Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = differential flatness approach (DFA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 13517 KiB  
Article
Backstepping Based Super-Twisting Sliding Mode MPPT Control with Differential Flatness Oriented Observer Design for Photovoltaic System
by Rashid Khan, Laiq Khan, Shafaat Ullah, Irfan Sami and Jong-Suk Ro
Electronics 2020, 9(9), 1543; https://doi.org/10.3390/electronics9091543 - 21 Sep 2020
Cited by 31 | Viewed by 4764
Abstract
The formulation of a maximum power point tracking (MPPT) control strategy plays a vital role in enhancing the inherent low conversion efficiency of a photovoltaic (PV) module. Keeping in view the nonlinear electrical characteristics of the PV module as well as the power [...] Read more.
The formulation of a maximum power point tracking (MPPT) control strategy plays a vital role in enhancing the inherent low conversion efficiency of a photovoltaic (PV) module. Keeping in view the nonlinear electrical characteristics of the PV module as well as the power electronic interface, in this paper, a hybrid nonlinear sensorless observer based robust backstepping super-twisting sliding mode control (BSTSMC) MPPT strategy is formulated to optimize the electric power extraction from a standalone PV array, connected to a resistive load through a non-inverting DC–DC buck-boost power converter. The reference peak power voltage is generated via the Gaussian process regression (GPR) based probabilistic machine learning approach that is adequately tracked by the proposed MPPT scheme. A generalized super-twisting algorithm (GSTA) based differential flatness approach (DFA) is used to retrieve all the missing system states. The Lyapunov stability theory is used for guaranteeing the stability of the proposed closed-loop MPPT technique. The Matlab/Simulink platform is used for simulation, testing and performance validation of the proposed MPPT strategy under different weather conditions. Its MPPT performance is further compared with the recently proposed benchmark backstepping based MPPT control strategy and the conventional MPPT strategies, namely, sliding mode control (SMC), proportional integral derivative (PID) control and the perturb-and-observe (P&O) algorithm. The proposed technique is found to have a superior tracking performance in terms of offering a fast dynamic response, finite-time convergence, minute chattering, higher tracking accuracy and having more robustness against plant parametric uncertainties, load disturbances and certain time-varying sinusoidal faults occurring in the system. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

Back to TopTop