Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = dichromate ions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4192 KiB  
Article
Surface Modification of Poly(butyl methacrylate) with Sulfomethylated Resorcinarenes for the Selective Extraction of Dichromate Ion in Aqueous Media
by Cielo Urquijo and Mauricio Maldonado
Analytica 2025, 6(3), 24; https://doi.org/10.3390/analytica6030024 - 17 Jul 2025
Viewed by 185
Abstract
The dichromate ion (Cr2O72−), a highly toxic chromium VI species, is widely used in industrial processes, generating serious environmental problems when released into water bodies. This investigation proposes the use of a functionalized polymer as an adsorbent material [...] Read more.
The dichromate ion (Cr2O72−), a highly toxic chromium VI species, is widely used in industrial processes, generating serious environmental problems when released into water bodies. This investigation proposes the use of a functionalized polymer as an adsorbent material for its removal in the aqueous phase. Poly(butyl methacrylate) (PBMA) was synthesized and modified by impregnation with resorcinarenes derived from long-chain aliphatic aldehydes. To improve the affinity for the dichromate, the resorcinarenes were functionalized with sulfomethyl groups by treatment with Na2SO3. The resulting matrices were characterized using IR-ATR, 1H-NMR, and 13C-NMR, and their adsorbent performance was evaluated via UV-Vis spectroscopy in batch extraction assays. The results showed that the functionalized polymer exhibited a higher adsorption capacity than the base polymer, reaching up to 81.1% removal at pH 5.0 in one hour. These results highlight the potential of PBMA as an effective support and raise a promising research perspective for functionalized resorcinarenes in the development of new materials for the treatment of contaminated water. Full article
Show Figures

Figure 1

20 pages, 7633 KiB  
Article
Corrosion Performance of Chemically Passivated and Ion Beam-Treated Austenitic–Martensitic Steel in the Marine Environment
by Viktor Semin, Alexander Cherkasov, Konstantin Savkin, Maxim Shandrikov and Evgeniya Khabibova
J. Manuf. Mater. Process. 2025, 9(5), 167; https://doi.org/10.3390/jmmp9050167 - 20 May 2025
Viewed by 686
Abstract
In the present work, chemical and ion beam surface treatments were performed in order to modify the electrochemical behavior of industrial austenitic–martensitic steel VNS-5 in 3.5 wt. % NaCl. Immersion for 140 h in a solution containing 0.05 M potassium dichromate and 10% [...] Read more.
In the present work, chemical and ion beam surface treatments were performed in order to modify the electrochemical behavior of industrial austenitic–martensitic steel VNS-5 in 3.5 wt. % NaCl. Immersion for 140 h in a solution containing 0.05 M potassium dichromate and 10% phosphoric acid promotes formation of chromium hydroxides in the outer surface layer. By means of a new type of ion source, based on a high-current pulsed magnetron discharge with injection of electrons from vacuum arc plasma, ion implantation with Ar+ and Cr+ ions of the VNS-5 steel was performed. It has been found that the ion implantation leads to formation of an Fe- and Cr-bearing oxide layer with advanced passivation ability. Moreover, the ion beam-treated steel exhibits a lower corrosion rate (by ~7.8 times) and higher charge transfer resistance in comparison with an initial (mechanically polished) substrate. Comprehensive electrochemical and XPS analysis has shown that a Cr2O3-rich oxide film is able to provide an improved corrosion performance of the steel, while the chromium hydroxides may increase the specific conductivity of the surface layer. A scheme of a charge transfer between the microgalvanic elements was proposed. Full article
Show Figures

Figure 1

18 pages, 2735 KiB  
Article
Determination of Phosphate as an Ion-Association Complex of 11-Molybdovanadophosphate and Diindodicarbocyanine Based on Selective Oxidation of Excess Dye
by Andriy B. Vishnikin, Svitlana V. Khlyntseva, Yaroslav Bazel, Ioseph Balogh and Ihor E. Barchiy
Molecules 2025, 30(9), 1872; https://doi.org/10.3390/molecules30091872 - 22 Apr 2025
Viewed by 495
Abstract
The elimination of absorbance of excess dye by selective oxidation was first proposed for analytical methods using the formation of ion-association complexes (IAs). On this basis, a new sensitive and selective spectrophotometric method for the determination of phosphate in the form of the [...] Read more.
The elimination of absorbance of excess dye by selective oxidation was first proposed for analytical methods using the formation of ion-association complexes (IAs). On this basis, a new sensitive and selective spectrophotometric method for the determination of phosphate in the form of the IA of 11-molybdovanadophosphate with diindodicarbocyanine (DIDC) was developed. Symmetric diindodicarbocyanine and diindotricarbocyanine dyes can be completely oxidized by sufficiently strong oxidizing agents such as permanganate, dichromate, cerium (IV), and vanadate. Of the three dyes investigated (DIDC, N,N’-dipropyldiindodicarbocyanine, and diindotricarbocyanine), the best results were obtained with DIDC. A mixture of molybdate, vanadate, and nitric acid was preferably used as an oxidizing agent. Selective decolorization of only free dye ions, as well as changes in the IA spectrum compared to the dye spectrum, were explained by the isolation of the dye due to the formation of poorly soluble IA nanoparticles and changes in the redox potential of the dye due to its aggregation. The following optimal conditions for phosphate determination were found: 0.3 M nitric acid, 0.43 mM sodium molybdate, 0.041 mM sodium vanadate, 0.015 mM DIDC, and 18 min for the reaction time. The molar absorptivity of the IA was 1.86 × 105 mol−1·L·cm−1 at 600 nm, and the detection limit for phosphate was 0.013 µM. The developed method was applied to the determination of phosphate in natural water samples. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

13 pages, 2254 KiB  
Article
A Soluble Porous Coordination Polymer for Fluorescence Sensing of Explosives and Toxic Anions under Homogeneous Environment
by Jiang Jiang, Zi-Wei Li, Zhao-Feng Wu and Xiao-Ying Huang
Sensors 2023, 23(24), 9719; https://doi.org/10.3390/s23249719 - 9 Dec 2023
Cited by 4 | Viewed by 1726
Abstract
In the past decades, porous coordination polymers (PCPs) based fluorescent (FL) sensors have received intense attention due to their promising applications. In this work, a soluble Zn-PCP is presented as a sensitive probe towards explosive molecules, chromate, and dichromate ions. In former reports, [...] Read more.
In the past decades, porous coordination polymers (PCPs) based fluorescent (FL) sensors have received intense attention due to their promising applications. In this work, a soluble Zn-PCP is presented as a sensitive probe towards explosive molecules, chromate, and dichromate ions. In former reports, PCP sensors were usually ground into fine powders and then dispersed in solvents to form FL emulsion for sensing applications. However, their insoluble characters would cause the sensing accuracy which is prone to interference from environmental effects. While in this work, the as-made PCP could be directly soluble in organic solvents to form a clear solution with bright blue emission, representing the first soluble PCP based fluorescence sensor to probe explosive molecules under a homogeneous environment. Moreover, the FL PCP solution also shows sensitive detection behaviors towards the toxic anions of CrO42− and Cr2O72−, which exhibit a good linear relationship between the fluorescence intensity of Zn-PCP and the concentrations of both analytes. This work provides a reference for designing task-specific PCP sensors utilized under a homogeneous environment. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

24 pages, 13505 KiB  
Article
Preparation of Modified Biochar and Its Adsorption of Cr(VI) in Aqueous Solution
by Jinlong Zuo, Wenjing Li, Zhi Xia, Tingting Zhao, Chong Tan, Yuyang Wang and Junsheng Li
Coatings 2023, 13(11), 1884; https://doi.org/10.3390/coatings13111884 - 2 Nov 2023
Cited by 12 | Viewed by 2649
Abstract
In recent years, wastewater containing heavy metal chromium has been discharged into water bodies. Metal chromium not only destroys the water environment but also poses a threat to human life and health. In order to solve the problem of chromium pollution more effectively, [...] Read more.
In recent years, wastewater containing heavy metal chromium has been discharged into water bodies. Metal chromium not only destroys the water environment but also poses a threat to human life and health. In order to solve the problem of chromium pollution more effectively, this study used corn straw as raw material to prepare biochar (MB) and used three methods: acid (HCl), alkali (NaOH) and metal salt (FeCl3) to modify biochar (HMB, NaMB and FeMB) and investigated the strengthening effect of modified biochar on Cr(VI) adsorption. The morphology and surface chemical composition of biochar were studied by XRD, SEM, XPS, FITR and other characterization methods. It was found that the modification of HCl, NaOH and FeCl3 improved the physical and chemical properties of MB (such as crystal structure, specific surface area, pore size and surface composite film), thus promoting the adsorption of Cr(VI). At the same time, an adsorption single-factor experiment, adsorption kinetics experiment, isothermal adsorption experiment and cyclic regeneration experiment were carried out on the four adsorbents. The effects of biochar on Cr(VI) adsorption performance under different pH, Cr(VI) initial concentration, biochar dosage and time were compared, and the adsorption mechanism of four adsorbents on Cr(VI) in aqueous solution was studied. It was found that the FeCl3-modified biochar provided more adsorption sites for chromium ions due to the successful loading of Fe, Fe3+ and iron oxide particles onto the MB surface to form a composite film, and the Fe-O groups introduced by the composite film formed a coordinated adsorption with dichromate ions. At 25 °C and pH = 2, FeMB reached saturation at 1440 min, the maximum adsorption capacity was 23.4 mg/g and its removal rate of Cr(VI) remained above 45% after five cycles. The adsorption of Cr(VI) was significantly enhanced. Full article
Show Figures

Figure 1

9 pages, 3460 KiB  
Article
Design and Manufacturing of Filter Sets for Dual-Color Synchronous Gene Sequencing
by Chao Ban, Peng Gao, Shaopeng Ren, Ruisheng Wang, Zhonglian Wang, Xianpeng Liang, Xiaojun Yin and Shuaifeng Zhao
Coatings 2023, 13(9), 1555; https://doi.org/10.3390/coatings13091555 - 6 Sep 2023
Viewed by 1553
Abstract
Gene sequencing is an important means for modern life sciences research and clinical diagnosis. In recent years, dual-color synchronous gene sequencing has developed rapidly due to its excellent properties such as high throughput, fast speed, miniaturization, and low cost. In this paper, a [...] Read more.
Gene sequencing is an important means for modern life sciences research and clinical diagnosis. In recent years, dual-color synchronous gene sequencing has developed rapidly due to its excellent properties such as high throughput, fast speed, miniaturization, and low cost. In this paper, a type of dual-color synchronous gene sequencing optical path structure, which is based on the fluorescence-detection principle, was designed. FAM and TAMRA were selected as the fluorophores, which corresponded to excitation light sources with 488 nm laser and 543 nm laser, respectively. Combining the optical system and fluorophores, we designed the parameters of the filter sets, including the details of design methods for dual-bandpass filters and dual-notch dichromic mirrors. Moreover, these filters were successfully manufactured by ion-assisted deposition and magnetron-sputtering methods with extreme precision. The satisfying application effect was demonstrated when these products were applied in customer-desktop medium-throughput gene sequencers. Full article
(This article belongs to the Special Issue Research on Infrared and Laser Thin Films)
Show Figures

Figure 1

13 pages, 2711 KiB  
Article
Synthesis, Crystal Structure, and Luminescent Sensing Properties of a Supramolecular 3D Zinc(II) Metal–Organic Framework with Terephthalate and Bis(imidazol-1-yl)methane Linkers
by Vladislava V. Matveevskaya, Dmitry I. Pavlov, Alexey A. Ryadun, Vladimir P. Fedin and Andrei S. Potapov
Inorganics 2023, 11(7), 264; https://doi.org/10.3390/inorganics11070264 - 22 Jun 2023
Cited by 10 | Viewed by 2288
Abstract
Supramolecular 3D Zn(II) coordination polymer {[Zn(bim)(bdc)]⋅0.8DMF⋅0.4EtOH⋅0.1H2O }n (Zn-MOF), constructed from Zn2+ ions, bis(imidazol-1-yl)methane (bim) and terephthalate (bdc2−) anions, was synthesized and structurally characterized. Zn-MOF crystallizes in the tetragonal crystal system, space group P42 [...] Read more.
Supramolecular 3D Zn(II) coordination polymer {[Zn(bim)(bdc)]⋅0.8DMF⋅0.4EtOH⋅0.1H2O }n (Zn-MOF), constructed from Zn2+ ions, bis(imidazol-1-yl)methane (bim) and terephthalate (bdc2−) anions, was synthesized and structurally characterized. Zn-MOF crystallizes in the tetragonal crystal system, space group P42/n. Each Zn(II) ion coordinates two neutral bim molecules in a bridging bidentate coordination mode via nitrogen atoms at position 3 of the imidazole rings and two bdc2− anions, with monodentate coordination of the carboxylate group for one of them and bidentate coordination for another. Zn(II) cations are in a distorted square pyramidal ZnN2O3 coordination environment. Metal cations are alternately linked by the bim and bdc2− ligands, forming a two-dimensional layered structure along the crystallographic plane ab. As a result of layer interpenetration, a supramolecular 3D network is formed. Zn-MOF demonstrated blue (aquamarine) emission with a maximum at 430 nm upon excitation at 325 nm. The luminescence lifetime of 6 ns is characteristic for ligand-centered fluorescence. The luminescent sensing properties of Zn-MOF in ethanol suspension toward inorganic cations and anions were evaluated and an emission quenching response was observed for Fe3+ and chromate/dichromate ions. Photoinduced electron transfer from Zn-MOF to Fe3+ was elucidated as a possible quenching mechanism on the basis of DFT calculations. Full article
(This article belongs to the Special Issue Chemical Sensors of Inorganic Cations and Anions)
Show Figures

Graphical abstract

13 pages, 1914 KiB  
Article
Kinetic Features of Cd and Zn Cathodic Formations in the Membrane Electrolysis Process
by Vasyl Serdiuk, Ivan Pavlenko, Svitlana Bolshanina, Vsevolod Sklabinskyi, Sylwia Włodarczak, Andżelika Krupińska, Magdalena Matuszak, Zdzisław Bielecki and Marek Ochowiak
Fluids 2023, 8(2), 74; https://doi.org/10.3390/fluids8020074 - 17 Feb 2023
Cited by 1 | Viewed by 1804
Abstract
Chromate and dichromate solutions used for the activation and passivation of cadmium and zinc galvanic coatings of metal products are widely used due to their ability to form corrosion-protective films. Therefore, in this article, we examined the kinetic features of the cathodic deposition [...] Read more.
Chromate and dichromate solutions used for the activation and passivation of cadmium and zinc galvanic coatings of metal products are widely used due to their ability to form corrosion-protective films. Therefore, in this article, we examined the kinetic features of the cathodic deposition of Cd and Zn during membrane electrolysis. As a result of comprehensive experimental and theoretical studies, the features of Cd and Zn cathodic depositions were analyzed under different hydrodynamic conditions in a submembrane zone of an anolyte. Experimental physicochemical methods such as the experimental analysis of solutions, analytical modeling, and a statistical analysis were used during the research. A regression dependence for evaluating a reaction rate constant was assessed based on the least-square approximation of the proposed model. As a result, the peculiarities of the cathodic formations for Cd and Zn during the membrane electrolysis process were analyzed. The effect of mechanical mixing with different values of the Reynolds number on the deposition of Cd and Zn on a cathode was evaluated. A change in Cd2+ and Zn2+ ion concentrations was also considered during the research. Overall, the obtained results increased the Cd deposition rate by 2.2 times using an active hydrodynamic environment with the anolyte. Full article
Show Figures

Figure 1

20 pages, 2998 KiB  
Article
Sustainable Multi-Network Cationic Cryogels for High-Efficiency Removal of Hazardous Oxyanions from Aqueous Solutions
by Ecaterina Stela Dragan, Doina Humelnicu and Maria Valentina Dinu
Polymers 2023, 15(4), 885; https://doi.org/10.3390/polym15040885 - 10 Feb 2023
Cited by 4 | Viewed by 1747
Abstract
It is still a challenge to develop advanced materials able to simultaneously remove more than one pollutant. Exclusive cationic composite double- and triple-network cryogels, with adequate sustainability in the removal of Cr2O72− and H2PO4 oxyanions, [...] Read more.
It is still a challenge to develop advanced materials able to simultaneously remove more than one pollutant. Exclusive cationic composite double- and triple-network cryogels, with adequate sustainability in the removal of Cr2O72− and H2PO4 oxyanions, were developed in this work starting from single-network (SN) sponges. Chitosan (CS), as the only polycation originating from renewable resources, and poly(N,N-dimethylaminoethylmethacrylate) (PDMAEMA) and polyethyleneimine (PEI), as synthetic polycations, were employed to construct multi-network cationic composite cryogels. The properties of the composites were tailored by the cross-linking degree of the first network (SN5 and SN20, which means CS with 5 or 20 mole % of glutaraldehyde, respectively) and by the order of the successive networks. FTIR, SEM-EDX, equilibrium water content and compressive tests were used in the exhaustive characterization of these polymeric composites. The sorption performances towards Cr2O72− and H2PO4 anions were evaluated in batch mode. The pseudo-first-order, pseudo-second-order (PSO) and Elovich kinetics models, and the Langmuir, Freundlich and Sips isotherm models were used to interpret the experimental results. The adsorption data were the best fitted by the PSO kinetic model and by the Sips isotherm model, indicating that the sorption mechanism was mainly controlled by chemisorption, irrespective of the structure and number of networks. The maximum sorption capacity for both oxyanions increased with the increase in the number of networks, the highest values being found for the multi-network sponges having SN5 cryogel as the first network. In binary systems, all sorbents preferred Cr2O72− ions, the selectivity coefficient being the highest for TN sponges. The high sorption capacity and remarkable reusability, with only a 4–6% drop in the sorption capacity after five sorption–desorption cycles, recommend these composite cryogels in the removal of two of the most dangerous pollutants represented by Cr2O72− and H2PO4. Full article
(This article belongs to the Special Issue Self-Healing Polymers, Proteins and Composites)
Show Figures

Figure 1

25 pages, 4780 KiB  
Article
Development of Azo Dye Immobilized Sulfonated Poly (Glycidyl Methacrylate) Polymer Composite as Novel Adsorbents for Water Treatment Applications: Methylene Blue Immobilization Isotherm, Kinetic, Thermodynamic, and Simulations Studies
by Mohamed R. El-Aassar, Tamer M. Tamer, Mohamed Y. El-Sayed, Ahmed M. Omer, Ibrahim O. Althobaiti, Mohamed E. Youssef, Rawan F. Alolaimi, Emam F. El-Agammy, Manar S. Alruwaili, Omar O. Rabhy and Mohamed S. Mohy-Eldin
Molecules 2022, 27(23), 8418; https://doi.org/10.3390/molecules27238418 - 1 Dec 2022
Cited by 5 | Viewed by 2469
Abstract
Methylene blue (MB) immobilized onto a sulfonated poly(glycidyl methacrylate) (SPGMA) polymer composite has been developed as a novel adsorbent for water treatment applications. The MB adsorptions onto sulfonated poly(glycidyl methacrylate) polymer characters have been studied. The adsorption isotherms, namely Langmuir and Freundlich, have [...] Read more.
Methylene blue (MB) immobilized onto a sulfonated poly(glycidyl methacrylate) (SPGMA) polymer composite has been developed as a novel adsorbent for water treatment applications. The MB adsorptions onto sulfonated poly(glycidyl methacrylate) polymer characters have been studied. The adsorption isotherms, namely Langmuir and Freundlich, have been investigated. Other isotherm models. As a compromise between the Freundlich and Langmuir isotherm models, such as the D–R isotherm and the Temkin isotherm, have been compared. The results indicated that the adsorption process followed the Freundlich isotherm model, indicating heterogeneous surface site energies and multi-layer levels of sorption. This study selected three linear kinetic models, namely pseudo-first order, pseudo-second order, and Elovich, to describe the MB sorption process using SPGMA negatively charged nanoparticles (430 nm). The obtained data revealed that the adsorption process obeyed the pseudo-second-order kinetic model, suggesting that the rate-limiting step in these sorption processes may be chemisorption. Furthermore, the thermodynamic parameters have been evaluated. Moreover, the interaction of the MB molecules with SPGMA nanoparticles has been simulated using the governing equation that describes ion exchange resin derived from Nernst—Plank equations between two ion species. Finally, the developed MB-SPGMA composite adsorbent (27 mg/g) wastested for the first time for the removal of Cr6+ ions and Mn7+ metal ions from dichromate and permanganate-contaminated waters under mild adsorption conditions, opening a new field of multiuse of the same adsorbent in the removal of more than one contaminant. Full article
(This article belongs to the Special Issue Polymers Based Materials for Water Treatment)
Show Figures

Figure 1

17 pages, 2684 KiB  
Article
Development of Azo Dye Immobilized Poly (Glycidyl Methacrylate-Co-Methyl Methacrylate) Polymers Composites as Novel Adsorbents for Water Treatment Applications: Methylene Blue-Polymers Composites
by Mohamed R. El-Aassar, Tamer M. Tamer, Mohamed Y. El-Sayed, Ahmed M. Omer, Ibrahim O. Althobaiti, Mohamed E. Youssef, Rawan F. Alolaimi, Emam F. El-Agammy, Manar S. Alruwaili and Mohamed S. Mohy-Eldin
Polymers 2022, 14(21), 4672; https://doi.org/10.3390/polym14214672 - 2 Nov 2022
Cited by 8 | Viewed by 2339
Abstract
Methylene blue azo dye (MB) immobilized onto Poly (glycidyl methacrylate-Co-methyl methacrylate), (PGMA-co-PMMA), and sulphonated Poly (glycidyl methacrylate-Co-methyl methacrylate), (SPGMA-co-PMMA), polymers composites have been developed as novel adsorbents for water treatment applications. The effect of copolymer composition and sulphonation on the MB content has [...] Read more.
Methylene blue azo dye (MB) immobilized onto Poly (glycidyl methacrylate-Co-methyl methacrylate), (PGMA-co-PMMA), and sulphonated Poly (glycidyl methacrylate-Co-methyl methacrylate), (SPGMA-co-PMMA), polymers composites have been developed as novel adsorbents for water treatment applications. The effect of copolymer composition and sulphonation on the MB content has been studied. Maximum MB content was correlated to the Polyglycidyl methacrylate content for both native and sulphonated copolymers. Furthermore, the effect of the adsorption conditions on the MB content was studied. Sulfonated Poly (glycidyl methacrylate; SPGMA) was the most efficient formed composite with the highest MB content. The developed composites’ chemical structure and morphology were characterized using characterization tools such as particle size, FTIR, TGA, and SEM analyses. The developed MB-SPGMA composite adsorbent (27 mg/g), for the first time, was tested for the removal of Cr (VI) ions and Mn (VII) metal ions from dichromate and permanganate contaminated waters under mild adsorption conditions, opening a new field of multiuse of the same adsorbent in the removal of more than one contaminants. Full article
(This article belongs to the Special Issue Application of Polymer Materials in Water Treatment)
Show Figures

Figure 1

10 pages, 2212 KiB  
Article
Dislodging Dichromate in Mine Slops Applying Flat Supplying Membrane Equipment Containing Carrier N235/7301
by Liang Pei
Membranes 2022, 12(9), 880; https://doi.org/10.3390/membranes12090880 - 12 Sep 2022
Viewed by 1768
Abstract
A novel flat supplying membrane equipment (FSME) with a sodium hydroxide solution and a mixture of N235/7301 and petroleum has been studied for dislodging dichromate (which can be expressed as Cr (VI) or Cr2O72−) from simulated mine slops. [...] Read more.
A novel flat supplying membrane equipment (FSME) with a sodium hydroxide solution and a mixture of N235/7301 and petroleum has been studied for dislodging dichromate (which can be expressed as Cr (VI) or Cr2O72−) from simulated mine slops. The FSME contained three parts: as a feeding cell, a reacting cell, and a supplying cell. The flat Kynoar membrane was inlaid in the middle of the reacting cell, using the mixed solutions of petroleum and sodium hydroxide, with Tri (octyl decyl) alkyl tertiary amine (N235/7301) as the carrier in the supplying cell and the mine slops with Cr (VI) as the feeding section. The impact parameters of pH and the other ion density in the feeding solutions, the voluminal ratio of petroleum to sodium hydroxide solution and N235/7301 concentration in the supplying solutions were investigated for the obtaining of the optimal technique parameters. It was found that the dislodging rate of Cr (VI) could reach 93.3% in 215 min when the concentration of carrier (N235/7301) was 0.20 mol/L, the voluminal ratio of petroleum and sodium hydroxide in the supplying cell was 1:1, the pH of the feeding section was 4.00, and the Cr (VI) cinit was 3.00 × 10−4 mol/L. The practicability and steadiness of FSME were gained through the exploration of Cr (VI) adsorption on the membrane surface. Full article
(This article belongs to the Special Issue Membrane Distillation for Wastewater Treatment)
Show Figures

Figure 1

14 pages, 4229 KiB  
Article
Optimizing Metallographic Etchants for Ancient Gold and Silver Materials
by Shengyu Liu, Zisang Gong, Haizi Lu, Wei Zhang, Yanru Ma, Xiaolin Yang, Zhenda Xie, Gang Hu and Dongbo Hu
Metals 2022, 12(7), 1229; https://doi.org/10.3390/met12071229 - 20 Jul 2022
Cited by 1 | Viewed by 3214
Abstract
In recent years, with the excavation of an increasing amount of gold and silver artifacts, there has been an urgent need to optimize the formulations and methods of metallographic etching. Herein, a kinetic control study is performed to investigate the mechanisms leading to [...] Read more.
In recent years, with the excavation of an increasing amount of gold and silver artifacts, there has been an urgent need to optimize the formulations and methods of metallographic etching. Herein, a kinetic control study is performed to investigate the mechanisms leading to poor results when etching ancient gold materials with aqua regia, i.e., when secondary AgCl impurities form during the etching of the sample surface. To this end, a concentrated ammonia and sodium thiosulfate solution is used to dissolve AgCl impurities and obtain high-quality metallographic images of ancient gold materials using a coordination reaction to generate stable free-state coordination ions from Ag+. On this basis, a ferric chloride + sodium thiosulfate method is proposed to optimize the formulation of the etchant for ancient silver materials. The formulation is efficient, safe and easy to handle, and solves the problems of the easy failure of the commonly used etchant of ammonia + hydrogen peroxide and the complicated preparation process of acidified potassium dichromate while maintaining the long-term stability of the etched Ag–Cu alloy samples. Full article
(This article belongs to the Section Structural Integrity of Metals)
Show Figures

Figure 1

12 pages, 3266 KiB  
Article
Efficient Adsorption of Chromium Ions from Aqueous Solutions by Plant-Derived Silica
by Ibeth Guevara-Lora, Norbert Wronski, Anna Bialas, Honorata Osip and Cezary Czosnek
Molecules 2022, 27(13), 4171; https://doi.org/10.3390/molecules27134171 - 29 Jun 2022
Cited by 6 | Viewed by 2214
Abstract
Nowadays, there is great interest in the use of plant waste to obtain materials for environmental protection. In this study, silica powders were prepared with a simple and low-cost procedure from biomass materials such as horsetail and common reed, as well as wheat [...] Read more.
Nowadays, there is great interest in the use of plant waste to obtain materials for environmental protection. In this study, silica powders were prepared with a simple and low-cost procedure from biomass materials such as horsetail and common reed, as well as wheat and rye straws. The starting biomass materials were leached in a boiling HCl solution. After washing and drying, the samples were incinerated at 700 °C for 1 h in air. The organic components of the samples were burned leaving final white powders. These powders were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), and low-temperature nitrogen sorption. The amorphous powders (biosilica) contained mainly SiO2, as indicated by FTIR analysis. Horsetail-derived silica was chosen for testing the removal of dichromate ions from water solutions. This biosilica had a good ability to adsorb Cr(VI) ions, which increased after modification of the powder with the dodecylamine surfactant. It can be concluded that the applied procedure allowed obtaining high purity biosilica from plant waste with good efficiency. The produced biosilica was helpful in removing chromium ions and showed low cytotoxicity to human endothelial cells, suggesting that it can be safely used in environmental remediation. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

14 pages, 1772 KiB  
Article
Biotransformation of Chromium (VI) via a Reductant Activity from the Fungal Strain Purpureocillium lilacinum
by Juan Fernando Cárdenas González, Ismael Acosta Rodríguez, Yolanda Terán Figueroa, Patricia Lappe Oliveras, Rebeca Martínez Flores and Adriana Sarai Rodríguez Pérez
J. Fungi 2021, 7(12), 1022; https://doi.org/10.3390/jof7121022 - 29 Nov 2021
Cited by 11 | Viewed by 2873
Abstract
Industrial effluents from chromium-based products lead to chromium pollution in the environment. Several technologies have been employed for the removal of chromium (Cr) from the environment, including adsorption, ion-exchange, bioremediation, etc. In this study, we isolated a Cr (VI)-resistant fungus, Purpureocillium lilacinum, from [...] Read more.
Industrial effluents from chromium-based products lead to chromium pollution in the environment. Several technologies have been employed for the removal of chromium (Cr) from the environment, including adsorption, ion-exchange, bioremediation, etc. In this study, we isolated a Cr (VI)-resistant fungus, Purpureocillium lilacinum, from contaminated soil, which could reduce chromium. We also characterized a reductant activity of dichromate found in the cellular fraction of the fungus: optimal pH and temperature, effect of enzymatic inhibitors and enhancers, metal ions, use of electron donors, and initial Cr (VI) and protein concentration. This study also shows possible mechanisms that could be involved in the elimination of this metal. We observed an increase in the reduction of Cr (VI) activity in the presence of NADH followed by that of formate and acetate, as electron donor. This reduction was highly inhibited by EDTA followed by NaN3 and KCN, and this activity showed the highest activity at an optimal pH of 7.0 at 37 °C with a protein concentration of 3.62 µg/mL. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

Back to TopTop