer chromatography (TLC) coupled with a Bacillus subtilis antibacterial assay, preparative flash column chromatography, and TLC–mass spectrometry (MS). Their structures were elucidated via extensive spectroscopic and spectrometric techniques such as one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and high-resolution tandem mass spectrometry (HRMS/MS). The antimicrobial activities of the isolated compounds were evaluated by a microdilution assay. All compounds exhibited weak to moderate antibacterial activity against the Gram-positive plant pathogen Clavibacter michiganensis, with MIC values ranging from 17 to 133 µg/mL, with compound 5 being the most potent. Only compound 1 was active against Curtobacterium flaccumfaciens pv. flaccumfaciens, while compound 3 demonstrated a weak antibacterial effect against B. subtilis and Rhodococcus fascians. Additionally, the growth of B. subtilis and R. fascians was moderately inhibited by compounds 1 and 5, respectively. None of the tested compounds showed antibacterial activity against Gram-negative Pseudomonas syringae pv. tomato and Xanthomonas arboricola pv. pruni. No bactericidal activity was observed against the tested microorganisms. Compounds 2 and 3 displayed weak antifungal activity against the crop pathogens Bipolaris sorokiniana and Fusarium graminearum. Our results demonstrate the efficacy of bioassay-guided strategies in facilitating the discovery of novel bioactive compounds. Full article
(This article belongs to the Special Issue Advanced Research in Plant Analytical Chemistry)
Show Figures

Figure 1

20 pages, 2721 KiB  
Article
Natural Deep Eutectic Solvents (NADESs) for the Extraction of Bioactive Compounds from Quinoa (Chenopodium quinoa Willd.) Leaves: A Semi-Quantitative Analysis Using High Performance Thin-Layer Chromatography
by Verónica Taco, Dennys Almachi, Pablo Bonilla, Ixchel Gijón-Arreortúa, Samira Benali, Jean-Marie Raquez, Pierre Duez and Amandine Nachtergael
Molecules 2025, 30(12), 2620; https://doi.org/10.3390/molecules30122620 - 17 Jun 2025
Viewed by 417
Abstract
Natural deep eutectic solvents (NADESs) have emerged as a promising eco-friendly alternative to petrochemicals for extracting plant metabolites. Considering that the demand for sustainable “green” ingredients for industrial applications is growing, those solvents are purported to develop extracts with interesting phytochemical fingerprints and [...] Read more.
Natural deep eutectic solvents (NADESs) have emerged as a promising eco-friendly alternative to petrochemicals for extracting plant metabolites. Considering that the demand for sustainable “green” ingredients for industrial applications is growing, those solvents are purported to develop extracts with interesting phytochemical fingerprints and biological activities. Given the interest in flavonoids from Chenopodium quinoa Willd. leaves, an efficient “green” extraction method was developed by investigating eight NADESs with defined molar ratios, i.e., malic acid-choline chloride (chcl)-water (w) (1:1:2, N1), chcl-glucose-w (5:2:5, N2), proline-malic acid-w (1:1:3, N3), glucose-fructose-sucrose-w (1:1:1:11, N4), 1,2-propanediol-chcl-w (1:1:1, N5), lactic acid-glucose-w (5:1:3, N6), glycerol-chcl-w (2:1:1, N7), and xylitol-chcl-w (1:2:3, N8). Rheological measurements of all NADESs confirmed their pseudoplastic behaviors. To improve the extraction processes, differential scanning calorimetry (DSC) allowed us to determine the maximum amount of water that could be added to the most stable NADES (N1, N2, N3, and N4; 17.5%, 20%, 10%, and 10% w/w, respectively) to lower their viscosities without disturbing their eutectic environments. The phytochemical compositions of NADES extracts were analyzed using high-performance thin-layer chromatography (HPTLC), and their free radical scavenging and α-amylase inhibitory properties were assessed using HPTLC-bioautography. N2, diluted with 20% of water, and N7 presented the best potential for replacing methanol for an eco-friendly extraction of flavonoids, radical scavengers, and α-amylase inhibitors from quinoa leaves. Their biological properties, combined with a good understanding of both thermal behavior and viscosity, make the obtained quinoa leaf NADES extracts good candidates for direct incorporation in nutraceutical formulations. Full article
Show Figures

Graphical abstract

18 pages, 2513 KiB  
Article
Anxiolytic, Antidepressant, and Anticholinesterase Effects of Essential Oil from Myrcia sylvatica (G.Mey.) DC
by Antônio Quaresma da Silva Júnior, Mariana Maciel Garcia, Wanderson da Silva Farias, Deise Juliane dos Anjos de Sousa, Adenilson de Sousa Barroso, Pablo Luis Baia Figueiredo, Gabriela B. dos Santos, Ricardo Bezerra de Oliveira and Rosa Helena Veras Mourão
Biomolecules 2025, 15(1), 110; https://doi.org/10.3390/biom15010110 - 12 Jan 2025
Cited by 1 | Viewed by 1398
Abstract
Aromatic plants are rich sources of essential oils (EOs), recognized for their therapeutic properties due to their diversity of phytochemicals. This study investigated the anxiolytic and antidepressant effects of Myrcia sylvatica essential oil (MsEO) through inhalation in an animal model and its in [...] Read more.
Aromatic plants are rich sources of essential oils (EOs), recognized for their therapeutic properties due to their diversity of phytochemicals. This study investigated the anxiolytic and antidepressant effects of Myrcia sylvatica essential oil (MsEO) through inhalation in an animal model and its in vitro anticholinesterase (AChE) activity. The EO was obtained by hydrodistillation, and its volatile constituents were analyzed by GC-MS. Swiss mice were exposed to doses of 0.1%, 1%, and 2% of the EO via an inhalation apparatus. The anxiolytic activity was assessed using the elevated plus maze and light–dark box tests, while antidepressant activity was evaluated using the tail suspension and forced swimming tests. To examine potential side effects, the animals were subjected to rotarod, Y-maze, and Morris water maze tests to assess motor coordination, memory, and learning. Anticholinesterase activity was determined by direct bioautography and colorimetry based on the Ellman method. The results demonstrated that inhalation of MsEO at doses of 0.1% and 1% significantly reduced anxiety and depressive-like behaviors without impairing memory, learning, or motor coordination in the animals. Moreover, MsEO inhibited acetylcholinesterase with an IC50 of 0.47 μg/mL. These findings suggest that MsEO has potential therapeutic applications for anxiety and depression disorders, with additional anticholinesterase activity warranting further investigation in cognitive-related conditions. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

16 pages, 1805 KiB  
Article
Bioassay-Guided Assessment of Antioxidative, Anti-Inflammatory and Antimicrobial Activities of Extracts from Medicinal Plants via High-Performance Thin-Layer Chromatography
by Marko D. Jović, Snezana Agatonovic-Kustrin, Petar M. Ristivojević, Jelena Đ. Trifković and David W. Morton
Molecules 2023, 28(21), 7346; https://doi.org/10.3390/molecules28217346 - 30 Oct 2023
Cited by 15 | Viewed by 5019
Abstract
Natural products and their analogues have contributed significantly to treatment options, especially for anti-inflammatory and infectious diseases. Thus, the primary objective of this work was to compare the bioactivity profiles of selected medicinal plants that are historically used in folk medicine to treat [...] Read more.
Natural products and their analogues have contributed significantly to treatment options, especially for anti-inflammatory and infectious diseases. Thus, the primary objective of this work was to compare the bioactivity profiles of selected medicinal plants that are historically used in folk medicine to treat inflammation and infections in the body. Chemical HPTLC fingerprinting was used to assess antioxidant, phenolic and flavonoid content, while bioassay-guided HPTLC was used to detect compounds with the highest antibacterial and anti-inflammatory activities. The results of this study showed that green tea leaf, walnut leaf, St. John’s wort herb, wild thyme herb, European goldenrod herb, chamomile flower, and immortelle flower extracts were strong radical scavengers. Green tea and nettle extracts were the most active extracts against E. coli, while calendula flower extract showed significant potency against S. aureus. Furthermore, green tea, greater celandine, and fumitory extracts exhibited pronounced potential in suppressing COX-1 activity. The bioactive compounds from the green tea extract, as the most bioactive, were isolated by preparative thin-layer chromatography and characterized with their FTIR spectra. Although earlier studies have related green tea’s anti-inflammatory properties to the presence of catechins, particularly epigallocatechin-3-gallate, the FTIR spectrum of the compound from the most intense bioactive zone showed the strongest anti-inflammatory activity can be attributed to amino acids and heterocyclic compounds. As expected, antibacterial activity in extracts was related to fatty acids and monoglycerides. Full article
Show Figures

Figure 1

13 pages, 1076 KiB  
Article
Chemical Composition, Antioxidant Properties, and Antibacterial Activity of Essential Oils of Satureja macrostema (Moc. and Sessé ex Benth.) Briq
by Lucia Barrientos Ramírez, José Antonio Silva Guzmán, Edison Antonio Osorio Muñoz, Carlos Alvarez Moya, Mónica Reynoso Silva, Abraham Francisco Cetina Corona, Josefina Casas Solis and J. Jesús Vargas Radillo
Molecules 2023, 28(12), 4719; https://doi.org/10.3390/molecules28124719 - 12 Jun 2023
Cited by 6 | Viewed by 2877
Abstract
Satureja macrostema is a plant that is located in various regions of Mexico and is used in a traditional way against illness. Essential oils (EOs) were obtained from leaves Satureja macrostema and the chemical composition was evaluated by gas chromatography–mass spectrometry (GC-MS). The [...] Read more.
Satureja macrostema is a plant that is located in various regions of Mexico and is used in a traditional way against illness. Essential oils (EOs) were obtained from leaves Satureja macrostema and the chemical composition was evaluated by gas chromatography–mass spectrometry (GC-MS). The antioxidant effect of the oil was assayed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and by Trolox Equivalent Antioxidant Capacity (TEAC). In vitro antibacterial activity against Escherichia coli and Staphylococcus aureus was determined using a broth microdilution assay and thin layer chromatography–direct bioautography (TLC-DB) to identify active antibacterial compounds. The EOs analysis showed 21 compounds, 99% terpenes, and 96% oxygenated monoterpenes, with trans-piperitone epoxide (46%), cis-piperitone epoxide (22%), and piperitenone oxide (11%) as more abundant compounds. Likewise, S. macrostema EOs showed an antioxidant activity of DPPH = 82%, with 50% free radical scavenging (IC50) = 7 mg/mL and TEAC = 0.005, an antibacterial effect against E. coli of 73% inhibition, and 81% over S. aureus at dose of 100 µL of undiluted crude oil. The TLC-DB assay showed that the most active compounds were derived from piperitone. The comparison with other studies on S. macrostema shows variability in the compounds and their abundances, which can be attributed to climatic factors and the maturity of plants with similar antioxidant and antibacterial activities. Full article
Show Figures

Figure 1

1 pages, 192 KiB  
Abstract
Evaluation of the Antimicrobial Activity of N-Acylated 4-Chloro-2-mercaptobenzenesulfonamide Derivatives
by Anita Bułakowska, Jarosław Sławiński and Rafał Hałasa
Med. Sci. Forum 2022, 14(1), 55; https://doi.org/10.3390/ECMC2022-13289 - 1 Nov 2022
Viewed by 687
Abstract
Aryl/heteroarylsulfonamides are an important group of compounds with different directions of biological activity. The number of literature reports on the antibacterial activity of sulfonamides is steadily increasing, bringing a lot of interesting data on the diverse structures and mechanisms of their pharmacological action. [...] Read more.
Aryl/heteroarylsulfonamides are an important group of compounds with different directions of biological activity. The number of literature reports on the antibacterial activity of sulfonamides is steadily increasing, bringing a lot of interesting data on the diverse structures and mechanisms of their pharmacological action. The presented research joins the stream of the search for new hybrid molecules being created as a result of the combination of various pharmacophores with interesting biological profiles. Particular attention was paid to their antibacterial activity. The new compounds were designed and obtained based on the structure of the pharmacophore group of 4-chlorobenzenesulfonamide functionalized in the 2-position on sulfur atom, and the structure of chalcone. Taking into account the previous results of our own research and the available literature data, new N-(4-chloro-2-arylmethylthio-5-methylphenylsulfonyl)cinnamamide derivatives were designed and synthesized, which have pharmacophore groups in their structure, such as: 1-naphthylmethylthio and 6-chloropiperonylthio. Preliminary microbiological analysis was performed using TLC-bioautography. The expected antibacterial activity of the obtained compounds was confirmed inin vitrotests against Gram-positive bacteria: S. aureus, S. epimermidis, E. hirae, E. faecalis, and B. subtilis. In the next stage, the microbiological activity of selected compounds against clinical strains MRSA, CNS, and MRSE was also tested. The derivatives’ activity against bacterial biofilm and hemolytic activity on the peripheral blood of domestic sheep were also tested. Full article
(This article belongs to the Proceedings of The 8th International Electronic Conference on Medicinal Chemistry)
23 pages, 521 KiB  
Review
Thin-Layer Chromatography (TLC) in the Screening of Botanicals–Its Versatile Potential and Selected Applications
by Teresa Kowalska and Mieczysław Sajewicz
Molecules 2022, 27(19), 6607; https://doi.org/10.3390/molecules27196607 - 5 Oct 2022
Cited by 42 | Viewed by 16311
Abstract
The aim of this paper is to present a comprehensive overview of the main aims and scopes in screening of botanicals, a task of which thin-layer chromatography (TLC) is, on an everyday basis, confronted with and engaged in. Stunning omnipresence of this modest [...] Read more.
The aim of this paper is to present a comprehensive overview of the main aims and scopes in screening of botanicals, a task of which thin-layer chromatography (TLC) is, on an everyday basis, confronted with and engaged in. Stunning omnipresence of this modest analytical technique (both in its standard format (TLC) and the high-performance one (HPTLC), either hyphenated or not) for many analysts might at a first glance appear chaotic and random, with an auxiliary rather than leading role in research, and not capable of issuing meaningful final statements. Based on these reflections, our purpose is not to present a general review paper on TLC in screening of botanicals, but a blueprint rather (illustrated with a selection of practical examples), which highlights a sovereign and important role of TLC in accomplishing the following analytical tasks: (i) solving puzzles related to chemotaxonomy of plants, (ii) screening a wide spectrum of biological properties of plants, (iii) providing quality control of herbal medicines and alimentary and cosmetic products of biological origin, and (iv) tracing psychoactive plants under forensic surveillance. Full article
(This article belongs to the Special Issue Chromatographic Screening of Natural Products)
Show Figures

Scheme 1

21 pages, 2113 KiB  
Article
Antibacterial Screening, Biochemometric and Bioautographic Evaluation of the Non-Volatile Bioactive Components of Three Indigenous South African Salvia Species
by Margaux Lim Ah Tock, Sandra Combrinck, Guy Kamatou, Weiyang Chen, Sandy Van Vuuren and Alvaro Viljoen
Antibiotics 2022, 11(7), 901; https://doi.org/10.3390/antibiotics11070901 - 6 Jul 2022
Cited by 7 | Viewed by 2478
Abstract
Salvia africana-lutea L., S. lanceolata L., and S. chamelaeagnea L. are used in South Africa as traditional medicines to treat infections. This paper describes an in-depth investigation into their antibacterial activities to identify bioactive compounds. Methanol extracts from 81 samples were screened against [...] Read more.
Salvia africana-lutea L., S. lanceolata L., and S. chamelaeagnea L. are used in South Africa as traditional medicines to treat infections. This paper describes an in-depth investigation into their antibacterial activities to identify bioactive compounds. Methanol extracts from 81 samples were screened against seven bacterial pathogens, using the microdilution assay. Biochemometric models were constructed using data derived from minimum inhibitory concentration (MIC) and ultra-performance liquid chromatography-mass spectrometry data. Active molecules in selected extracts were tentatively identified using high-performance thin layer chromatography (HPTLC), combined with bioautography, and finally, by analysis of active zone eluates by mass spectrometry (MS) via a dedicated interface. Salvia chamelaeagnea displayed notable activity towards all seven pathogens, and the activity, reflected by MICs, was superior to that of the other two species, as confirmed through ANOVA. Biochemometric models highlighted potentially bioactive compounds, including rosmanol methyl ether, epiisorosmanol methyl ether and carnosic acid. Bioautography assays revealed inhibition zones against A. baumannii, an increasingly multidrug-resistant pathogen. Mass spectral data of the eluted zones correlated to those revealed through biochemometric analysis. The study demonstrates the application of a biochemometric approach, bioautography, and direct MS analysis as useful tools for the rapid identification of bioactive constituents in plant extracts. Full article
(This article belongs to the Special Issue Antimicrobial Plant Extracts and Phytochemicals, 2nd Volume)
Show Figures

Figure 1

23 pages, 172958 KiB  
Article
Effect-Directed Profiling of Monofloral Honeys from Ethiopia by High-Performance Thin-Layer Chromatography and High-Resolution Mass Spectrometry
by Gertrud E. Morlock, Abera Belay, Julia Heil, Annabel Mehl and Hannelore Borck
Molecules 2022, 27(11), 3541; https://doi.org/10.3390/molecules27113541 - 31 May 2022
Cited by 6 | Viewed by 2738
Abstract
Ethiopian honey is used not only as food but also for treatment in traditional medicine. For its valorization, bioactive compounds were analyzed in nine types of monofloral Ethiopian honey. Therefore, a non-target effect-directed profiling was developed via high-performance thin-layer chromatography combined with multi-imaging [...] Read more.
Ethiopian honey is used not only as food but also for treatment in traditional medicine. For its valorization, bioactive compounds were analyzed in nine types of monofloral Ethiopian honey. Therefore, a non-target effect-directed profiling was developed via high-performance thin-layer chromatography combined with multi-imaging and planar effect-directed assays. Characteristic bioactivity profiles of the different honeys were determined in terms of antibacterial, free-radical scavenging, and various enzyme inhibitory activities. Honeys from Hypoestes spp. and Leucas abyssinica showed low activity in all assays. In contrast, others from Acacia spp., Becium grandiflorum, Croton macrostachyus, Eucalyptus globulus, Schefflera abyssinica, Vernonia amygdalina, and Coffea arabica showed more intense activity profiles, but these differed depending on the assay. In particular, the radical scavenging activity of Croton macrostachyus and Coffea arabica honeys, the acetylcholinesterase-inhibiting activity of Eucalyptus globulus and Coffea arabica honeys, and the antibacterial activity of Schefflera abyssinica honey are highlighted. Bioactive compounds of interest were further characterized by high-resolution mass spectrometry. Identifying differences in bioactivity between mono-floral honey types affects quality designation and branding. Effect-directed profiling provides new insights that are valuable for food science and nutrition as well as for the market, and contributes to honey differentiation, categorization, and authentication. Full article
Show Figures

Figure 1

18 pages, 2698 KiB  
Article
Screening for Antibacterial Activity of French Mushrooms against Pathogenic and Multidrug Resistant Bacteria
by Clément Huguet, Mélanie Bourjot, Jean-Michel Bellanger, Gilles Prévost and Aurélie Urbain
Appl. Sci. 2022, 12(10), 5229; https://doi.org/10.3390/app12105229 - 21 May 2022
Cited by 15 | Viewed by 3914
Abstract
In the alarming context of antibiotic resistance, we explored the antibacterial potential of French mushrooms against wild-type and multidrug-resistant (MDR) bacteria. In order to accelerate the discovery of promising compounds, screenings were carried out by TLC-direct bioautography. A total of 70 extracts from [...] Read more.
In the alarming context of antibiotic resistance, we explored the antibacterial potential of French mushrooms against wild-type and multidrug-resistant (MDR) bacteria. In order to accelerate the discovery of promising compounds, screenings were carried out by TLC-direct bioautography. A total of 70 extracts from 31 mushroom species were evaluated against five wild-type bacteria: Staphylococcus epidermidis, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa. This first screening revealed that 95% of the extracts contained antibacterial compounds. Generally, it was observed that EtOAc extracts exhibited more active compounds than methanolic extracts. In addition, all extracts were overall more active against Gram-positive bacteria than against Gram-negative strains. The most promising mushroom extracts were then screened against various multidrug-resistant strains of S. aureus and E. coli. Activity was globally less on MDR strains; however, two mushroom species, Fomitopsis pinicola and Scleroderma citrinum, still contained several compounds inhibiting the growth of these MDR pathogenic bacteria. Stearic acid was identified as a ubiquitous compound contributing to the antibacterial defence of mushrooms. This screening revealed the potential of macromycetes as a source of antibacterial compounds; further assays are necessary to consider fungal compounds as promising drugs to counter antibiotic resistance. Full article
(This article belongs to the Special Issue Microbiology and Antibiotic Resistance in the Environment)
Show Figures

Graphical abstract

21 pages, 4097 KiB  
Article
Study of Oxidation of Ciprofloxacin and Pefloxacin by ACVA: Identification of Degradation Products by Mass Spectrometry and Bioautographic Evaluation of Antibacterial Activity
by Barbara Żuromska-Witek, Paweł Żmudzki, Marek Szlósarczyk, Michał Abram, Anna Maślanka and Urszula Hubicka
Processes 2022, 10(5), 1022; https://doi.org/10.3390/pr10051022 - 20 May 2022
Cited by 5 | Viewed by 4121
Abstract
The new RP-HPLC-DAD method for the determination of ciprofloxacin and pefloxacin, next to their degradation products after the oxidation reaction with 4,4′-azobis(4-cyanopentanoic acid) (ACVA) was developed. The method was validated according to the guidelines of the International Council for Harmonization of Technical Requirements [...] Read more.
The new RP-HPLC-DAD method for the determination of ciprofloxacin and pefloxacin, next to their degradation products after the oxidation reaction with 4,4′-azobis(4-cyanopentanoic acid) (ACVA) was developed. The method was validated according to the guidelines of the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) and meets the acceptance criteria. The experimental data indicate that the course of the oxidation process depends on the type of fluoroquinolone (FQ), the incubation time and temperature. The performed kinetic evaluation allowed us to state that the oxidation of FQs proceeds according to the second-order kinetics. The degradation products of the FQs were identified using the UHPLC-MS/MS method and their structures were proposed. The results obtained by the TLC-direct bioautography technique allowed us to state that the main ciprofloxacin and pefloxacin oxidation products probably retained antibacterial activity against Escherichia coli. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Figure 1

17 pages, 1929 KiB  
Article
Antibacterial Fractions from Erodium cicutarium Exposed—Clinical Strains of Staphylococcus aureus in Focus
by Vanja Ljoljić Bilić, Uroš M. Gašić, Dušanka Milojković-Opsenica, Hrvoje Rimac, Jadranka Vuković Rodriguez, Josipa Vlainić, Diana Brlek-Gorski and Ivan Kosalec
Antibiotics 2022, 11(4), 492; https://doi.org/10.3390/antibiotics11040492 - 6 Apr 2022
Cited by 3 | Viewed by 3075
Abstract
Followed by a buildup of its phytochemical profile, Erodium cicutarium is being subjected to antimicrobial investigation guided with its ethnobotanical use. The results of performed in vitro screening on Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans strains, show that E. cicutarium [...] Read more.
Followed by a buildup of its phytochemical profile, Erodium cicutarium is being subjected to antimicrobial investigation guided with its ethnobotanical use. The results of performed in vitro screening on Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans strains, show that E. cicutarium has antimicrobial activity, with a particular emphasis on clinical S. aureus strains—both the methicillin sensitive (MSSA) and the methicillin resistant (MRSA) S. aureus. Experimental design consisted of general methods (the serial microdilution broth assay and the agar well diffusion assay), as well as observing bactericidal/bacteriostatic activity through time (the “time-kill” assay), investigating the effect on cell wall integrity and biofilm formation, and modulation of bacterial hemolysis. Observed antibacterial activity from above-described methods led to further activity-guided fractionation of water and methanol extracts using bioautography coupled with UHPLC-LTQ OrbiTrap MS4. It was determined that active fractions are predominantly formed by gallic acid derivatives and flavonol glycosides. Among the most active phytochemicals, galloyl-shikimic acid was identified as the most abundant compound. These results point to a direct connection between galloyl-shikimic acid and the observed E. cicutarium antibacterial activity, and open several new research approaches for future investigation. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Figure 1

15 pages, 1022 KiB  
Article
Schisandra rubriflora Fruit and Leaves as Promising New Materials of High Biological Potential: Lignan Profiling and Effect-Directed Analysis
by Ewelina Sobstyl, Agnieszka Szopa, Michał Dziurka, Halina Ekiert, Hanna Nikolaichuk and Irena Maria Choma
Molecules 2022, 27(7), 2116; https://doi.org/10.3390/molecules27072116 - 25 Mar 2022
Cited by 9 | Viewed by 2984
Abstract
The effect-directed detection (EDD) of Schisandra rubriflora fruit and leaves extracts was performed to assess their pharmacological properties. The EDD comprised TLC—direct bioautography against Bacillus subtilis, a DPPH assay, as well as α-glucosidase, lipase, tyrosinase, and acetylcholinesterase (AChE) inhibition assays. The leaf [...] Read more.
The effect-directed detection (EDD) of Schisandra rubriflora fruit and leaves extracts was performed to assess their pharmacological properties. The EDD comprised TLC—direct bioautography against Bacillus subtilis, a DPPH assay, as well as α-glucosidase, lipase, tyrosinase, and acetylcholinesterase (AChE) inhibition assays. The leaf extracts showed stronger antioxidant activity than the fruit extract as well as inhibition of tyrosinase and lipase. The fruit extract was found to be extremely active against B. subtilis and to inhibit α-glucosidase and AChE slightly more than the leaf extracts. UHPLC–MS/MS analysis was carried out for the bioactive fractions and pointed to the possible anti-dementia properties of the dibenzocyclooctadiene lignans found in the upper TLC fractions. Gomisin N (518 mg/100 g DW), schisanhenol (454 mg/100 g DW), gomisin G (197 mg/100 g DW), schisandrin A (167 mg/100 g DW), and gomisin O (150 mg/100 g DW) were the quantitatively dominant compounds in the fruit extract. In total, twenty-one lignans were found in the bioactive fractions. Full article
Show Figures

Figure 1

17 pages, 3366 KiB  
Article
Exploring the Antifungal Activity and Action of Saussurea costus Root Extracts against Candida albicans and Non-albicans Species
by Melad F. Soliman, Youssria M. Shetaia, Ahmed A. Tayel, Alaa M. Munshi, Fuad A. Alatawi, Mohammed A. Alsieni and Mahmoud A. Al-Saman
Antibiotics 2022, 11(3), 327; https://doi.org/10.3390/antibiotics11030327 - 1 Mar 2022
Cited by 13 | Viewed by 5030
Abstract
The isolation and assessment of the active constituents in polar and non-polar crude extracts of Saussurea costus roots as antifungal agents, against Candida albicans and non-C. albicans (NAC) species, was the aim of this current investigation. The SEM “Scanning electron microscopy” [...] Read more.
The isolation and assessment of the active constituents in polar and non-polar crude extracts of Saussurea costus roots as antifungal agents, against Candida albicans and non-C. albicans (NAC) species, was the aim of this current investigation. The SEM “Scanning electron microscopy” imaging provided potential action modes of n-hexane extract (nhhE) toward Candida spp., whereas the TLC-DB “Thin layer chromatography-direct bioautography” was employed for detecting the anticandidal compounds. nhhE had the greatest biocidal activity against all strains and clinical isolates of Candida spp. with maximum zones of inhibition. SEM revealed the occurrence of irregular, dense inclusions of C. albicans cell walls after treatment with nhhE for 12 h. Complete morphological distortions with lysed membranes and deterioration signs appeared in most treated cells of C. parapsilosis. The most effectual compound with anticandidal activity was isolated using TLC-BD and identified as sesquiterpene by GC/MS analysis. The infra-red analysis revealed the presence of lactone ring stretching vibrations at 1766.72 cm−1. The anticandidal activity of nhhE of S. costus roots was confirmed from the results, and the treated cotton fabrics with nhhE of S. costus possessed observable activity against C. albicans. Data could recommend the practical usage of S. costus extracts, particularly nhhE, as influential natural bioactive sources for combating pathogenic Candida spp. Full article
(This article belongs to the Special Issue Development and Application of Plant Antimicrobial Substance)
Show Figures

Figure 1

14 pages, 2811 KiB  
Article
Antibacterial Effect of Lemongrass (Cymbopogon citratus) against the Aetiological Agents of Pitted Keratolyis
by Bettina Schweitzer, Viktória Lilla Balázs, Szilárd Molnár, Bernadett Szögi-Tatár, Andrea Böszörményi, Tamás Palkovics, Györgyi Horváth and György Schneider
Molecules 2022, 27(4), 1423; https://doi.org/10.3390/molecules27041423 - 19 Feb 2022
Cited by 19 | Viewed by 7206
Abstract
Pitted keratolysis (PK) is a bacterial skin infection mostly affecting the pressure-bearing areas of the soles, causing unpleasant symptoms. Antibiotics are used for therapy, but the emergence of antiobiotic resistance, makes the application of novel topical therapeutic agents necessary. The antibacterial effects of [...] Read more.
Pitted keratolysis (PK) is a bacterial skin infection mostly affecting the pressure-bearing areas of the soles, causing unpleasant symptoms. Antibiotics are used for therapy, but the emergence of antiobiotic resistance, makes the application of novel topical therapeutic agents necessary. The antibacterial effects of 12 EOs were compared in the first part of this study against the three known aetiological agents of PK (Kytococcus sedentarius, Dermatophilus congolensis and Bacillus thuringiensis). The results of the minimal inhibitory concentration, minimal bactericidal concentration and spore-formation inhibition tests revealed that lemongrass was the most effective EO against all three bacterium species and was therefore chosen for further analysis. Seventeen compounds were identified with solid-phase microextraction followed by gas chromatography–mass spectrometry (HS-SPME/GC-MS) analysis while thin-layer chromatography combined with direct bioautography (TLC-BD) was used to detect the presence of antibacterially active compounds. Citral showed a characteristic spot at the Rf value of 0.47, while the HS-SPME/GC-MS analysis of an unknown spot with strong antibacterial activity revealed the presence of α-terpineol, γ-cadinene and calamenene. Of these, α-terpineol was confirmed to possess an antimicrobial effect on all three bacterium species associated with PK. Our study supports the hypothesis that, based on their spectrum, EO-based formulations have potent antibacterial effects against PK and warrant further investigation as topical therapeutics. Full article
(This article belongs to the Special Issue Essential Oils 2021)
Show Figures

Figure 1

Back to TopTop