Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = dipteran pests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4288 KiB  
Article
Evaluation of Pupal Parasitoids Trichomalopsis ovigastra and Pachycrepoideus vindemiae as Potential Biological Control Agents of Bactrocera dorsalis
by Ziwen Teng, Yiting Wang, Minghao Jiang, Yikun Zhang, Xintong Wang, Fanghao Wan and Hongxu Zhou
Insects 2025, 16(7), 708; https://doi.org/10.3390/insects16070708 - 10 Jul 2025
Viewed by 532
Abstract
Parasitoid wasps are vital for biological control, and while new species continue to be discovered, evaluating their biological characteristics is crucial for realizing their potential for pest management. Pachycrepoideus vindemiae (Rondani) (Hymenoptera: Pteromalidae) is a well-studied parasitoid of dipteran pests, while Trichomalopsis ovigastra [...] Read more.
Parasitoid wasps are vital for biological control, and while new species continue to be discovered, evaluating their biological characteristics is crucial for realizing their potential for pest management. Pachycrepoideus vindemiae (Rondani) (Hymenoptera: Pteromalidae) is a well-studied parasitoid of dipteran pests, while Trichomalopsis ovigastra Sureshan & Narendran (Hymenoptera: Pteromalidae) has been only morphologically described. To assess its biocontrol potential, we compared the biological traits of T. ovigastra and P. vindemiae using Drosophila melanogaster Meigen (Diptera: Drosophilidae) and Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) as hosts. T. ovigastra showed significantly higher parasitism rates, especially against B. dorsalis, where T. ovigastra achieved nearly 50% parasitism, compared to less than 0.3% by P. vindemiae. When using D. melanogaster as the host, no significant differences were observed between T. ovigastra and P. vindemiae in offspring sex ratio or adult longevity; however, T. ovigastra exhibited a shorter developmental duration and greater tolerance to temperature extremes, starvation, and desiccation. Notably, B. dorsalis has expanded its range from southern to northern China; however, no native parasitoids of this pest have been reported in the newly invaded northern regions. T. ovigastra, collected from northern orchards and capable of parasitizing B. dorsalis, thus shows promise as a biocontrol agent. These findings highlight the potential of locally occurring parasitoids, although field validation is still required. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

15 pages, 969 KiB  
Article
Vector-Borne Bacteria Detected in Ticks, Mites and Flies Parasitizing Bats in the State of Rondônia, Brazilian Amazon
by Leormando Fortunato Dornelas Júnior, Irineu Norberto Cunha, Felipe Rodrigues Jorge, Gustavo Graciolli, Ricardo Bassini-Silva, Fernando de Castro Jacinavicius, Maria Carolina A. Serpa, Marcelo Bahia Labruna, Felipe Arley Costa Pessoa and Luís Marcelo Aranha Camargo
Pathogens 2025, 14(4), 338; https://doi.org/10.3390/pathogens14040338 - 31 Mar 2025
Viewed by 767
Abstract
Bats (Chiroptera) are among the most diverse and geographically dispersed mammals. They are of great importance to the ecosystem, as pollinators, seed dispersers and pest controllers, in addition to being hosts to several parasitic arthropods, including ticks, mites, lice, fleas and flies. Their [...] Read more.
Bats (Chiroptera) are among the most diverse and geographically dispersed mammals. They are of great importance to the ecosystem, as pollinators, seed dispersers and pest controllers, in addition to being hosts to several parasitic arthropods, including ticks, mites, lice, fleas and flies. Their diet includes the tissue and blood or other body fluids of bats. Bats are reservoirs of several disease-causing agents, many of them pathogenic to humans, such as bacteria, as well as protozoa, viruses and fungi. This study was conducted in Monte Negro, Rondônia, Brazil and the occurrence of parasitic arthropods in bats was evaluated, as well as a screening of bacteria that these ectoparasites can carry. Through a total of 69 nocturnal captures, 217 chiropterans were sampled, representing 23 species and six families. A total of 592 specimens of parasitic arthropods (ticks, mites and flies) were collected from these bats (9% dipterans, 59% ticks and 32% mites). Bartonella spp. were found in two species of bat flies (Trichobius joblingi and Strebla mirabilis) in peri-urban and forest areas with an infection rate of 62% and 38%, respectively. We report for the first time in Rondônia the argasid tick Ornithodoros hasei and its infection by a spotted fever group bacterium ‘Candidatus Rickettsia wissemanii’ in a peri-urban area. Full article
(This article belongs to the Special Issue Zoonotic Pathogens in the Tropics: From the Forest to the Cities)
Show Figures

Figure 1

17 pages, 2323 KiB  
Article
Simultaneous Silencing of Gut Nucleases and a Vital Target Gene by Adult dsRNA Feeding Enhances RNAi Efficiency and Mortality in Ceratitis capitata
by Gennaro Volpe, Sarah Maria Mazzucchiello, Noemi Rosati, Francesca Lucibelli, Marianna Varone, Dora Baccaro, Ilaria Mattei, Ilaria Di Lelio, Andrea Becchimanzi, Ennio Giordano, Marco Salvemini, Serena Aceto, Francesco Pennacchio and Giuseppe Saccone
Insects 2024, 15(9), 717; https://doi.org/10.3390/insects15090717 - 19 Sep 2024
Cited by 1 | Viewed by 2201
Abstract
Ceratitis capitata, known as the Mediterranean fruit fly (Medfly), is a major dipteran pest significantly impacting fruit and vegetable farming. Currently, its control heavily relies mainly on chemical insecticides, which pose health risks and have effects on pollinators. A more [...] Read more.
Ceratitis capitata, known as the Mediterranean fruit fly (Medfly), is a major dipteran pest significantly impacting fruit and vegetable farming. Currently, its control heavily relies mainly on chemical insecticides, which pose health risks and have effects on pollinators. A more sustainable and species-specific alternative strategy may be based on double-stranded RNA (dsRNA) delivery through feeding to disrupt essential functions in pest insects, which is poorly reported in dipteran species. Previous reports in Orthoptera and Coleoptera species suggested that dsRNA degradation by specific nucleases in the intestinal lumen is among the major obstacles to feeding-mediated RNAi in insects. In our study, we experimented with three-day adult feeding using a combination of dsRNA molecules that target the expression of the ATPase vital gene and two intestinal dsRNA nucleases. These dsRNA molecules were recently tested separately in two Tephritidae species, showing limited effectiveness. In contrast, by simultaneously feeding dsRNA against the CcVha68-1, CcdsRNase1, and CcdsRNase2 genes, we observed 79% mortality over seven days, which was associated with a decrease in mRNA levels of the three targeted genes. As expected, we also observed a reduction in dsRNA degradation following RNAi against nucleases. This research illustrates the potential of utilizing molecules as pesticides to achieve mortality rates in Medfly adults by targeting crucial genes and intestinal nucleases. Furthermore, it underscores the importance of exploring RNAi-based approaches for pest management. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Graphical abstract

18 pages, 1148 KiB  
Review
Wolbachia Interactions with Diverse Insect Hosts: From Reproductive Modulations to Sustainable Pest Management Strategies
by Moazam Hyder, Abdul Mubeen Lodhi, Zhaohong Wang, Aslam Bukero, Jing Gao and Runqian Mao
Biology 2024, 13(3), 151; https://doi.org/10.3390/biology13030151 - 27 Feb 2024
Cited by 7 | Viewed by 4807
Abstract
Effective in a variety of insect orders, including dipteran, lepidopteran, and hemipteran, Wolbachia-based control tactics are investigated, noting the importance of sterile and incompatible insect techniques. Encouraging approaches for controlling Aedes mosquitoes are necessary, as demonstrated by the evaluation of a new [...] Read more.
Effective in a variety of insect orders, including dipteran, lepidopteran, and hemipteran, Wolbachia-based control tactics are investigated, noting the importance of sterile and incompatible insect techniques. Encouraging approaches for controlling Aedes mosquitoes are necessary, as demonstrated by the evaluation of a new SIT/IIT combination and the incorporation of SIT into Drosophila suzukii management. For example, Wolbachia may protect plants from rice pests, demonstrating its potential for agricultural biological vector management. Maternal transmission and cytoplasmic incompatibility dynamics are explored, while Wolbachia phenotypic impacts on mosquito and rice pest management are examined. The importance of host evolutionary distance is emphasised in recent scale insect research that addresses host-shifting. Using greater information, a suggested method for comprehending Wolbachia host variations in various contexts emphasises ecological connectivity. Endosymbionts passed on maternally in nematodes and arthropods, Wolbachia are widely distributed around the world and have evolved both mutualistic and parasitic traits. Wolbachia is positioned as a paradigm for microbial symbiosis due to advancements in multiomics, gene functional assays, and its effect on human health. The challenges and opportunities facing Wolbachia research include scale issues, ecological implications, ethical conundrums, and the possibility of customising strains through genetic engineering. It is thought that cooperative efforts are required to include Wolbachia-based therapies into pest management techniques while ensuring responsible and sustainable ways. Full article
(This article belongs to the Special Issue Recent Advances in Wolbachia and Spiroplasma Symbiosis)
Show Figures

Figure 1

40 pages, 17749 KiB  
Article
The Diversity of Parasitoids and Their Role in the Control of the Siberian Moth, Dendrolimus sibiricus (Lepidoptera: Lasiocampidae), a Major Coniferous Pest in Northern Asia
by Natalia I. Kirichenko, Alexander A. Ageev, Sergey A. Astapenko, Anna N. Golovina, Dmitry R. Kasparyan, Oksana V. Kosheleva, Alexander V. Timokhov, Ekaterina V. Tselikh, Evgeny V. Zakharov, Dmitrii L. Musolin and Sergey A. Belokobylskij
Life 2024, 14(2), 268; https://doi.org/10.3390/life14020268 - 17 Feb 2024
Cited by 1 | Viewed by 2789
Abstract
The Siberian moth, Dendrolimus sibiricus Tschetv., 1908 (Lepidoptera: Lasiocampidae) is a conifer pest that causes unprecedented forest mortality in Northern Asia, leading to enormous ecological and economic losses. This is the first study summarizing data on the parasitoid diversity and parasitism of this [...] Read more.
The Siberian moth, Dendrolimus sibiricus Tschetv., 1908 (Lepidoptera: Lasiocampidae) is a conifer pest that causes unprecedented forest mortality in Northern Asia, leading to enormous ecological and economic losses. This is the first study summarizing data on the parasitoid diversity and parasitism of this pest over the last 118 years (1905–2022). Based on 860 specimens of freshly reared and archival parasitoids, 16 species from two orders (Hymenoptera and Diptera) were identified morphologically and/or with the use of DNA barcoding. For all of them, data on distribution and hosts and images of parasitoid adults are provided. Among them, the braconid species, Meteorus versicolor (Wesmael, 1835), was documented as a parasitoid of D. sibiricus for the first time. The eastern Palaearctic form, Aleiodes esenbeckii (Hartig, 1838) dendrolimi (Matsumura, 1926), status nov., was resurrected from synonymy as a valid subspecies, and a key for its differentiation from the western Palaearctic subspecies Aleiodes esenbeckii ssp. esenbecki is provided. DNA barcodes of 11 parasitoid species from Siberia, i.e., nine hymenopterans and two dipterans, represented novel records and can be used for accurate molecular genetic identification of species. An exhaustive checklist of parasitoids accounting for 93 species associated with D. sibirisus in northern Asia was compiled. Finally, the literature and original data on parasitism in D. sibiricus populations for the last 83 years (1940–2022) were analysed taking into account the pest population dynamics (i.e., growth, outbreak, decline, and depression phases). A gradual time-lagged increase in egg and pupal parasitism in D. sibiricus populations was detected, with a peak in the pest decline phase. According to long-term observations, the following species are able to cause significant mortality of D. sibiricus in Northern Asia: the hymenopteran egg parasitoids Telenomus tetratomus and Ooencyrtus pinicolus; the larval parasitoids Aleiodes esenbeckii sp. dendrolimi, Cotesia spp., and Glyptapanteles liparidis; and the dipteran pupal parasitoids Masicera sphingivora, Tachina sp., and Blepharipa sp. Their potential should be further explored in order to develop biocontrol programs for this important forest pest. Full article
(This article belongs to the Special Issue Feature Papers in Animal Science: 2nd Edition)
Show Figures

Figure 1

14 pages, 3515 KiB  
Article
Genome-Wide Identification of the Genes of the Odorant-Binding Protein Family Reveal Their Role in the Olfactory Response of the Tomato Leaf Miner (Tuta absoluta) to a Repellent Plant
by Ruixin Ma, Donggui Li, Chen Peng, Shuangyan Wang, Yaping Chen, Furong Gui and Zhongxiang Sun
Agronomy 2024, 14(1), 231; https://doi.org/10.3390/agronomy14010231 - 22 Jan 2024
Cited by 4 | Viewed by 3233
Abstract
The remarkable biological and evolutionary adaptations of insects to plants are largely attributed to the powerful chemosensory systems of insects. The tomato leaf miner (Tuta absoluta) is a destructive invasive pest with a global distribution that poses a serious threat to [...] Read more.
The remarkable biological and evolutionary adaptations of insects to plants are largely attributed to the powerful chemosensory systems of insects. The tomato leaf miner (Tuta absoluta) is a destructive invasive pest with a global distribution that poses a serious threat to the production of nightshade crops, especially tomatoes. Functional plants can attract or repel insect pests by releasing volatiles that interact with the olfactory system of insects, thereby reducing the damage of insect pests to target crops. However, there is limited research on the interaction between T. absoluta olfactory genes and functional plants. In this study, 97 members of the putative odorant-binding protein (OBP) family have been identified in the whole genome of T. absoluta. Phylogenetic analysis involving various Lepidopteran and Dipteran species, including D. melanogaster, revealed that OBP gene families present conserved clustering patterns. Furthermore, the Plus-C subfamily of OBP showed extremely significant expansion. Moreover, the expression levels of the OBP genes varied significantly between different developmental stages; that is, the highest number of OBP genes were expressed in the adult stage, followed by the larval stage, and fewer genes were expressed in high abundance in the egg stage. On the other hand, through a Y-tube olfactometer, we identified a functional plant—Plectranthus tomentosa—that significantly repels adult and larval T. absoluta. Finally, we screened the OBP genes in response to tomato and P. tomentosa volatiles at the genomic level of T. absoluta using RT-qPCR. These results laid a good foundation for controlling T. absoluta with functional plants and further studying olfactory genes. Full article
Show Figures

Figure 1

22 pages, 6007 KiB  
Article
Genome and Transcriptome Analyses Facilitate Genetic Control of Wohlfahrtia magnifica, a Myiasis-Causing Flesh Fly
by Zhipeng Jia, Surong Hasi, Deng Zhan, Bin Hou, Claus Vogl and Pamela A. Burger
Insects 2023, 14(7), 620; https://doi.org/10.3390/insects14070620 - 10 Jul 2023
Cited by 1 | Viewed by 2628
Abstract
Myiasis caused by Wohlfahrtia magnifica is a widespread parasitic infestation in mammals. The infested host suffers from damage as the developing larvae feed on its tissues. For the control of myiasis infestation, genetic methods have been shown to be effective and promising as [...] Read more.
Myiasis caused by Wohlfahrtia magnifica is a widespread parasitic infestation in mammals. The infested host suffers from damage as the developing larvae feed on its tissues. For the control of myiasis infestation, genetic methods have been shown to be effective and promising as an alternative to insecticides. Combining genome, isoform sequencing (Iso-Seq), and RNA sequencing (RNA-seq) data, we isolated and characterized two sex-determination genes, W. magnifica transformer (Wmtra) and W. magnifica transformer2 (Wmtra2), whose orthologs in a number of insect pests have been utilized to develop genetic control approaches. Wmtra transcripts are sex-specifically spliced; only the female transcript encodes a full-length functional protein, while the male transcript encodes a truncated and non-functional polypeptide due to the presence of the male-specific exon containing multiple in-frame stop codons. The existence of five predicted TRA/TRA2 binding sites in the male-specific exon and the surrounding intron of Wmtra, as well as the presence of an RNA-recognition motif in WmTRA2 may suggest the auto-regulation of Wmtra by its own protein interacting with WmTRA2. This results in the skipping of the male-specific exon and translation of the full-length functional protein only in females. Our comparative study in dipteran species showed that both the WmTRA and WmTRA2 proteins exhibit a high degree of similarity to their orthologs in the myiasis-causing blow flies. Additionally, transcriptome profiling performed between adult females and adult males reported 657 upregulated and 365 downregulated genes. Functional analysis showed that among upregulated genes those related to meiosis and mitosis Gene Ontology (GO) terms were enriched, while, among downregulated genes, those related to muscle cell development and aerobic metabolic processes were enriched. Among the female-biased gene set, we detected five candidate genes, vasa (vas), nanos (nanos), bicoid (bcd), Bicaudal C (BicC), and innexin5 (inx5). The promoters of these genes may be able to upregulate Cas9 expression in the germline in Cas9-based homing gene drive systems as established in some flies and mosquitoes. The isolation and characterization of these genes is an important step toward the development of genetic control programs against W. magnifica infestation. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

21 pages, 6939 KiB  
Systematic Review
Relevant Brachycera (Excluding Oestroidea) for Horses in Veterinary Medicine: A Systematic Review
by Vicky Frisch, Hans-Peter Fuehrer and Jessika-M. V. Cavalleri
Pathogens 2023, 12(4), 568; https://doi.org/10.3390/pathogens12040568 - 6 Apr 2023
Cited by 3 | Viewed by 2676
Abstract
In equine stables and their surroundings, a large number of insects are present that can be a nuisance to their equine hosts. Previous studies about dipterans transmitting infectious agents to Equidae have largely focused on Nematocera. For the preparation of this systematic review, [...] Read more.
In equine stables and their surroundings, a large number of insects are present that can be a nuisance to their equine hosts. Previous studies about dipterans transmitting infectious agents to Equidae have largely focused on Nematocera. For the preparation of this systematic review, the existing literature (until February 2022) was systematically screened for various infectious agents transmitted to Equidae via insects of the suborder Brachycera, including Tabanidae, Muscidae, Glossinidae and Hippoboscidae, acting as pests or potential vectors. The PRISMA statement 2020 (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for systematic reviews were followed. The two concepts, Brachycera and Equidae, were combined for the search that was carried out in three languages (English, German and French) using four different search engines. In total, 38 articles investigating Brachycera as vectors for viral, bacterial and parasitic infections or as pests of equids were identified. Only 7 of the 14 investigated pathogens in the 38 reports extracted from the literature were shown to be transmitted by Brachycera. This review clearly shows that further studies are needed to investigate the role of Brachycera as vectors for pathogens relevant to equine health. Full article
(This article belongs to the Special Issue Advances in Parasitic Diseases—Second Edition)
Show Figures

Figure 1

9 pages, 306 KiB  
Communication
Scale Insects and Natural Enemies Associated with Conilon Coffee (Coffea canephora) in São Paulo State, Brazil
by Ivana Lemos Souza, Hágabo Honorato de Paulo, Matheus Alves de Siqueira, Valmir Antonio Costa, Ana Paula Gonçalves da Silva Wengrat, Ana Lúcia Benfatti Gonzalez Peronti and Nilza Maria Martinelli
Agriculture 2023, 13(4), 829; https://doi.org/10.3390/agriculture13040829 - 4 Apr 2023
Cited by 2 | Viewed by 2782
Abstract
Several insect pests are related to the cultivation of conilon coffee, Coffea canephora (Rubiaceae), including (Hemiptera: Coccomorpha). Coccoids damage plants by sucking their sap, producing honeydew, and transmitting viruses. Parasitoids and predators are natural enemies that regulate the insect population and can be [...] Read more.
Several insect pests are related to the cultivation of conilon coffee, Coffea canephora (Rubiaceae), including (Hemiptera: Coccomorpha). Coccoids damage plants by sucking their sap, producing honeydew, and transmitting viruses. Parasitoids and predators are natural enemies that regulate the insect population and can be used in mealybug biological control. This study aimed to survey scale insects and natural enemies associated with C. canephora in the city of Jaboticabal, São Paulo State, Brazil. Two species of mealybugs from the family Coccidae and three from the family Pseudococcidae were collected in different plant structures. Natural enemies collected comprised hymenopteran parasitoids from the families Aphelinidae, Eulophidae, Encyrtidae, and Perilampidae; predator beetles of the family Coccinellidae; dipterans from the family Cecidomyiidae; and thrips of the family Aeolothripidae. This is the first report of the mealybug species Coccus brasiliensis, Pseudococcus longispinus, and Pseudococcus cryptus; of the parasitoids Coccophagus rusti, Aprostocetus sp., Aenasius advena, Aenasius fusciventris, Aenasius pseudococci, and Perilampus sp.; and of the predators Cycloneda conjugata, Pseudoazya nana, Diadiplosis coccidivora, Diadiplosis sp., and Franklinothrips vespiformis, associated with C. canephora. Knowledge of mealybug species and their respective natural enemies will contribute to biological control strategies in planning the integrated management of mealybugs associated with conilon coffee. Full article
(This article belongs to the Special Issue Sustainable Pest Management for Coffee Production)
16 pages, 4219 KiB  
Article
The Influence of Daily Temperature Fluctuation on the Efficacy of Bioinsecticides on Spotted Wing Drosophila Larvae
by Maristella Mastore, Silvia Quadroni, Alberto Rezzonico and Maurizio Francesco Brivio
Insects 2023, 14(1), 43; https://doi.org/10.3390/insects14010043 - 31 Dec 2022
Cited by 5 | Viewed by 2406
Abstract
Global climate change is allowing the invasion of insect pests into new areas without natural competitors and/or predators. The dipteran Drosophila suzukii has invaded both the Americas and Europe, becoming a serious problem for fruit crops. Control methods for this pest are still [...] Read more.
Global climate change is allowing the invasion of insect pests into new areas without natural competitors and/or predators. The dipteran Drosophila suzukii has invaded both the Americas and Europe, becoming a serious problem for fruit crops. Control methods for this pest are still based on the use of pesticides, but less invasive and more sustainable methods, such as biocontrol, are needed. Variations in environmental conditions can affect the efficacy of bioinsecticides influencing their behavior and physiology besides that of the target insects. In this work, we developed a system that simulates the daily temperature fluctuations (DTFs) detected in the environment, with the aim of studying the influence of temperature on biocontrol processes. We investigated the effects of DTFs on the efficacy of four bioinsecticides. Results showed that DTFs modify the efficacy of some entomopathogens while they are ineffective on others. Specifically, the bacterium Bacillus thuringiensis is the most effective bioinsecticide under all conditions tested, i.e., low DTF (11–22 °C) and high DTF (17–33 °C) compared to constant temperature (25 °C). In contrast, nematodes are more sensitive to changes in temperature: Steinernema carpocapsae loses efficacy at low DTF, while Steinernema feltiae and Heterorhabditis bacteriophora are not effective in controlling the target dipteran. This work provides a basis for reviewing biological control methods against invasive species in the current context of climate change. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

14 pages, 4440 KiB  
Article
Competitive Sperm-Marked Beetles for Monitoring Approaches in Genetic Biocontrol and Studies in Reproductive Biology
by Musa Dan’azumi Isah, Bibi Atika, Stefan Dippel, Hassan M. M. Ahmed and Ernst A. Wimmer
Int. J. Mol. Sci. 2022, 23(20), 12594; https://doi.org/10.3390/ijms232012594 - 20 Oct 2022
Cited by 2 | Viewed by 1840
Abstract
Sperm marking provides a key tool for reproductive biology studies, but it also represents a valuable monitoring tool for genetic pest control strategies such as the sterile insect technique. Sperm-marked lines can be generated by introducing transgenes that mediate the expression of fluorescent [...] Read more.
Sperm marking provides a key tool for reproductive biology studies, but it also represents a valuable monitoring tool for genetic pest control strategies such as the sterile insect technique. Sperm-marked lines can be generated by introducing transgenes that mediate the expression of fluorescent proteins during spermatogenesis. The homozygous lines established by transgenesis approaches are going through a genetic bottleneck that can lead to reduced fitness. Transgenic SIT approaches have mostly focused on Dipteran and Lepidopteran pests so far. With this study, we provide sperm-marked lines for the Coleopteran pest model organism, the red flour beetle Tribolium castaneum, based on the β2-tubulin promoter/enhancer driving red (DsRed) or green (EGFP) fluorescence. The obtained lines are reasonably competitive and were thus used for our studies on reproductive biology, confirming the phenomenon of ‘last-male sperm precedence’ and that the spermathecae are deployed for long-term sperm storage, enabling the use of sperm from first mating events even after secondary mating events for a long period of time. The homozygosity and competitiveness of the lines will enable future studies to analyze the controlled process of sperm movement into the long-term storage organ as part of a post-mating cryptic female choice mechanism of this extremely promiscuous species. Full article
(This article belongs to the Special Issue Sperm and Seminal Plasma: A Molecular Genetics Perspective)
Show Figures

Figure 1

8 pages, 628 KiB  
Article
Effects of Host Ages and Release Strategies on the Performance of the Pupal Parasitoid Spalangia endius on the Melon Fly Bactrocera cucurbitae
by Jian-Feng Liu, Cheng-Xu Wu, Atif Idrees, Hai-Yan Zhao and Mao-Fa Yang
Agriculture 2022, 12(10), 1629; https://doi.org/10.3390/agriculture12101629 - 7 Oct 2022
Cited by 5 | Viewed by 2222
Abstract
The melon fly, Bactrocera cucurbitae Coquillett (Diptera: Tephritidae), is a quarantine pest that causes considerable economic losses to growers of vegetables and fruits worldwide. Spalangia endius (Walker) (Hymenoptera: Pteromalidae) is a solitary pupal parasitoid of various dipteran hosts. We assessed the impact of [...] Read more.
The melon fly, Bactrocera cucurbitae Coquillett (Diptera: Tephritidae), is a quarantine pest that causes considerable economic losses to growers of vegetables and fruits worldwide. Spalangia endius (Walker) (Hymenoptera: Pteromalidae) is a solitary pupal parasitoid of various dipteran hosts. We assessed the impact of the host pupal age (2, 4, and 6 days old), host density (5, 10, 15, 20, 25, and 30), and parasitoid density (1, 2, 3, 4, 5, and 6) on the parasitizing potential of S. endius on B. cucurbitae pupae under laboratory conditions. The effects of different soil depths on the parasitism rate of S. endius and the dispersal behavior of S. endius at distances of 0, 5, and 10 m were also evaluated under field conditions. The results showed that the parasitism rate of S. endius significantly increased with the increase in host density and parasitoid density. The host pupal age did not influence the number of pupae parasitized by S. endius and the progeny sex ratio of S. endius under different host densities. In the fields, different puparium burial depths of B. dorsalis pupae significantly influenced the parasitism and eclosion rates of S. endius but did not influence the eclosion rate of B. cucurbitae. Spalangia endius females could travel up to 10 m to parasitize at a similar rate on B. cucurbitae pupae compared to S. endius placed at 0 m. Full article
(This article belongs to the Special Issue Insect Ecology and Pest Management in Agriculture)
Show Figures

Figure 1

16 pages, 2412 KiB  
Article
Lethal, Sub-Lethal and Trans-Generational Effects of Chlorantraniliprole on Biological Parameters, Demographic Traits, and Fitness Costs of Spodoptera frugiperda (Lepidoptera: Noctuidae)
by Zunnu Raen Akhtar, Ayesha Afzal, Atif Idrees, Khuram Zia, Ziyad Abdul Qadir, Shahbaz Ali, Inzamam Ul Haq, Hamed A. Ghramh, Yasir Niaz, Muhammad Bilal Tahir, Muhammad Arshad and Jun Li
Insects 2022, 13(10), 881; https://doi.org/10.3390/insects13100881 - 28 Sep 2022
Cited by 14 | Viewed by 3570
Abstract
Fall armyworm [Spodoptera frugiperda (J. E. Smith, 1797)] was first reported in the Americas, then spread to all the continents of the world. Chemical insecticides are frequently employed in managing fall armyworms. These insecticides have various modes of actions and target sites [...] Read more.
Fall armyworm [Spodoptera frugiperda (J. E. Smith, 1797)] was first reported in the Americas, then spread to all the continents of the world. Chemical insecticides are frequently employed in managing fall armyworms. These insecticides have various modes of actions and target sites to kill the insects. Chlorantraniliprole is a selective insecticide with a novel mode of action and is used against Lepidopteran, Coleopteran, Isopteran, and Dipteran pests. This study determined chlorantraniliprole’s lethal, sub-lethal, and trans-generational effects on two consecutive generations (F0, F1, and F2) of the fall armyworm. Bioassays revealed that chlorantraniliprole exhibited higher toxicity against fall armyworms with a LC50 of 2.781 mg/L after 48 h of exposure. Significant differences were noted in the biological parameters of fall armyworms in all generations. Sub-lethal concentrations of chlorantraniliprole showed prolonged larval and adult durations. The parameters related to the fitness cost in F0 and F1 generations showed non-significant differences. In contrast, the F2 generation showed lower fecundity at lethal (71 eggs/female) and sub-lethal (94 eggs/female) doses of chlorantraniliprole compared to the control (127.5–129.3 eggs/female). Age-stage specific survival rate (Sxj), life expectancy (Exj) and reproductive rate (Vxj) significantly differed among insecticide-treated groups in all generations compared to the control. A comparison of treated and untreated insects over generations indicated substantial differences in demographic parameters such as net reproduction rate (R0), intrinsic rate of increase (r), and mean generation time (T). Several biological and demographic parameters were shown to be negatively impacted by chlorantraniliprole. We conclude that chlorantraniliprole may be utilized to manage fall armyworms with lesser risks. Full article
(This article belongs to the Special Issue Managing Invasive Insects: Good Intentions, Hard Realities)
Show Figures

Figure 1

20 pages, 5045 KiB  
Article
Identification of Candidate Chemosensory Gene Families by Head Transcriptomes Analysis in the Mexican Fruit Fly, Anastrepha ludens Loew (Diptera: Tephritidae)
by Obdulia L. Segura-León, Brenda Torres-Huerta, Alan Rubén Estrada-Pérez, Juan Cibrián-Tovar, Fidel de la Cruz Hernandez-Hernandez, José Luis Cruz-Jaramillo, José Salvador Meza-Hernández and Fabian Sánchez-Galicia
Int. J. Mol. Sci. 2022, 23(18), 10531; https://doi.org/10.3390/ijms231810531 - 11 Sep 2022
Cited by 4 | Viewed by 3164
Abstract
Insect chemosensory systems, such as smell and taste, are mediated by chemosensory receptor and non-receptor protein families. In the last decade, many studies have focused on discovering these families in Tephritidae species of agricultural importance. However, to date, there is no information on [...] Read more.
Insect chemosensory systems, such as smell and taste, are mediated by chemosensory receptor and non-receptor protein families. In the last decade, many studies have focused on discovering these families in Tephritidae species of agricultural importance. However, to date, there is no information on the Mexican fruit fly Anastrepha ludens Loew, a priority pest of quarantine importance in Mexico and other countries. This work represents the first effort to identify, classify and characterize the six chemosensory gene families by analyzing two head transcriptomes of sexually immature and mature adults of A. ludens from laboratory-reared and wild populations, respectively. We identified 120 chemosensory genes encoding 31 Odorant-Binding Proteins (OBPs), 5 Chemosensory Proteins (CSPs), 2 Sensory Neuron Membrane Proteins (SNMPs), 42 Odorant Receptors (ORs), 17 Ionotropic Receptors (IRs), and 23 Gustatory Receptors (GRs). The 120 described chemosensory proteins of the Mexican fruit fly significantly contribute to the genetic databases of insects, particularly dipterans. Except for some OBPs, this work reports for the first time the repertoire of olfactory proteins for one species of the genus Anastrepha, which provides a further basis for studying the olfactory system in the family Tephritidae, one of the most important for its economic and social impact worldwide. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms Underlying Taste, Smell and Beyond)
Show Figures

Figure 1

18 pages, 2448 KiB  
Article
Parasitism by the Tachinid Parasitoid Exorista japonica Leads to Suppression of Basal Metabolism and Activation of Immune Response in the Host Bombyx mori
by Minli Dai, Jin Yang, Xinyi Liu, Haoyi Gu, Fanchi Li, Bing Li and Jing Wei
Insects 2022, 13(9), 792; https://doi.org/10.3390/insects13090792 - 31 Aug 2022
Cited by 14 | Viewed by 2939
Abstract
The dipteran tachinid parasitoids are important biocontrol agents, and they must survive the harsh environment and rely on the resources of the host insect to complete their larval stage. We have previously demonstrated that the parasitism by the tachinid parasitoid Exoristajaponica, [...] Read more.
The dipteran tachinid parasitoids are important biocontrol agents, and they must survive the harsh environment and rely on the resources of the host insect to complete their larval stage. We have previously demonstrated that the parasitism by the tachinid parasitoid Exoristajaponica, a pest of the silkworm, causes pupation defects in Bombyx mori. However, the underlying mechanism is not fully understood. Here, we performed transcriptome analysis of the fat body of B. mori parasitized by E. japonica. We identified 1361 differentially expressed genes, with 394 genes up-regulated and 967 genes down-regulated. The up-regulated genes were mainly associated with immune response, endocrine system and signal transduction, whereas the genes related to basal metabolism, including energy metabolism, transport and catabolism, lipid metabolism, amino acid metabolism and carbohydrate metabolism were down-regulated, indicating that the host appeared to be in poor nutritional status but active in immune response. Moreover, by time-course gene expression analysis we found that genes related to amino acid synthesis, protein degradation and lipid metabolism in B. mori at later parasitization stages were inhibited. Antimicrobial peptides including Cecropin A, Gloverin and Moricin, and an immulectin, CTL11, were induced. These results indicate that the tachinid parasitoid perturbs the basal metabolism and induces the energetically costly immunity of the host, and thus leading to incomplete larval–pupal ecdysis of the host. This study provided insights into how tachinid parasitoids modify host basal metabolism and immune response for the benefit of developing parasitoid larvae. Full article
Show Figures

Graphical abstract

Back to TopTop