Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,261)

Search Parameters:
Keywords = dietary ingredient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 775 KiB  
Review
Bioactive Compounds, Technological Advances, and Sustainable Applications of Avocado (Persea americana Mill.): A Critical Review
by Amanda Priscila Silva Nascimento, Maria Elita Martins Duarte, Ana Paula Trindade Rocha and Ana Novo Barros
Foods 2025, 14(15), 2746; https://doi.org/10.3390/foods14152746 - 6 Aug 2025
Abstract
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in [...] Read more.
Avocado (Persea americana), originally from Mesoamerica, has emerged as a focus of intense scientific and industrial interest due to its unique combination of nutritional richness, bioactive potential, and technological versatility. Its pulp, widely consumed across the globe, is notably abundant in monounsaturated fatty acids, especially oleic acid, which can comprise over two-thirds of its lipid content. In addition, it provides significant levels of dietary fiber, fat-soluble vitamins such as A, D, E and K, carotenoids, tocopherols, and phytosterols like β-sitosterol. These constituents are consistently associated with antioxidant, anti-inflammatory, glycemic regulatory, and cardioprotective effects, supported by a growing body of experimental and clinical evidence. This review offers a comprehensive and critical synthesis of the chemical composition and functional properties of avocado, with particular emphasis on its lipid profile, phenolic compounds, and phytosterols. It also explores recent advances in environmentally sustainable extraction techniques, including ultrasound-assisted and microwave-assisted processes, as well as the application of natural deep eutectic solvents. These technologies have demonstrated improved efficiency in recovering bioactives while aligning with the principles of green chemistry. The use of avocado-derived ingredients in nanostructured delivery systems and their incorporation into functional foods, cosmetics, and health-promoting formulations is discussed in detail. Additionally, the potential of native cultivars and the application of precision nutrition strategies are identified as promising avenues for future innovation. Taken together, the findings underscore the avocado’s relevance as a high-value matrix for sustainable development. Future research should focus on optimizing extraction protocols, clarifying pharmacokinetic behavior, and ensuring long-term safety in diverse applications. Full article
(This article belongs to the Special Issue Feature Review on Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

20 pages, 450 KiB  
Article
Four Organic Protein Source Alternatives to Fish Meal for Pacific White Shrimp (Penaeus vannamei) Feeding
by Yosu Candela-Maldonado, Imane Megder, Eslam Tefal, David S. Peñaranda, Silvia Martínez-Llorens, Ana Tomás-Vidal, Miguel Jover-Cerdá and Ignacio Jauralde
Fishes 2025, 10(8), 384; https://doi.org/10.3390/fishes10080384 - 5 Aug 2025
Abstract
The use of eco-organic ingredients as a source of protein in aquaculture diets needs important attention due to the growing demand for organic seafood products. The present study evaluated the effects of fish meal substitution by different organic ingredients on the growth, body [...] Read more.
The use of eco-organic ingredients as a source of protein in aquaculture diets needs important attention due to the growing demand for organic seafood products. The present study evaluated the effects of fish meal substitution by different organic ingredients on the growth, body composition, retention efficiency, enzyme activity, and nutrient digestibility of white shrimp Penaeus vannamei. The four dietary formulations tested were formulated with organic ingredients and the fish meal was replaced by the following organic protein meals: Iberian pig viscera meal (PIG), trout by-product meal (TRO), insect meal (FLY), and organic vegetable meal (WHT), in addition to a control diet (CON) that included 15% fish meal. A growth trial was carried out for 83 days, raising 1 g shrimp to commercial size (20 g). Shrimp were stocked at 167 shrimp/m3 (15 individuals per 90 L tank). The results showed that the growth obtained by shrimp fed with TRO (19.27 g) and PIG (19.35 g) were similar in weight gain to the control diet (20.76 g), while FLY (16.04 g) and WHT (16.73 g) meals resulted in a significant lower final weight. The FLY diet showed significantly lower protein digestibility (68.89%) compared to the CON, PIG, TRO, and WHT diets, and significantly higher trypsin activity (0.17 mU/g) compared to shrimp fed with the PIG, TRO, and WHT diets. Shrimp fed with WHT have a significantly lower body weight percentage of protein (19.69%) than shrimp fed with the WHT and TRO diets, and some significant differences in dietary aminoacidic levels affecting amino acid body composition. These results indicate that Iberian pig viscera and trout by-product meal can successfully replace fish meal in Pacific white shrimp aquaculture. Full article
(This article belongs to the Special Issue Advances in Aquaculture Feed Additives)
Show Figures

Figure 1

18 pages, 2123 KiB  
Article
Neuroprotective Effect Against Ischemic Stroke of the Novel Functional Drink Containing Anthocyanin and Dietary Fiber Enriched-Functional Ingredient from the Mixture of Banana and Germinated Jasmine Rice
by Mubarak Muhammad, Jintanaporn Wattanathorn, Wipawee Thukham-mee, Sophida Phuthong and Supaporn Muchimapura
Life 2025, 15(8), 1222; https://doi.org/10.3390/life15081222 - 2 Aug 2025
Viewed by 115
Abstract
Due to the stroke-protective effects of dietary fiber and anthocyanin together with the synergistic interaction, we hypothesized that the functional drink containing the anthocyanins and dietary fiber-enriched functional ingredient from banana and germinated black Jasmine rice (BR) should protect against ischemic stroke. [...] Read more.
Due to the stroke-protective effects of dietary fiber and anthocyanin together with the synergistic interaction, we hypothesized that the functional drink containing the anthocyanins and dietary fiber-enriched functional ingredient from banana and germinated black Jasmine rice (BR) should protect against ischemic stroke. BR at doses of 300, 600, and 900 mg/kg body weight (BW) was orally given to male Wistar rats weighing 290–350 g once daily for 21 days, and they were subjected to ischemic reperfusion injury induced by temporary occlusion of the middle cerebral artery (MCAO/IR) for 90 min. The treatment was prolonged for 21 days after MCAO/IR. They were assessed for brain infarction volume, neuron density, Nrf2, MDA, and catalase in the cortex together with serum TNF-α and IL-6. Lactobacillus and Bifidobacterium spp. in feces were also assessed. Our results showed that BR improved the increase in brain infarcted volume, MDA, TNF-α, and IL-6 and the decrease in neuron density, Nrf2, catalase, and both bacteria spp. induced by MCAO/IR. These data suggest the stroke-protective effect of the novel functional drink, and the action may involve the improvement of Nrf2, oxidative stress, inflammation, and the amount of Lactobacillus and Bifidobacterium spp. Full article
(This article belongs to the Special Issue Bioactive Compounds for Medicine and Health)
46 pages, 2160 KiB  
Review
Potential of Plant-Based Oil Processing Wastes/By-Products as an Alternative Source of Bioactive Compounds in the Food Industry
by Elifsu Nemli, Deniz Günal-Köroğlu, Resat Apak and Esra Capanoglu
Foods 2025, 14(15), 2718; https://doi.org/10.3390/foods14152718 - 2 Aug 2025
Viewed by 327
Abstract
The plant-based oil industry contributes significantly to food waste/by-products in the form of underutilized biomass, including oil pomace, cake/meal, seeds, peels, wastewater, etc. These waste/by-products contain a significant quantity of nutritious and bioactive compounds (phenolics, lignans, flavonoids, dietary fiber, proteins, and essential minerals) [...] Read more.
The plant-based oil industry contributes significantly to food waste/by-products in the form of underutilized biomass, including oil pomace, cake/meal, seeds, peels, wastewater, etc. These waste/by-products contain a significant quantity of nutritious and bioactive compounds (phenolics, lignans, flavonoids, dietary fiber, proteins, and essential minerals) with proven health-promoting effects. The utilization of them as natural, cost-effective, and food-grade functional ingredients in novel food formulations holds considerable potential. This review highlights the potential of waste/by-products generated during plant-based oil processing as a promising source of bioactive compounds and covers systematic research, including recent studies focusing on innovative extraction and processing techniques. It also sheds light on their promising potential for valorization as food ingredients, with a focus on specific examples of food fortification. Furthermore, the potential for value creation in the food industry is emphasized, taking into account associated challenges and limitations, as well as future perspectives. Overall, the current information suggests that the valorization of plant-based oil industry waste and by-products for use in the food industry could substantially reduce malnutrition and poverty, generate favorable health outcomes, mitigate environmental concerns, and enhance economic profit in a sustainable way by developing health-promoting, environmentally sustainable food systems. Full article
Show Figures

Figure 1

23 pages, 1746 KiB  
Review
Advanced Modification Strategies of Plant-Sourced Dietary Fibers and Their Applications in Functional Foods
by Yansheng Zhao, Ying Shao, Songtao Fan, Juan Bai, Lin Zhu, Ying Zhu and Xiang Xiao
Foods 2025, 14(15), 2710; https://doi.org/10.3390/foods14152710 - 1 Aug 2025
Viewed by 347
Abstract
Plant-sourced Dietary Fibers (PDFs) have garnered significant attention due to their multifaceted health benefits, particularly in glycemic control, lipid metabolism regulation, and gut microbiota modulation. This review systematically investigates advanced modification strategies, including physical, chemical, bioengineering, and hybrid approaches, to improve the physicochemical [...] Read more.
Plant-sourced Dietary Fibers (PDFs) have garnered significant attention due to their multifaceted health benefits, particularly in glycemic control, lipid metabolism regulation, and gut microbiota modulation. This review systematically investigates advanced modification strategies, including physical, chemical, bioengineering, and hybrid approaches, to improve the physicochemical properties and bioactivity of PDFs from legumes, cereals, and other sources. Key modifications such as steam explosion, enzymatic hydrolysis, and carboxymethylation significantly improve solubility, porosity, and functional group exposure, thereby optimizing the health-promoting effects of legume-sourced dietary fiber. The review further elucidates critical structure–function relationships, highlighting PDF’s prebiotic potential, synergistic interactions with polyphenols and proteins, and responsive designs for targeted nutrient delivery. In functional food applications, cereal-sourced dietary fibers serve as a versatile functional ingredient in engineered foods including 3D-printed gels and low-glycemic energy bars, addressing specific metabolic disorders and personalized dietary requirements. By integrating state-of-the-art modification techniques with innovative applications, this review provides comprehensive insights into PDF’s transformative role in advancing functional foods and personalized nutrition solutions. Full article
Show Figures

Figure 1

19 pages, 300 KiB  
Review
Sprouted Grains as a Source of Bioactive Compounds for Modulating Insulin Resistance
by Yan Sun, Caiyun Li and Aejin Lee
Appl. Sci. 2025, 15(15), 8574; https://doi.org/10.3390/app15158574 (registering DOI) - 1 Aug 2025
Viewed by 276
Abstract
Sprouted grains are gaining attention as a natural and sustainable source of bioactive compounds with potential benefits in managing insulin resistance (IR), a hallmark of obesity-related metabolic disorders. This review aims to synthesize current findings on the biochemical changes induced during grain germination [...] Read more.
Sprouted grains are gaining attention as a natural and sustainable source of bioactive compounds with potential benefits in managing insulin resistance (IR), a hallmark of obesity-related metabolic disorders. This review aims to synthesize current findings on the biochemical changes induced during grain germination and their relevance to metabolic health. We examined recent in vitro, animal, and human studies focusing on how germination enhances the nutritional and functional properties of grains, particularly through the synthesis of compounds such as γ-aminobutyric acid, polyphenols, flavonoids, and antioxidants, while reducing anti-nutritional factors. These bioactive compounds have been shown to modulate metabolic and inflammatory pathways by inhibiting carbohydrate-digesting enzymes, suppressing pro-inflammatory cytokines, improving redox balance, and influencing gut microbiota composition. Collectively, these effects contribute to improved insulin sensitivity and glycemic control. The findings suggest that sprouted grains serve not only as functional food ingredients but also as accessible dietary tools for preventing or alleviating IR. Their role in delivering multiple bioactive molecules through a simple, environmentally friendly process highlights their promise in developing future nutrition-based strategies for metabolic disease prevention. Full article
(This article belongs to the Special Issue New Insights into Bioactive Compounds)
32 pages, 1104 KiB  
Review
Vegetable By-Products from Industrial Processing: From Waste to Functional Ingredient Through Fermentation
by Andrea Marcelli, Andrea Osimani and Lucia Aquilanti
Foods 2025, 14(15), 2704; https://doi.org/10.3390/foods14152704 - 31 Jul 2025
Viewed by 265
Abstract
In recent decades, the rapid expansion of the food processing industry has led to significant losses and waste, with the fruit and vegetable sector among the most affected. According to the Food and Agriculture Organization of the United Nations (FAO), losses in this [...] Read more.
In recent decades, the rapid expansion of the food processing industry has led to significant losses and waste, with the fruit and vegetable sector among the most affected. According to the Food and Agriculture Organization of the United Nations (FAO), losses in this category can reach up to 60%. Vegetable waste includes edible parts discarded during processing, packaging, distribution, and consumption, often comprising by-products rich in bioactive compounds such as polyphenols, carotenoids, dietary fibers, vitamins, and enzymes. The underutilization of these resources constitutes both an economic drawback and an environmental and ethical concern. Current recovery practices, including their use in animal feed or bioenergy production, contribute to a circular economy but are often limited by high operational costs. In this context, fermentation has emerged as a promising, sustainable approach for converting vegetable by-products into value-added food ingredients. This process improves digestibility, reduces undesirable compounds, and introduces probiotics beneficial to human health. The present review examines how fermentation can improve the nutritional, sensory, and functional properties of plant-based foods. By presenting several case studies, it illustrates how fermentation can effectively valorize vegetable processing by-products, supporting the development of novel, health-promoting food products with improved technological qualities. Full article
(This article belongs to the Special Issue Feature Reviews on Food Microbiology)
Show Figures

Figure 1

50 pages, 2093 KiB  
Review
Enhancing Human Health Through Nutrient and Bioactive Compound Recovery from Agri-Food By-Products: A Decade of Progress
by Cinzia Ingallina, Mattia Spano, Sabrina Antonia Prencipe, Giuliana Vinci, Antonella Di Sotto, Donatella Ambroselli, Valeria Vergine, Maria Elisa Crestoni, Chiara Di Meo, Nicole Zoratto, Luana Izzo, Abel Navarré, Giuseppina Adiletta, Paola Russo, Giacomo Di Matteo, Luisa Mannina and Anna Maria Giusti
Nutrients 2025, 17(15), 2528; https://doi.org/10.3390/nu17152528 - 31 Jul 2025
Viewed by 191
Abstract
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus [...] Read more.
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus has shifted attention toward the valorization of the agri-food by-products as rich sources of bioactive compounds useful in preventing or treating chronic diseases. Agri-food by-products, often regarded as waste, actually hold great potential as they are rich in bioactive components, dietary fiber, and other beneficial nutrients from which innovative food ingredients, functional foods, and even therapeutic products are developed. This review aims to provide a comprehensive analysis of the current advances in recovering and applying such compounds from agri-food waste, with a particular focus on their roles in human health, sustainable packaging, and circular economy strategies. Methods: This review critically synthesizes recent scientific literature on the extraction, characterization, and utilization of bioactive molecules from agri-food by-products. After careful analysis of the PubMed and Scopus databases, only English-language articles from the last 10 years were included in the final narrative review. The analysis also encompasses applications in the nutraceutical, pharmaceutical, and food packaging sectors. Results: Emerging technologies have enabled the efficient and eco-friendly recovery of compounds such as polyphenols, carotenoids, and dietary fibers that demonstrate antioxidant, antimicrobial, and anti-inflammatory properties. These bioactive compounds support the development of functional foods and biodegradable packaging materials. Furthermore, these valorization strategies align with global health trends by promoting dietary supplements that counteract the effects of the Western diet and chronic diseases. Conclusions: Valorization of agri-food by-products offers a promising path toward sustainable development by reducing waste, enhancing public health, and driving innovation. This strategy not only minimizes waste and supports sustainability, but also promotes a more nutritious and resilient food system. Full article
(This article belongs to the Special Issue Nutrition 3.0: Between Tradition and Innovation)
Show Figures

Figure 1

15 pages, 1125 KiB  
Article
Mixed Green Banana (Musa spp.) Pulp and Peel Flour Reduced Body Weight Gain and Adiposity and Improved Lipid Profile and Intestinal Morphology in Wistar Rats
by Leonara Martins Viana, Bárbara Pereira da Silva, Fabiana Silva Rocha Rodrigues, Laise Trindade Paes, Marcella Duarte Villas Mishima, Renata Celi Lopes Toledo, Elad Tako, Hércia Stampini Duarte Martino and Frederico Barros
Nutrients 2025, 17(15), 2493; https://doi.org/10.3390/nu17152493 - 30 Jul 2025
Viewed by 251
Abstract
Background and Objectives: In recent years, there has been growing interest in the production of ingredients rich in dietary fiber and antioxidants, such as green banana flours. This study evaluated the effect of consumption of mixed green banana pulp (PF) and peel (PeF) [...] Read more.
Background and Objectives: In recent years, there has been growing interest in the production of ingredients rich in dietary fiber and antioxidants, such as green banana flours. This study evaluated the effect of consumption of mixed green banana pulp (PF) and peel (PeF) flours on the body weight gain, adiposity, lipid profile, and intestinal morphology of Wistar rats. Methods: Male young rats were divided into four groups (n = 8) that received a standard diet (SD), or one of the following three test diets: M1 (SD + 90% PF/10% PeF), M2 (SD + 80% PF/20% PeF), or P (SD + 100% PF) for 28 days. Results: Rats from M1, M2, and P groups showed reduced body weight gain and adiposity and had lower contents of total cholesterol, LDL-c, VLDL-c, and triglycerides. Animals from M1 and M2 groups had an increase in cecum weight, fecal moisture, acetic acid concentration, and crypt depth and reduced fecal pH. Moreover, consumption of the M1, M2, and P diets increased the expression of proteins involved in intestinal functionality. Significant negative correlations were observed between consumption of resistant starch and soluble dietary fiber, from the flours, and weight gain (r = −0.538 and r = −0.538, respectively), body adiposity (r = −0.780 and r = −0.767, respectively), total cholesterol (r = −0.789 and r = −0.800, respectively), and triglycerides (r = −0.790 and r = −0.786, respectively). Conclusions: Mixed green banana pulp and peel flour proved to be a viable alternative as a food ingredient that can promote weight loss, improve lipid profile and intestinal morphology, and minimize post-harvest losses. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Figure 1

30 pages, 3414 KiB  
Article
In Vitro Neuroprotective Effects of a Mixed Extract of Bilberry, Centella asiatica, Hericium erinaceus, and Palmitoylethanolamide
by Rebecca Galla, Sara Ferrari, Ivana Miletto, Simone Mulè and Francesca Uberti
Foods 2025, 14(15), 2678; https://doi.org/10.3390/foods14152678 - 30 Jul 2025
Viewed by 355
Abstract
Oxidative stress, driven by impaired antioxidant defence systems, is a major contributor to cognitive decline and neurodegenerative processes in brain ageing. This study investigates the neuroprotective effects of a natural compound mixture—composed of Hericium erinaceus, Palmitoylethanolamide, Bilberry extract, and Centella asiatica—using [...] Read more.
Oxidative stress, driven by impaired antioxidant defence systems, is a major contributor to cognitive decline and neurodegenerative processes in brain ageing. This study investigates the neuroprotective effects of a natural compound mixture—composed of Hericium erinaceus, Palmitoylethanolamide, Bilberry extract, and Centella asiatica—using a multi-step in vitro strategy. An initial evaluation in a 3D intestinal epithelial model demonstrated that the formulation preserves barrier integrity and may be bioaccessible, as evidenced by transepithelial electrical resistance (TEER) and the expression of tight junctions. Subsequent analysis in an integrated gut–brain axis model under oxidative stress conditions revealed that the formulation significantly reduces inflammatory markers (NF-κB, TNF-α, IL-1β, and IL-6; about 1.5-fold vs. H2O2), reactive oxygen species (about 2-fold vs. H2O2), and nitric oxide levels (about 1.2-fold vs. H2O2). Additionally, it enhances mitochondrial activity while also improving antioxidant responses. In a co-culture of neuronal and astrocytic cells, the combination upregulates neurotrophic factors such as BDNF and NGF (about 2.3-fold and 1.9-fold vs. H2O2). Crucially, the formulation also modulates key biomarkers associated with cognitive decline, reducing APP and phosphorylated tau levels (about 98% and 1.6-fold vs. H2O2) while increasing Sirtuin 1 and Nrf2 expression (about 3.6-fold and 3-fold vs. H2O2). These findings suggest that this nutraceutical combination may support the cellular pathways involved in neuronal resilience and healthy brain ageing, offering potential as a functional food ingredient or dietary supplement. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

17 pages, 1482 KiB  
Review
Dietary Fiber as Prebiotics: A Mitigation Strategy for Metabolic Diseases
by Xinrui Gao, Sumei Hu, Ying Liu, S. A. Sanduni Samudika De Alwis, Ying Yu, Zhaofeng Li, Ziyuan Wang and Jie Liu
Foods 2025, 14(15), 2670; https://doi.org/10.3390/foods14152670 - 29 Jul 2025
Viewed by 412
Abstract
Dietary fiber (DF) is one type of carbohydrate that cannot be digested by the gastrointestinal tract. It is widely recognized as an essential ingredient for health due to its remarkable prebiotic properties. Studies have shown that DF is important in the management of [...] Read more.
Dietary fiber (DF) is one type of carbohydrate that cannot be digested by the gastrointestinal tract. It is widely recognized as an essential ingredient for health due to its remarkable prebiotic properties. Studies have shown that DF is important in the management of metabolic diseases, such as obesity and diabetes, by regulating the balance of gut microbiota and slowing down the absorption of glucose. It is worth noting that patients with metabolic diseases might suffer from intestinal dysfunction (such as constipation), which is triggered by factors such as the disease itself or medication. This increases the complexity of chronic disease treatment. Although medications are the most common treatment for chronic disease, long-term use might increase the financial and psychological burden. DF as a prebiotic has received significant attention not only in the therapy for constipation but also as an adjunctive treatment in metabolic disease. This review focuses on the application of DF in modulating metabolic diseases with special attention on the effect of DF on intestinal dysfunction. Furthermore, the molecular mechanisms through which DF alleviates intestinal disorders are discussed, including modulating the secretion of gastrointestinal neurotransmitters and hormones, the expression of aquaporins, and the production of short-chain fatty acids. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

21 pages, 2393 KiB  
Article
Antioxidant and Anti-Inflammatory Activities of Latilactobacillus curvatus and L. sakei Isolated from Green Tripe
by Ga Hun Lee, Sung Hyun Choi, Yong Hyun Lee and Jae Kweon Park
Nutrients 2025, 17(15), 2464; https://doi.org/10.3390/nu17152464 - 28 Jul 2025
Viewed by 406
Abstract
Background/Objectives: Green tripe (GRET) is rich in essential fatty acids, vitamins, calcium, phosphorus, and other nutrients and contains various beneficial microorganisms, including lactobacillus, along with feed components consumed by ruminants. Methods: In this study, Latilactobacillus sakei and L. curvatus were isolated from GRET [...] Read more.
Background/Objectives: Green tripe (GRET) is rich in essential fatty acids, vitamins, calcium, phosphorus, and other nutrients and contains various beneficial microorganisms, including lactobacillus, along with feed components consumed by ruminants. Methods: In this study, Latilactobacillus sakei and L. curvatus were isolated from GRET and evaluated for their potential as probiotics, focusing on their anti-inflammatory properties and ability to modulate inflammatory responses. Results: When heat-killed L. sakei or L. curvatus (108 CFU/mL) and their metabolites (0.5 mg/mL) were applied to RAW 264.7 macrophages stimulated with LPS, nitric oxide (NO) production was reduced by approximately 10–35% and 2–11%, respectively. Furthermore, the expression levels of key anti-inflammatory cytokines, TNF-α and IL-6, were suppressed by more than 5%. These effects were not due to cytotoxicity but instead due to genuine anti-inflammatory activity. In addition, both strains exhibited antioxidant activity, as demonstrated by their performance in ABTS and FRAP assays. Conclusions: These findings suggest that L. sakei and L. curvatus have significant antioxidant and anti-inflammatory properties, highlighting their potential as probiotics and prebiotics. Moreover, these newly isolated strains from GRET are expected to serve as valuable functional ingredients for developing health-promoting foods and dietary supplements. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

22 pages, 786 KiB  
Article
Diet to Data: Validation of a Bias-Mitigating Nutritional Screener Using Assembly Theory
by O’Connell C. Penrose, Phillip J. Gross, Hardeep Singh, Ania Izabela Rynarzewska, Crystal Ayazo and Louise Jones
Nutrients 2025, 17(15), 2459; https://doi.org/10.3390/nu17152459 - 28 Jul 2025
Viewed by 209
Abstract
Background/Objectives: Traditional dietary screeners face significant limitations: they rely on subjective self-reporting, average intake estimates, and are influenced by a participant’s awareness of being observed—each of which can distort results. These factors reduce both accuracy and reproducibility. The Guide Against Age-Related Disease (GARD) [...] Read more.
Background/Objectives: Traditional dietary screeners face significant limitations: they rely on subjective self-reporting, average intake estimates, and are influenced by a participant’s awareness of being observed—each of which can distort results. These factors reduce both accuracy and reproducibility. The Guide Against Age-Related Disease (GARD) addresses these issues by applying Assembly Theory to objectively quantify food and food behavior (FFB) complexity. This study aims to validate the GARD as a structured, bias-resistant tool for dietary assessment in clinical and research settings. Methods: The GARD survey was administered in an internal medicine clinic within a suburban hospital system in the southeastern U.S. The tool assessed six daily eating windows, scoring high-complexity FFBs (e.g., fresh plants, social eating, fasting) as +1 and low-complexity FFBs (e.g., ultra-processed foods, refined ingredients, distracted eating) as –1. To minimize bias, patients were unaware of scoring criteria and reported only what they ate the previous day, avoiding broad averages. A computer algorithm then scored responses based on complexity, independent of dietary guidelines. Internal (face, convergent, and discriminant) validity was assessed using Spearman rho correlations. Results: Face validation showed high inter-rater agreement using predefined Assembly Index (Ai) and Copy Number (Ni) thresholds. Positive correlations were found between high-complexity diets and behaviors (rho = 0.533–0.565, p < 0.001), while opposing constructs showed moderate negative correlations (rho = –0.363 to −0.425, p < 0.05). GARD scores aligned with established diet patterns: Mediterranean diets averaged +22; Standard American Diet averaged −10. Full article
(This article belongs to the Section Nutrition Methodology & Assessment)
Show Figures

Figure 1

22 pages, 1674 KiB  
Article
The Ghrelin Analog GHRP-6, Delivered Through Aquafeeds, Modulates the Endocrine and Immune Responses of Sparus aurata Following IFA Treatment
by Leandro Rodríguez-Viera, Anyell Caderno, Rebeca Martinez, Gonzalo Martinez-Rodríguez, Milagrosa Oliva, Erick Perera, Juan Miguel Mancera and Juan Antonio Martos-Sitcha
Biology 2025, 14(8), 941; https://doi.org/10.3390/biology14080941 - 25 Jul 2025
Viewed by 394
Abstract
The aquaculture industry has experienced considerable growth in recent decades, stimulating research into sustainable and functional feed formulations, mainly related to using high-quality, safe, and environmentally friendly feed ingredients. The employment of immunomodulatory additives is a promising strategy to enhance fish health and [...] Read more.
The aquaculture industry has experienced considerable growth in recent decades, stimulating research into sustainable and functional feed formulations, mainly related to using high-quality, safe, and environmentally friendly feed ingredients. The employment of immunomodulatory additives is a promising strategy to enhance fish health and performance. In this study, the effects of the ghrelin analog GHRP-6 peptide included in the diet (500 µg/kg of feed) on the endocrine and immune responses of Sparus aurata following Incomplete Freund’s adjuvant (IFA) treatment were assessed. After 97 days, fish were intraperitoneally injected with 100 µL of saline solution or IFA/100 g fish and sampled 72 h post-injection. Our results indicated that fish fed GHRP-6 maintained stable plasma levels of lactate, triglycerides, and cortisol after IFA treatment, in contrast to control-fed fish, which showed significant metabolic stress. Circulating immunoglobulin levels enhanced significantly in the GHRP-6/IFA group, suggesting a stimulated humoral immune response. Transcriptomics analysis revealed that the anterior intestine was the most responsive tissue, with upregulation of il10, il15, il34, and mx1, indicating mucosal immune activation. In the spleen, GHRP-6-fed fish increased il8, il10, and ighm expression, highlighting a balanced pro- and anti-inflammatory response and support for adaptive immunity. Multivariate analysis confirmed that dietary GHRP-6 modulates immune gene expression in a tissue- and stimulus-specific manner, without inducing histological alterations in the intestine or spleen. Taken together, these preliminary results indicate that this peptide is a viable and safe dietary supplement to improve immune resilience and increase the production efficiency of S. aurata and suggest a protective effect on the fish’s immune system in this species. Full article
(This article belongs to the Special Issue Aquatic Animal Nutrition and Feed)
Show Figures

Figure 1

17 pages, 661 KiB  
Article
An Ultrasonication-Assisted Green Process for Simultaneous Production of a Bioactive Compound-Rich Extract and a Multifunctional Fibrous Ingredient from Spent Coffee Grounds
by Jaquellyne B. M. D. Silva, Mayara T. P. Paiva, Henrique F. Fuzinato, Nathalia Silvestre, Marta T. Benassi and Suzana Mali
Molecules 2025, 30(15), 3117; https://doi.org/10.3390/molecules30153117 - 25 Jul 2025
Viewed by 299
Abstract
Spent coffee grounds (SCGs) are lignocellulosic residues generated from producing espresso or soluble coffee and have no commercial value. This study aimed to develop a new single-step process for extracting bioactive compounds from SCGs based on ultrasonication in an aqueous medium and simultaneously [...] Read more.
Spent coffee grounds (SCGs) are lignocellulosic residues generated from producing espresso or soluble coffee and have no commercial value. This study aimed to develop a new single-step process for extracting bioactive compounds from SCGs based on ultrasonication in an aqueous medium and simultaneously recovering the residual solid fraction, resulting in the integral utilization of the residue. This process resulted in a liquid aqueous extract (LAE) rich in bioactive compounds (caffeine: 400.1 mg/100 g; polyphenols: 800.4 mg GAE/100 g; melanoidins: 2100.2 mg/100 g) and, simultaneously, a solid multifunctional ingredient from modified spent coffee grounds (MSCGs) rich in bioactive compounds and dietary fibers (73.0 g/100 g). The liquid extract can be used as a natural ingredient for drinks or to isolate caffeine, while the solid matrix can be used to produce functional foods. This technique proved to be a promising eco-friendly alternative for the simultaneous production of two different materials from SCGs, maximizing resource efficiency, with some advantages, including short time, simplicity, and cost-effectiveness; using water as a solvent; and requiring no further purification processing. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

Back to TopTop