Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = dietary decanoic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 315 KiB  
Article
Low-Protein Diet Supplemented with Amino Acids Can Regulate the Growth Performance, Meat Quality, and Flavor of the Bamei Pigs
by Dong Wang, Ke Hou, Mengjie Kong, Wei Zhang, Wenzhong Li, Yiwen Geng, Chao Ma and Guoshun Chen
Foods 2025, 14(6), 946; https://doi.org/10.3390/foods14060946 - 11 Mar 2025
Viewed by 1111
Abstract
This study evaluated the impact of reduced crude protein (CP) diets supplemented with four essential amino acids (EAAs) on production efficiency and meat quality characteristics in Bamei pigs. Thirty-six castrated Bamei pigs (half male and half female, 100 days old, with an average [...] Read more.
This study evaluated the impact of reduced crude protein (CP) diets supplemented with four essential amino acids (EAAs) on production efficiency and meat quality characteristics in Bamei pigs. Thirty-six castrated Bamei pigs (half male and half female, 100 days old, with an average body weight of 50.65 kg) were randomly assigned to three different dietary CP levels: control group (16.0% CP), group I (14.0% CP + EAA), and group II (12.0% CP + EAA). In both experiments, the group I and group II diets were supplemented with crystalline AA to achieve equal contents of standardized ileal digestible (SID) lysine, methionine, threonine, and tryptophan. After a 70-day feeding trial, the results showed that (1) low-protein diets of different levels supplemented with four EAAs had no significant effect on the growth performance of Bamei pigs (p > 0.05) but had a tendency to increase average daily feed intake (ADFI). (2) In terms of slaughter performance, compared with the control group, the low-protein amino-acid-balanced diet significantly reduced the pH of gastric contents (p = 0.045), and tended to increase the backfat thickness and dressing percentage (p > 0.05). (3) The effect of low-protein diets on muscle amino acids showed that group I was significantly improved, including increased Threonine, Serine, Glycine and Bitter amino acids. (4) Compared with the control group, the low-protein group increased the ratio of unsaturated fatty acid (UFA)/total fatty acids (TFAs), Monounsaturated Fatty Acid (MUFA)/TFA, and Polyunsaturated Fatty Acid (PUFA)/TFA, and the content of decanoic acid, myristic acid, and cis-11-eicosenoic acid in group II was significantly higher than that in the other two groups (p ≤ 0.012). (5) The total number of flavor compounds in the muscle of the low-protein group was higher than that of the control group, including Aldehyde, Alcohol, sulfide, Alkane, and Furan compounds. Among them, the relative contents of Hexanal, Heptaldehyde, Benzaldehyde, E-2-Octenal, 2,3-Octanedione, and 2-Pentylfuran in group II were significantly higher than in those groups (p < 0.05). Notably, the 14% dietary protein level group had the most significant effect on the meat quality and flavor of Bamei pigs. Therefore, under the condition of amino acid balance, reducing the use of protein feed raw materials and adding synthetic amino acids can not only improve the meat quality and flavor of finishing pigs, but also save the feed cost. Full article
11 pages, 1971 KiB  
Article
Relationship between Dietary Decanoic Acid and Coronary Artery Disease: A Population-Based Cross-Sectional Study
by Zhijian Wu, Weichang Yang, Meng Li, Fengyuan Li, Ren Gong and Yanqing Wu
Nutrients 2023, 15(20), 4308; https://doi.org/10.3390/nu15204308 - 10 Oct 2023
Cited by 7 | Viewed by 2966
Abstract
Background: Coronary artery disease (CAD) is a cardiovascular disease with significant personal health and socioeconomic consequences. The biological functions of decanoic acid and the pathogenesis of CAD overlap considerably; however, studies exploring their relationship are limited. Methods: Data from 34,186 Americans from the [...] Read more.
Background: Coronary artery disease (CAD) is a cardiovascular disease with significant personal health and socioeconomic consequences. The biological functions of decanoic acid and the pathogenesis of CAD overlap considerably; however, studies exploring their relationship are limited. Methods: Data from 34,186 Americans from the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2018 were analyzed. The relationship between dietary decanoic acid (DDA) and CAD prevalence was explored using weighted multivariate logistic regression models, generalized summation models, and fitted smoothing curves. Stratified analyses and interaction tests were conducted to explore the potential modifiers between them. Results: DDA was negatively associated with CAD prevalence, with each 1 g/d increase in the DDA being associated with a 21% reduction in CAD prevalence (odds ratio (OR) 0.79, 95% confidence interval (CI) 0.61–1.02). This relationship persisted after log10 and trinomial transformations, respectively. The OR after log10 transformation was 0.81 (95% CI 0.69–0.96), and the OR for tertile 3 compared with tertile 1 was 0.83 (95% CI 0.69–1.00). The subgroup analyses found this relationship to be significant among males and non-Hispanic white individuals, and there was a significant interaction (interaction p-values of 0.011 and 0.012, respectively). Conclusions: DDA was negatively associated with the prevalence of CAD, and both sex and race may modify this relationship. Full article
(This article belongs to the Special Issue Role of Diet in Arterial Stiffness and Atherosclerosis)
Show Figures

Figure 1

14 pages, 13370 KiB  
Article
Supplementation of Medium-Chain Triglycerides Combined with Docosahexaenoic Acid Inhibits Amyloid Beta Protein Deposition by Improving Brain Glucose Metabolism in APP/PS1 Mice
by Zehao Wang, Dalong Zhang, Cheng Cheng, Zhenzhen Lin, Dezheng Zhou, Yue Sun, Wen Li, Jing Yan, Suhui Luo, Zhiyong Qian, Zhenshu Li and Guowei Huang
Nutrients 2023, 15(19), 4244; https://doi.org/10.3390/nu15194244 - 1 Oct 2023
Cited by 10 | Viewed by 3588
Abstract
The deterioration of brain glucose metabolism predates the clinical onset of Alzheimer’s disease (AD). Medium-chain triglycerides (MCTs) and docosahexaenoic acid (DHA) positively improve brain glucose metabolism and decrease the expression of AD-related proteins. However, the effects of the combined intervention are unclear. The [...] Read more.
The deterioration of brain glucose metabolism predates the clinical onset of Alzheimer’s disease (AD). Medium-chain triglycerides (MCTs) and docosahexaenoic acid (DHA) positively improve brain glucose metabolism and decrease the expression of AD-related proteins. However, the effects of the combined intervention are unclear. The present study explored the effects of the supplementation of MCTs combined with DHA in improving brain glucose metabolism and decreasing AD-related protein expression levels in APP/PS1 mice. The mice were assigned into four dietary treatment groups: the control group, MCTs group, DHA group, and MCTs + DHA group. The corresponding diet of the respective groups was fed to mice from the age of 3 to 11 months. The results showed that the supplementation of MCTs combined with DHA could increase serum octanoic acid (C8:0), decanoic acid (C10:0), DHA, and β-hydroxybutyrate (β-HB) levels; improve glucose metabolism; and reduce nerve cell apoptosis in the brain. Moreover, it also aided with decreasing the expression levels of amyloid beta protein (Aβ), amyloid precursor protein (APP), β-site APP cleaving enzyme-1 (BACE1), and presenilin-1 (PS1) in the brain. Furthermore, the supplementation of MCTs + DHA was significantly more beneficial than that of MCTs or DHA alone. In conclusion, the supplementation of MCTs combined with DHA could improve energy metabolism in the brain of APP/PS1 mice, thus decreasing nerve cell apoptosis and inhibiting the expression of Aβ. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

17 pages, 1747 KiB  
Article
Dietary Supplementation with Rutin Alters Meat Quality, Fatty Acid Profile, Antioxidant Capacity, and Expression Levels of Genes Associated with Lipid Metabolism in Breast Muscle of Qingyuan Partridge Chickens
by Yuanfei Li, Huadi Mei, Yanchen Liu, Zhenming Li, Hammad Qamar, Miao Yu and Xianyong Ma
Foods 2023, 12(12), 2302; https://doi.org/10.3390/foods12122302 - 7 Jun 2023
Cited by 22 | Viewed by 3051
Abstract
Consumer demand for tasty and quality meat has been quickly increasing. This study investigated how dietary supplemented rutin affects meat quality, muscle fatty acid profile, and antioxidant capacity in the Chinese indigenous Qingyuan partridge chicken. A cohort of 180 healthy 119-day-old chickens was [...] Read more.
Consumer demand for tasty and quality meat has been quickly increasing. This study investigated how dietary supplemented rutin affects meat quality, muscle fatty acid profile, and antioxidant capacity in the Chinese indigenous Qingyuan partridge chicken. A cohort of 180 healthy 119-day-old chickens was subjected to a randomized assignment into three groups, identified as the control, R200, and R400 groups, with respective supplementation of 0, 200, and 400 mg/kg of rutin. The results revealed insignificance in growth performance, namely, average daily gain, average daily feed intake, and feed-to-gain ratio, across the various treatment groups (p > 0.05). Nevertheless, dietary rutin supplementation increased (p < 0.05) breast muscle yield and intramuscular fat content in breast muscle and decreased (p < 0.05) drip loss in breast muscle. Rutin supplementation increased (p < 0.05) the content of high-density lipoprotein but decreased (p < 0.05) the contents of glucose, triglyceride, and total cholesterol in serum. Rutin supplementation increased (p < 0.05) the levels of DHA (C22:6n-3), total polyunsaturated fatty acids (PUFAs), n-3 PUFAs, decanoic acid (C10:0), the activity of Δ5 + Δ6 (22:6 (n − 3)/18:3 (n − 3)), and the ratio of PUFA/SFA in breast muscle but decreased (p < 0.05) the level of palmitoleic acid (C16:1n-7), the ratio of n-6/n-3 PUFAs, and the activity of Δ9 (16:1 (n − 7)/16:0). Rutin treatment also reduced (p < 0.05) the contents of malondialdehyde in serum and breast muscle, and increased (p < 0.05) the catalase activity and total antioxidant capacity in serum and breast muscle and the activity of total superoxide dismutase in serum. Additionally, rutin supplementation downregulated the expression of AMPKα and upregulated the expression of PPARG, FADS1, FAS, ELOVL7, NRF2, and CAT in breast muscle (p < 0.05). Convincingly, the results revealed that rutin supplementation improved meat quality, fatty acid profiles, especially n-3 PUFAs, and the antioxidant capacity of Qingyuan partridge chickens. Full article
(This article belongs to the Special Issue Safety and Nutrition: From Livestock to Meat Products)
Show Figures

Figure 1

12 pages, 2416 KiB  
Article
Effect of a Dairy Cow’s Feeding System on the Flavor of Raw Milk: Indoor Feeding or Grazing
by Xuelu Chi, Ning Yuan, Yangdong Zhang, Nan Zheng and Huimin Liu
Foods 2023, 12(9), 1868; https://doi.org/10.3390/foods12091868 - 30 Apr 2023
Cited by 5 | Viewed by 2495
Abstract
The flavor of fresh, raw milk is considered to be the key to maintaining the quality of dairy products, and is very crucial in affecting a consumer’s choice. To better understand the differences in flavor of fresh milk between feeding patterns, we conducted [...] Read more.
The flavor of fresh, raw milk is considered to be the key to maintaining the quality of dairy products, and is very crucial in affecting a consumer’s choice. To better understand the differences in flavor of fresh milk between feeding patterns, we conducted the following study. Twelve Holstein cows reared in pure grazing mode and twelve reared intensively in medium to large farms were selected from the Xinjiang Uygur Autonomous Regions at the same time, and the flavor of their raw milk was analyzed. Aroma profiles and taste attributes were assessed by electronic nose and electronic tongue, respectively, and volatile flavor compounds were characterized and quantified by Headspace-Solid Phase Microextraction/Gas Chromatography-Mass Spectrometry. Thirteen volatile compounds were identified in the indoor feeding pattern and 12 in the grazing; most of them overlapped. W1S, W2S and W5S were the main contributing sensors of the electronic nose for the overall assessment of the aroma profile. Raw milk from grazing had more intense astringency, bitterness, sourness and richness in taste compared to indoor feeding. Different dietary conditions may contribute to a variety of aroma profiles. Oxime-, methoxy-phenyl-, octadecanoic acid, furfural and dodecanoic acid were the key volatile flavor compounds of grazing. Meanwhile, raw milk from indoor feeding patterns was unique in 2-nonanone, heptanoic acid and n-decanoic acid. All three detection techniques were valid and feasible for differentiating raw milk in both feeding patterns, and the compounds were significantly correlated with the key sensors by correlation analysis. This study is promising for the future use of metabolic sources of volatile organic compounds to track and monitor animal feeding systems. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

13 pages, 306 KiB  
Article
Effects of Dietary Energy Density in a Fermented Total Mixed Ration Formulated with Different Ratios of Rice Straw and Cassava Pulp on 2- or 14-Day-Aged Meat Quality, Collagen, Fatty Acids, and Ribonucleotides of Native Thai Cattle Longissimus Muscle
by Chanporn Chaosap, Achara Lukkananukool, Sineenart Polyorach, Kritapon Sommart, Panneepa Sivapirunthep and Rutcharin Limsupavanich
Foods 2022, 11(14), 2046; https://doi.org/10.3390/foods11142046 - 11 Jul 2022
Cited by 13 | Viewed by 2588
Abstract
This study investigated the effects of dietary energy density in rice straw and cassava pulp fermented total mixed ration on pH, cooking loss, Warner–Bratzler shear force (WBSF), and collagen content of 2- or 14-d-aged native Thai cattle (NTC) Longissimus thoracic (LT) muscles and [...] Read more.
This study investigated the effects of dietary energy density in rice straw and cassava pulp fermented total mixed ration on pH, cooking loss, Warner–Bratzler shear force (WBSF), and collagen content of 2- or 14-d-aged native Thai cattle (NTC) Longissimus thoracic (LT) muscles and fatty acids and ribonucleotides of 2-d-aged LT. Eighteen yearling NTC (Bos indicus) were randomly divided into three dietary treatments (T1 = 8.9, T2 = 9.7, and T3 = 10.5 MJ ME/kg), with six bulls per treatment. The results showed that T1 had the highest WBSF (p < 0.05). However, T2 had similar WBSF to T3 (p > 0.05). With aging, cooking loss increased (p < 0.01), while WBSF decreased (p < 0.01). Insoluble and total collagen decreased with aging (p < 0.05). Dietary energy density had no effect (p > 0.05) on collagen content, ribonucleotides and most fatty acids. However, T1 had more (p < 0.05) decanoic (C10:0), vaccenic (C18:1n9t), trans-linolelaidic (C18:2n6t), eicosatrienoic (C20:3n6), and docosadienoic (C22:2) acids than T2 and T3. In terms of lowest feed cost with comparable tenderness to T2 and highest energy density, T3 may be well suited for feeding NTC. Aging for 14 days improves LT tenderness, but its cooking loss may affect yield and juiciness. Full article
(This article belongs to the Section Meat)
10 pages, 2634 KiB  
Article
Lipid Profile Changes Induced by Chronic Administration of Anabolic Androgenic Steroids and Taurine in Rats
by A.E. Rosca, Camelia Sorina Stancu, Corin Badiu, Bogdan Ovidiu Popescu, Radu Mirica, Constantin Căruntu, Serban Gologan, Suzana Elena Voiculescu and Ana-Maria Zagrean
Medicina 2019, 55(9), 540; https://doi.org/10.3390/medicina55090540 - 27 Aug 2019
Cited by 12 | Viewed by 5431
Abstract
Background and Objectives: Anabolic androgenic steroids (AAS), used as a therapy in various diseases and abused in sports, are atherogenic in supraphysiological administration, altering the plasma lipid profile. Taurine, a conditionally-essential amino acid often used in dietary supplements, was acknowledged to delay [...] Read more.
Background and Objectives: Anabolic androgenic steroids (AAS), used as a therapy in various diseases and abused in sports, are atherogenic in supraphysiological administration, altering the plasma lipid profile. Taurine, a conditionally-essential amino acid often used in dietary supplements, was acknowledged to delay the onset and progression of atherogenesis, and to mitigate hyperlipidemia. The aim of the present study was to verify if taurine could prevent the alterations induced by concomitant chronic administration of high doses of AAS nandrolone decanoate (DECA) in rats. Materials and Methods: Thirty-two male Wistar rats, assigned to 4 equal groups, were treated for 12 weeks either with DECA (A group), taurine (T group), both DECA and taurine (AT group) or vehicle (C group). Plasma triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), hepatic triglycerides (TGh) and liver non-esterified fatty acids (NEFA) were then determined. Results: DECA elevated TG level in A group vs. control (p = 0.01), an increase prevented by taurine association in AT group (p = 0.04). DECA decreased HDL-C in A group vs. control (p = 0.02), while taurine tended to increase it in AT group. DECA decreased TGh (p = 0.02) in A group vs. control. Taurine decreased TGh in T (p = 0.004) and AT (p < 0.001) groups vs. control and tended to lower NEFA (p = 0.08) in AT group vs. A group. Neither DECA, nor taurine influenced TC and LDL-C levels. Conclusions: Taurine partially prevented the occurrence of DECA negative effects on lipid profile, suggesting a therapeutic potential in several conditions associated with chronic high levels of plasma androgens, such as endocrine disorders or AAS-abuse. Full article
Show Figures

Figure 1

16 pages, 2102 KiB  
Article
Hexanoic, Octanoic and Decanoic Acids Promote Basal and Insulin-Induced Phosphorylation of the Akt-mTOR Axis and a Balanced Lipid Metabolism in the HepG2 Hepatoma Cell Line
by Sabri Ahmed Rial, Gaetan Ravaut, Tommy B. Malaret, Karl-F. Bergeron and Catherine Mounier
Molecules 2018, 23(9), 2315; https://doi.org/10.3390/molecules23092315 - 11 Sep 2018
Cited by 30 | Viewed by 7509
Abstract
Metabolic illnesses such as non-alcoholic fatty liver disease (NAFLD) are in constant increase worldwide. Highly consumed long chain fatty acids (LCFA) are among the most obesogenic and steatogenic nutrients. Hepatic steatosis is associated with several complications such as insulin resistance. Growing evidence points [...] Read more.
Metabolic illnesses such as non-alcoholic fatty liver disease (NAFLD) are in constant increase worldwide. Highly consumed long chain fatty acids (LCFA) are among the most obesogenic and steatogenic nutrients. Hepatic steatosis is associated with several complications such as insulin resistance. Growing evidence points to medium chain fatty acids (MCFA), more efficiently oxidized than LCFA, as a promising dietary alternative against NAFLD. However, reports on the hepatic effects of MCFA are sometimes conflicting. In this study we exposed HepG2 cells, a human hepatocellular model, to 0.25 mM of hexanoic (C6), or octanoic (C8), and decanoic (C10) acids separately or in a C8 + C10 equimolar mix reflecting commercially available MCFA-rich oils. We found that C6, a poorly studied MCFA, as well as C8 and C10 did not provoke the deleterious lipid anabolism runaway typically induced by LCFA palmitate. MCFA tended, instead, to promote a balanced metabolic profile and were generally non-cytotoxic. Accordingly, mitochondrial integrity was mostly preserved following MCFA treatment. However, treatments with C8 induced a mitochondrial membrane potential decrease, suggesting prolonged exposure to this lipid could be problematic. Finally, MCFA treatments maintained optimal insulin sensitivity and even fostered basal and insulin-dependent phosphorylation of the Akt-mTOR pathway. Overall, MCFA could constitute an effective nutritional tool to manage liver steatosis and hepatic insulin resistance. Full article
(This article belongs to the Special Issue Bioactive Compounds for Metabolic Syndrome and Type 2 Diabetes-II)
Show Figures

Figure 1

Back to TopTop