Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = detonation nanodiamond

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3486 KiB  
Article
XPS Study of Grafting Paramagnetic Ions onto the Surface of Detonation Nanodiamonds
by Alexander Panich, Natalya Froumin, Aleksandr Aleksenskii and Anastasiya Chizhikova
Nanomaterials 2025, 15(4), 260; https://doi.org/10.3390/nano15040260 - 10 Feb 2025
Viewed by 934
Abstract
Grafting of paramagnetic transition and rare earth metal ions onto the surface of detonation nanodiamonds (DNDs) was successfully implemented in the recent decade and opened new opportunities in the biomedical application of these compounds, particularly as novel contrast agents for magnetic resonance imaging. [...] Read more.
Grafting of paramagnetic transition and rare earth metal ions onto the surface of detonation nanodiamonds (DNDs) was successfully implemented in the recent decade and opened new opportunities in the biomedical application of these compounds, particularly as novel contrast agents for magnetic resonance imaging. The grafting was studied mainly using EPR, NMR, and magnetic measurements. Such a highly surface-sensitive, quantitative, chemical analytic technique as X-ray photoelectron spectroscopy (XPS) was very rarely used. In this paper, we report the XPS study of grafting transition and rare-earth metal ions (Cu2+, Co2+, Mn2+, and Gd3+) onto the surface of DNDs. Binding energies for metal, carbon, oxygen, and nitrogen atoms were determined and attributed to the corresponding ion states and atomic groups. Comparing XPS and EPR findings, we showed that the developed synthesis route resulted in almost complete grafting of manganese and gadolinium atoms in the form of paramagnetic ions Mn2+ and Gd3+ to the diamond surface, while only 30% of the copper atoms on the surface are in the paramagnetic state Cu2+, and the rest 70% are in the non-magnetic Cu+ state. It was not possible to draw a similar conclusion regarding Co2+ ions due to the lack of data on the amount of these paramagnetic ions on the DND surface. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

26 pages, 18048 KiB  
Article
Detonation Nanodiamond Soot—A Structurally Tailorable Hybrid Graphite/Nanodiamond Carbon-Based Material
by Tikhon S. Kurkin, Oleg V. Lebedev, Evgeny K. Golubev, Andrey K. Gatin, Victoria V. Nepomnyashchikh, Valery Yu. Dolmatov and Alexander N. Ozerin
Nanomaterials 2025, 15(1), 56; https://doi.org/10.3390/nano15010056 - 1 Jan 2025
Viewed by 1227
Abstract
The results of a comprehensive investigation into the structure and properties of nanodiamond soot (NDS), obtained from the detonation of various explosive precursors (trinitrotoluene, a trinitrotoluene/hexogen mixture, and tetryl), are presented. The colloidal behavior of the NDS particles in different liquid media was [...] Read more.
The results of a comprehensive investigation into the structure and properties of nanodiamond soot (NDS), obtained from the detonation of various explosive precursors (trinitrotoluene, a trinitrotoluene/hexogen mixture, and tetryl), are presented. The colloidal behavior of the NDS particles in different liquid media was studied. The results of the scanning electron microscopy, dynamic light scattering, zeta potential measurements, and laser diffraction analysis suggested a similarity in the morphology of the NDS particle aggregates and agglomerates. The phase composition of the NDS nanoparticles was studied using X-ray diffraction, Raman spectroscopy, electron diffraction, transmission electron microscopy, atomic force microscopy, and scanning tunneling microscopy. The NDS particles were found to comprise both diamond and graphite phases. The ratio of diamond to graphite phase content varied depending on the NDS explosive precursor, while the graphite phase content had a significant impact on the electrical conductivity of NDS. The study of the mechanical and tribological characteristics of polymer nanocomposites, modified with the selected NDS particles, indicated that NDS of various types can serve as a viable set of model nanofillers. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

12 pages, 5364 KiB  
Article
Controlled Formation of Silicon-Vacancy Centers in High-Pressure Nanodiamonds Produced from an “Adamantane + Detonation Nanodiamond” Mixture
by Dmitrii G. Pasternak, Rustem H. Bagramov, Alexey M. Romshin, Igor P. Zibrov, Vladimir P. Filonenko and Igor I. Vlasov
Nanomaterials 2024, 14(22), 1843; https://doi.org/10.3390/nano14221843 - 18 Nov 2024
Cited by 1 | Viewed by 1184
Abstract
Despite progress in the high-pressure synthesis of nanodiamonds from hydrocarbons, the problem of controlled formation of fluorescent impurity centers in them still remains unresolved. In our work, we explore the potential of a new precursor composition, a mixture of adamantane with detonation nanodiamond, [...] Read more.
Despite progress in the high-pressure synthesis of nanodiamonds from hydrocarbons, the problem of controlled formation of fluorescent impurity centers in them still remains unresolved. In our work, we explore the potential of a new precursor composition, a mixture of adamantane with detonation nanodiamond, both in the synthesis of nanodiamonds and in the controlled formation of negatively charged silicon-vacancy centers in such nanodiamonds. Using different adamantane/detonation nanodiamond weight ratios, a series of samples was synthesized at a pressure of 7.5 GPa in the temperature range of 1200–1500 °C. It was found that temperature around 1350 °C, is optimal for the high-yield synthesis of nanodiamonds <50 nm in size. For the first time, controlled formation of negatively charged silicon-vacancy centers in such small nanodiamonds was demonstrated by varying the atomic ratios of silicon/carbon in the precursor in the range of 0.01–1%. Full article
Show Figures

Graphical abstract

12 pages, 23396 KiB  
Article
Tritium-Labeled Nanodiamonds as an Instrument to Analyze Bioprosthetic Valve Coatings: A Case of Using a Nanodiamond Containing Coating on a Pork Aorta
by Maria G. Chernysheva, Tianyi Shen, Gennadii A. Badun, Ivan V. Mikheev, Ivan S. Chaschin, Yuriy M. Tsygankov, Dmitrii V. Britikov, Georgii A. Hugaev and Natalia P. Bakuleva
Molecules 2024, 29(13), 3078; https://doi.org/10.3390/molecules29133078 - 28 Jun 2024
Cited by 1 | Viewed by 1476
Abstract
Coatings with xenogenic materials, made of detonation nanodiamonds, provide additional strength and increase elasticity. A functionally developed surface of nanodiamonds makes it possible to apply antibiotics. Previous experiments show the stability of such coatings; however, studies on stability in the bloodstream and calcification [...] Read more.
Coatings with xenogenic materials, made of detonation nanodiamonds, provide additional strength and increase elasticity. A functionally developed surface of nanodiamonds makes it possible to apply antibiotics. Previous experiments show the stability of such coatings; however, studies on stability in the bloodstream and calcification of the material in natural conditions have yet to be conducted. Tritium-labeled nanodiamonds (negative and positive) were obtained by the tritium activation method and used to develop coatings for a pork aorta to analyze their stability in a pig’s bloodstream using a radiotracer technique. A chitosan layer was applied from a solution of carbonic acid under high-pressure conditions to prevent calcification. The obtained materials were used to prepare a porcine conduit, which was surgically stitched inside the pig’s aorta for four months. The aorta samples, including nanodiamond-coated and control samples, were analyzed for nanodiamond content and calcium, using the radiotracer and ICP-AES methods. A histological analysis of the materials was also performed. The obtained coatings illustrate a high in vivo stability and low levels of calcification for all types of nanodiamonds. Even though we did not use additional antibiotics in this case, the development of infection was not observed for negatively charged nanodiamonds, opening up prospects for their use in developing coatings. Full article
(This article belongs to the Special Issue Advance in Radiochemistry)
Show Figures

Graphical abstract

14 pages, 1286 KiB  
Article
Utilizing Constant Energy Difference between sp-Peak and C 1s Core Level in Photoelectron Spectra for Unambiguous Identification and Quantification of Diamond Phase in Nanodiamonds
by Oleksandr Romanyuk, Štěpán Stehlík, Josef Zemek, Kateřina Aubrechtová Dragounová and Alexander Kromka
Nanomaterials 2024, 14(7), 590; https://doi.org/10.3390/nano14070590 - 27 Mar 2024
Cited by 2 | Viewed by 2159
Abstract
The modification of nanodiamond (ND) surfaces has significant applications in sensing devices, drug delivery, bioimaging, and tissue engineering. Precise control of the diamond phase composition and bond configurations during ND processing and surface finalization is crucial. In this study, we conducted a comparative [...] Read more.
The modification of nanodiamond (ND) surfaces has significant applications in sensing devices, drug delivery, bioimaging, and tissue engineering. Precise control of the diamond phase composition and bond configurations during ND processing and surface finalization is crucial. In this study, we conducted a comparative analysis of the graphitization process in various types of hydrogenated NDs, considering differences in ND size and quality. We prepared three types of hydrogenated NDs: high-pressure high-temperature NDs (HPHT ND-H; 0–30 nm), conventional detonation nanodiamonds (DND-H; ~5 nm), and size- and nitrogen-reduced hydrogenated nanodiamonds (snr-DND-H; 2–3 nm). The samples underwent annealing in an ultra-high vacuum and sputtering by Ar cluster ion beam (ArCIB). Samples were investigated by in situ X-ray photoelectron spectroscopy (XPS), in situ ultraviolet photoelectron spectroscopy (UPS), and Raman spectroscopy (RS). Our investigation revealed that the graphitization temperature of NDs ranges from 600 °C to 700 °C and depends on the size and crystallinity of the NDs. Smaller DND particles with a high density of defects exhibit a lower graphitization temperature. We revealed a constant energy difference of 271.3 eV between the sp-peak in the valence band spectra (at around 13.7 eV) and the sp3 component in the C 1s core level spectra (at 285.0 eV). The identification of this energy difference helps in calibrating charge shifts and serves the unambiguous identification of the sp3 bond contribution in the C 1s spectra obtained from ND samples. Results were validated through reference measurements on hydrogenated single crystal C(111)-H and highly-ordered pyrolytic graphite (HOPG). Full article
Show Figures

Figure 1

23 pages, 12377 KiB  
Article
Early Periods of Low-Temperature Linear Antenna CVD Nucleation and Growth Study of Nanocrystalline Diamond Films
by Awadesh Kumar Mallik, Wen-Ching Shih, Paulius Pobedinskas and Ken Haenen
Coatings 2024, 14(2), 184; https://doi.org/10.3390/coatings14020184 - 31 Jan 2024
Cited by 6 | Viewed by 2377
Abstract
Low-temperature growth of diamond films using the chemical vapor deposition (CVD) method is not so widely reported and its initial periods of nucleation and growth phenomenon are of particular interest to the researchers. Four sets of substrates were selected for growing diamond films [...] Read more.
Low-temperature growth of diamond films using the chemical vapor deposition (CVD) method is not so widely reported and its initial periods of nucleation and growth phenomenon are of particular interest to the researchers. Four sets of substrates were selected for growing diamond films using linear antenna microwave plasma-enhanced CVD (LA-MPCVD). Among them, silicon and sapphire substrates were pre-treated with detonation nanodiamond (DND) seeds before diamond growth, for enhancement of its nucleation. Carbon nanotube (CNT) films on Si substrates were also used as another template for LA-MPCVD diamond growth. To enhance diamond nucleation during CVD growth, some of the CNT films were again pre-treated by the electrophoretic deposition (EPD) of diamond nanoparticles. All these substrates were then put inside the LA-MPCVD chamber to grow diamond films under variable processing conditions. Microwave input powers (1100–2800 W), input power modes (pulse or continuous), antenna-to-stage distances (5–6.5 cm), process gas recipes (with or without CO2), methane gas percentages (3%–5%), and deposition times (11–120 min) were altered to investigate their effect on the growth of diamond film on the pre-treated substrates. The substrate temperatures were found to vary from as low as 170 °C to a maximum of 307 °C during the alteration of the different processing parameters. Contrary to the conventional MPCVD, it was observed that during the first hour of LA-MPCVD diamond growth, DND seeds and the nucleating structures do not coalesce together to make a continuous film. Deposition time was the most critical factor in fully covering the substrate surfaces with diamond film, since the substrate temperature could not become stable during the first hour of LA-MPCVD. CNTs were found to be oxidized rapidly under LA-MPCVD plasma conditions; therefore, a CO2-free process gas recipe was used to reduce CNT burning. Moreover, EPD-coated CNTs were found to be less oxidized by the LACVD plasma during diamond growth. Full article
(This article belongs to the Special Issue Chemical Vapor Deposition (CVD) of Coatings and Films)
Show Figures

Figure 1

14 pages, 3894 KiB  
Article
Deposition and Characterisation of a Diamond/Ti/Diamond Multilayer Structure
by Awadesh Kumar Mallik, Fernando Lloret, Marina Gutierrez, Rozita Rouzbahani, Paulius Pobedinskas, Wen-Ching Shih and Ken Haenen
Coatings 2023, 13(11), 1914; https://doi.org/10.3390/coatings13111914 - 8 Nov 2023
Cited by 3 | Viewed by 2205
Abstract
In this work, a diamond/Ti/diamond multilayer structure has been fabricated by successively following thin-film CVD and PVD routes. It has been found that a combined pre-treatment of the silicon base substrate, via argon plasma etching for creating surface roughness and, thereafter, detonation nanodiamond [...] Read more.
In this work, a diamond/Ti/diamond multilayer structure has been fabricated by successively following thin-film CVD and PVD routes. It has been found that a combined pre-treatment of the silicon base substrate, via argon plasma etching for creating surface roughness and, thereafter, detonation nanodiamond (DND) seeding, helps in the nucleation and growth of well-adherent CVD diamond films with a well-defined Raman signal at 1332 cm−1, showing the crystalline nature of the film. Ti sputtering on such a CVD-grown diamond surface leads to an imprinted bead-like microstructure of the titanium film, generated from the underlying diamond layer. The cross-sectional thickness of the titanium layer can be found to vary by as much as 0.5 µm across the length of the surface, which was caused by a subsequent hydrogen plasma etching process step of the composite film conducted after Ti sputtering. The hydrogen plasma etching of the Ti–diamond composite film was found to be essential for smoothening the uneven as-grown texture of the films, which was developed due to the unequal growth of the microcrystalline diamond columns. Such hydrogen plasma surface treatment helped further the nucleation and growth of a nanocrystalline diamond film as the top layer, which was deposited following a similar CVD route to that used in depositing the bottom diamond layer, albeit with different process parameters. For the latter, a hydrogen gas diluted with PH3 precursor recipe produced smaller nanocrystalline diamond crystals for the top layer. The titanium layer in between the two diamond layers possesses a very-fine-grained microstructure. Transmission electron microscopy (TEM) results show evidence of intermixing between the titanium and diamond layers at their respective interfaces. The thin films in the composite multilayer follow the contour of the plasma-etched silicon substrate and are thus useful in producing continuous protective coatings on 3D objects—a requirement for many engineering applications. Full article
(This article belongs to the Special Issue Smart Polymeric Coatings for Corrosion Mitigation)
Show Figures

Figure 1

42 pages, 6015 KiB  
Article
Electrochemical Properties and Structure of Membranes from Perfluorinated Copolymers Modified with Nanodiamonds
by Vasily T. Lebedev, Yuri V. Kulvelis, Alexandr V. Shvidchenko, Oleg N. Primachenko, Alexei S. Odinokov, Elena A. Marinenko, Alexander I. Kuklin and Oleksandr I. Ivankov
Membranes 2023, 13(11), 850; https://doi.org/10.3390/membranes13110850 - 25 Oct 2023
Viewed by 2056
Abstract
In this study, we aimed to design and research proton-conducting membranes based on Aquivion®-type material that had been modified with detonation nanodiamonds (particle size 4–5 nm, 0.25–5.0 wt. %). These nanodiamonds carried different functional groups (H, OH, COOH, F) that provided [...] Read more.
In this study, we aimed to design and research proton-conducting membranes based on Aquivion®-type material that had been modified with detonation nanodiamonds (particle size 4–5 nm, 0.25–5.0 wt. %). These nanodiamonds carried different functional groups (H, OH, COOH, F) that provided the hydrophilicity of the diamond surface with positive or negative potential, or that strengthened the hydrophobicity of the diamonds. These variations in diamond properties allowed us to find ways to improve the composite structure so as to achieve better ion conductivity. For this purpose, we prepared three series of membrane films by first casting solutions of perfluorinated Aquivion®-type copolymers with short side chains mixed with diamonds dispersed on solid substrates. Then, we removed the solvent and the membranes were structurally stabilized during thermal treatment and transformed into their final form with –SO3H ionic groups. We found that the diamonds with a hydrogen-saturated surface, with a positive charge in aqueous media, contributed to the increase in proton conductivity of membranes to a greater rate. Meanwhile, a more developed conducting diamond-copolymer interface was formed due to electrostatic attraction to the sulfonic acid groups of the copolymer than in the case of diamonds grafted with negatively charged carboxyls, similar to sulfonic groups of the copolymer. The modification of membranes with fluorinated diamonds led to a 5-fold decrease in the conductivity of the composite, even when only a fraction of diamonds of 1 wt. % were used, which was explained by the disruption in the connectivity of ion channels during the interaction of such diamonds mainly with fluorocarbon chains of the copolymer. We discussed the specifics of the mechanism of conductivity in composites with various diamonds in connection with structural data obtained in neutron scattering experiments on dry membranes, as well as ideas about the formation of cylindrical micelles with central ion channels and shells composed of hydrophobic copolymer chains. Finally, the characteristics of the network of ion channels in the composites were found depending on the type and amount of introduced diamonds, and correlations between the structure and conductivity of the membranes were established. Full article
(This article belongs to the Special Issue Proton-Conducting Membranes - 2nd Edition)
Show Figures

Figure 1

16 pages, 8427 KiB  
Article
Nanodiamond Decorated PEO Oxide Coatings on NiTi Alloy
by Karlis Grundsteins, Kateryna Diedkova, Viktoriia Korniienko, Anita Stoppel, Sascha Balakin, Kaspars Jekabsons, Una Riekstina, Natalia Waloszczyk, Agata Kołkowska, Yuliia Varava, Jörg Opitz, Wojciech Simka, Natalia Beshchasna and Maksym Pogorielov
Nanomaterials 2023, 13(18), 2601; https://doi.org/10.3390/nano13182601 - 20 Sep 2023
Cited by 5 | Viewed by 2099
Abstract
Cardiovascular diseases (CVDs) remain a leading cause of death in the European population, primarily attributed to atherosclerosis and subsequent complications. Although statin drugs effectively prevent atherosclerosis, they fail to reduce plaque size and vascular stenosis. Bare metal stents (BMS) have shown promise in [...] Read more.
Cardiovascular diseases (CVDs) remain a leading cause of death in the European population, primarily attributed to atherosclerosis and subsequent complications. Although statin drugs effectively prevent atherosclerosis, they fail to reduce plaque size and vascular stenosis. Bare metal stents (BMS) have shown promise in acute coronary disease treatment but are associated with restenosis in the stent. Drug-eluting stents (DES) have improved restenosis rates but present long-term complications. To overcome these limitations, nanomaterial-based modifications of the stent surfaces have been explored. This study focuses on the incorporation of detonation nanodiamonds (NDs) into a plasma electrolytic oxidation (PEO) coating on nitinol stents to enhance their performance. The functionalized ND showed a high surface-to-volume ratio and was incorporated into the oxide layer to mimic high-density lipoproteins (HDL) for reverse cholesterol transport (RCT). We provide substantial characterization of DND, including stability in two media (acetone and water), Fourier transmission infrared spectroscopy, and nanoparticle tracking analysis. The characterization of the modified ND revealed successful functionalization and adequate suspension stability. Scanning electron microscopy with EDX demonstrated successful incorporation of DND into the ceramic layer, but the formation of a porous surface is possible only in the high-voltage PEO. The biological assessment demonstrated the biocompatibility of the decorated nitinol surface with enhanced cell adhesion and proliferation. This study presents a novel approach to improving the performance of nitinol stents using ND-based surface modifications, providing a promising avenue for cardiovascular disease. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

19 pages, 4297 KiB  
Review
Transparent Colloids of Detonation Nanodiamond: Physical, Chemical and Biological Properties
by Stepan S. Batsanov, Sergey M. Gavrilkin, Dmitry A. Dan’kin, Andrei S. Batsanov, Alexander V. Kurakov, Tatiana B. Shatalova and Inna M. Kulikova
Materials 2023, 16(18), 6227; https://doi.org/10.3390/ma16186227 - 15 Sep 2023
Viewed by 1432
Abstract
Aqueous suspensions (colloids) containing detonation nano-diamond (DND) feature in most applications of DND and are an indispensable stage of its production; therefore, the interaction of DND with water is actively studied. However, insufficient attention has been paid to the unique physico-chemical and biological [...] Read more.
Aqueous suspensions (colloids) containing detonation nano-diamond (DND) feature in most applications of DND and are an indispensable stage of its production; therefore, the interaction of DND with water is actively studied. However, insufficient attention has been paid to the unique physico-chemical and biological properties of transparent colloids with low DND content (≤0.1%), which are the subject of this review. Thus, such colloids possess giant dielectric permittivity which shows peculiar temperature dependence, as well as quasi-periodic fluctuations during slow evaporation or dilution. In these colloids, DND interacts with water and air to form cottonwool-like fibers comprising living micro-organisms (fungi and bacteria) and DND particles, with elevated nitrogen content due to fixation of atmospheric N2. Prolonged contact between these solutions and air lead to the formation of ammonium nitrate, sometimes forming macroscopic crystals. The latter was also formed during prolonged oxidation of fungi in aqueous DND colloids. The possible mechanism of N2 fixation is discussed, which can be attributable to the high reactivity of DND. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

15 pages, 7078 KiB  
Article
The Structure Properties of Carbon Materials Formed in 2,4,6-Triamino-1,3,5-Trinitrobenzene Detonation: A Theoretical Insight for Nucleation of Diamond-like Carbon
by Zheng-Hua He, Yao-Yao Huang, Guang-Fu Ji, Jun Chen and Qiang Wu
Int. J. Mol. Sci. 2023, 24(16), 12568; https://doi.org/10.3390/ijms241612568 - 8 Aug 2023
Cited by 1 | Viewed by 1817
Abstract
The structure and properties of nano-carbon materials formed in explosives detonation are always a challenge, not only for the designing and manufacturing of these materials but also for clearly understanding the detonation performance of explosives. Herein, we study the dynamic evolution process of [...] Read more.
The structure and properties of nano-carbon materials formed in explosives detonation are always a challenge, not only for the designing and manufacturing of these materials but also for clearly understanding the detonation performance of explosives. Herein, we study the dynamic evolution process of condensed-phase carbon involved in 2,4,6-Triamino-1,3,5-trinitrobenzene (TATB) detonation using the quantum-based molecular dynamics method. Various carbon structures such as, graphene-like, diamond-like, and “diaphite”, are obtained under different pressures. The transition from a C sp2- to a sp3-hybrid, driven by the conversion of a hexatomic to a non-hexatomic ring, is detected under high pressure. A tightly bound nucleation mechanism for diamond-like carbon dominated by a graphene-like carbon layer is uncovered. The graphene-like layer is readily constructed at the early stage, which would connect with surrounding carbon atoms or fragments to form the tetrahedral structure, with a high fraction of sp3-hybridized carbon. After that, the deformed carbon layers further coalesce with each other by bonding between carbon atoms within the five-member ring, to form the diamond-like nucleus. The complex “diaphite” configuration is detected during the diamond-like carbon nucleation, which illustrates that the nucleation and growth of detonation nano-diamond would accompany the intergrowth of graphene-like layers. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

17 pages, 5313 KiB  
Article
Improving PFSA Membranes Using Sulfonated Nanodiamonds
by Alexandr V. Shvidchenko, Alexei S. Odinokov, Oleg N. Primachenko, Iosif V. Gofman, Natalia P. Yevlampieva, Elena A. Marinenko, Vasily T. Lebedev, Alexander I. Kuklin and Yuri V. Kulvelis
Membranes 2023, 13(8), 712; https://doi.org/10.3390/membranes13080712 - 1 Aug 2023
Cited by 4 | Viewed by 1875
Abstract
Aquivion®-type perfluorosulfonic acid membranes with a polytetrafluoroethylene backbone and short side chains with sulfonic acid groups at the ends have great prospects for operating in hydrogen fuel cells. To improve the conducting properties of membranes, various types of nanofillers can be [...] Read more.
Aquivion®-type perfluorosulfonic acid membranes with a polytetrafluoroethylene backbone and short side chains with sulfonic acid groups at the ends have great prospects for operating in hydrogen fuel cells. To improve the conducting properties of membranes, various types of nanofillers can be used. We prepared compositional Aquivion®-type membranes with embedded detonation nanodiamond particles. Nanodiamonds were chemically modified with sulfonic acid groups to increase the entire amount of ionogenic groups involved in the proton conductivity mechanism in compositional membranes. We demonstrated the rise of proton conductivity at 0.5–2 wt.% of sulfonated nanodiamonds in membranes, which was accompanied by good mechanical properties. The basic structural elements, conducting channels in membranes, were not destroyed in the presence of nanodiamonds, as follows from small-angle neutron scattering data. The prepared compositional membranes can be used in hydrogen fuel cells to achieve improved performance. Full article
(This article belongs to the Special Issue Proton-Conducting Membranes)
Show Figures

Figure 1

14 pages, 3828 KiB  
Article
Effect of Diamond Phase Dispersion on the Properties of Diamond-SiC-Si Composites
by Sergey P. Bogdanov, Andrey S. Dolgin, Sergey N. Perevislov, Nikolay A. Khristyuk and Maxim M. Sychov
Ceramics 2023, 6(3), 1632-1645; https://doi.org/10.3390/ceramics6030100 - 28 Jul 2023
Cited by 1 | Viewed by 1859
Abstract
The research aimed at the composition optimization for diamond-SiC-Si composites. The effect of a porous diamond workpiece was studied on the properties (porosity, density, modulus of elasticity, phase composition) of the product of its siliconization with molten silicon. The lowest porosity and highest [...] Read more.
The research aimed at the composition optimization for diamond-SiC-Si composites. The effect of a porous diamond workpiece was studied on the properties (porosity, density, modulus of elasticity, phase composition) of the product of its siliconization with molten silicon. The lowest porosity and highest modulus of elasticity were observed in the case of using mixed matrices with the maximum size of diamond grains of 250/200 μm for siliconization. The best results in terms of the sound speed (16,600 m/s) and elasticity modulus (860 GPa) were achieved by microwave processing of a composite containing detonation nanodiamonds. Full article
(This article belongs to the Special Issue Composite Nanopowders: Synthesis and Applications)
Show Figures

Figure 1

20 pages, 11558 KiB  
Article
Fullerenes on a Nanodiamond Platform Demonstrate Antibacterial Activity with Low Cytotoxicity
by Olga Bolshakova, Vasily Lebedev, Elena Mikhailova, Olga Zherebyateva, Liliya Aznabaeva, Vladimir Burdakov, Yuri Kulvelis, Natalia Yevlampieva, Andrey Mironov, Igor Miroshnichenko and Svetlana Sarantseva
Pharmaceutics 2023, 15(7), 1984; https://doi.org/10.3390/pharmaceutics15071984 - 19 Jul 2023
Cited by 13 | Viewed by 2509
Abstract
Carbon nanoparticles with antimicrobial properties, such as fullerenes, can be distinguished among the promising means of combating pathogens characterized by resistance to commercial antibiotics. However, they have a number of limitations for their use in medicine. In particular, the insolubility of carbon nanoparticles [...] Read more.
Carbon nanoparticles with antimicrobial properties, such as fullerenes, can be distinguished among the promising means of combating pathogens characterized by resistance to commercial antibiotics. However, they have a number of limitations for their use in medicine. In particular, the insolubility of carbon nanoparticles in water leads to a low biocompatibility and especially strong aggregation when transferred to liquid media. To overcome the negative factors and enhance the action of fullerenes in an extended range of applications, for example, in antimicrobial photodynamic therapy, we created new water-soluble complexes containing, in addition to C60 fullerene, purified detonation nanodiamonds (AC960) and/or polyvinylpyrrolidone (PVP). The in vitro antibacterial activity and toxicity to human cells of the three-component complex C60+AC960+PVP were analyzed in comparison with binary C60+PVP and C60+AC960. All complexes showed a low toxicity to cultured human skin fibroblasts and ECV lines, as well as significant antimicrobial activity, which depend on the type of microorganisms exposed, the chemical composition of the complex, its dosage and exposure time. Complex C60+PVP+AC960 at a concentration of 175 µg/mL showed the most stable and pronounced inhibitory microbicidal/microbiostatic effect. Full article
(This article belongs to the Special Issue Antimicrobial Agents Based on Nanomaterials)
Show Figures

Figure 1

17 pages, 2409 KiB  
Article
Isolated Spin-7/2 Species of Gadolinium (III) Chelate Complexes on the Surface of 5-nm Diamond Particles
by Vladimir Yu. Osipov, Danil W. Boukhvalov and Kazuyuki Takai
Nanomaterials 2023, 13(13), 1995; https://doi.org/10.3390/nano13131995 - 1 Jul 2023
Cited by 5 | Viewed by 1816
Abstract
The magnetic characteristics of a system of triply charged gadolinium ions Gd3+ chelated with carboxyls on the surface of detonation nanodiamond (DND) particles have been studied. Gd3+ ions demonstrate almost perfect spin (S = 7/2) paramagnetism with negligible antiferromagnetic interaction between [...] Read more.
The magnetic characteristics of a system of triply charged gadolinium ions Gd3+ chelated with carboxyls on the surface of detonation nanodiamond (DND) particles have been studied. Gd3+ ions demonstrate almost perfect spin (S = 7/2) paramagnetism with negligible antiferromagnetic interaction between spins (Weiss temperature about −0.35 K) for a wide range of concentrations up to ~18 ions per 5 nm particle. The study of the concentration dependence of the electron paramagnetic resonance signal for DND intrinsic defects with spin ½ (g = 2.0027) shows that Gd3+ ions are located on average at a distance of no more than 1.4 nm from shallow subsurface defects with spin 1/2. At the same time, they are located (according to density functional theory calculations) at a distance of about or at least 0.28 nm from the particle surface. Magnetic studies also confirm the isolated nature of the gadolinium chelate complexes on the surface of DND particles. DND particles turn out to be an optimal carrier for high-spin 4f- ions (gadolinium) in a highly concentrated isolated state. This property makes DND-Gd particles a candidate for the role of a contrast agent for magnetic resonance imaging. Full article
(This article belongs to the Special Issue Nanodiamond Applications: From Biomedicine to Quantum Optics)
Show Figures

Figure 1

Back to TopTop