Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,799)

Search Parameters:
Keywords = desorption process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2471 KB  
Article
Simulation of Absorption and Flash Evaporation for Natural Gas Desulfurization
by Chaoyue Yang, Jingwen Xue, Yong Jia, Ke Liu, Chunyang Zhang and Zongshe Liu
Processes 2025, 13(11), 3504; https://doi.org/10.3390/pr13113504 (registering DOI) - 31 Oct 2025
Abstract
A rigorous rate-based absorption model integrated with an improved thermodynamic framework was developed to simulate natural gas desulfurization using TMS–MDEA (Tetramethylene Sulfone–Methyldiethanolamine) aqueous solutions. The model was validated against 50 sets of industrial and experimental data, achieving R2 values above 0.98 and [...] Read more.
A rigorous rate-based absorption model integrated with an improved thermodynamic framework was developed to simulate natural gas desulfurization using TMS–MDEA (Tetramethylene Sulfone–Methyldiethanolamine) aqueous solutions. The model was validated against 50 sets of industrial and experimental data, achieving R2 values above 0.98 and average deviations within 5%. The model was formulated for steady-state operation of a trayed absorber integrated with flash and packed-bed regeneration and applicable over industrially relevant ranges (absorber pressure 3–6.4 MPa; gas–liquid ratio 350–720; flash pressure 0.3–0.6 MPa; packing height ≥ 3 m). The results indicate that H2S can be removed almost completely (>99.9%); CO2 and COS achieve 70–85% and 75–83% removal, respectively; and CH3SH removal exceeds 90% under typical conditions. Parametric analysis revealed that higher tray numbers, weir heights, and pressures enhance absorption efficiency, whereas hydrocarbon solubility increases with carbon number and is strongly affected by pressure and the gas–liquid ratio. In the desorption section, flash regeneration efficiently strips light hydrocarbons, with decreasing desorption efficiency from CH4 to C6H14. This study provides quantitative insights into the coupled absorption–desorption process and offers practical guidance for process design, solvent selection, and energy-efficient operation in natural gas purification. Full article
(This article belongs to the Section Separation Processes)
34 pages, 6171 KB  
Article
Sustainable Optimal Capacity Allocation for Grid-Connected Microgrids Incorporating Carbon Capture and Storage Retrofitting in Multi-Market Contexts: A Case Study in Southern China
by Yanbin Xu, Jiaxin Ma, Yi Liao, Shifang Kuang, Shasha Luo and Ming Zeng
Sustainability 2025, 17(21), 9588; https://doi.org/10.3390/su17219588 - 28 Oct 2025
Viewed by 110
Abstract
With the goal of achieving carbon neutrality, promoting the clean and low-carbon transformation of energy assets, as exemplified by existing thermal power units, has emerged as a pivotal challenge in addressing climate change and achieving sustainable development. Arrangements and technologies such as the [...] Read more.
With the goal of achieving carbon neutrality, promoting the clean and low-carbon transformation of energy assets, as exemplified by existing thermal power units, has emerged as a pivotal challenge in addressing climate change and achieving sustainable development. Arrangements and technologies such as the electricity–carbon–certificate multi-market, microgrids with direct green power connections, and carbon capture and storage (CCS) retrofitting provide favorable conditions for facing the aforementioned challenge. Based on an analysis of how liquid-storage CCS retrofitting affects the flexibility of thermal power units, this manuscript proposes a bi-level optimization model and solution method for capacity allocation for grid-connected microgrids, while considering CCS retrofits under multi-markets. This approach overcomes two key deficiencies in the existing research: first, neglecting the relationship between electricity–carbon coupling characteristics and unit flexibility and its potential impacts, and second, the significant deviation of scenarios constructed from real policy and market environments, which limits its ability to provide timely and relevant references. A case study in southern China demonstrates that first, multi-market implementation significantly boosts microgrids’ investment in and absolute consumption of renewable energy. However, its effect on reducing carbon emissions is limited, and renewable power curtailment may surge, potentially deviating from the original intent of carbon neutrality policies. In this case study, renewable energy installed capacity and consumption rose by 17.09% and 22.64%, respectively, while net carbon emissions decreased by only 3.32%, and curtailed power nearly doubled. Second, introducing liquid-storage CCS, which decouples the CO2 absorption and desorption processes, into the capacity allocation significantly enhances microgrid flexibility, markedly reduces the risk of overcapacity in renewable energy units, and enhances investment efficiency. In this case study, following CCS retrofits, renewable energy unit installed capacity decreased by 24%, while consumption dropped by only 7.28%, utilization hours increased by 22%, and the curtailment declined by 78.05%. Third, although CCS retrofitting can significantly reduce microgrid carbon emissions, factors such as current carbon prices, technological efficiency, and economic characteristics hinder large-scale adoption. In this case study, under multi-markets, CCS retrofitting reduced net carbon emissions by 86.16%, but the annualized total cost rose by 3.68%. Finally, based on the aforementioned findings, this manuscript discusses implications for microgrid development decision making, CCS industrialization, and market mechanisms from the perspectives of research directions, policy formulation, and practical work. Full article
Show Figures

Figure 1

16 pages, 2705 KB  
Article
Synthesis of FeOOH/Al2O3 Composites with Excellent Adsorption Performance and Regenerability for Phosphate Removal from Wastewater
by Boning Jiang, Shuaiqi Chen, Haoran Wang, Jingwen Yan, Xuhui Wang, Xiangyu Xu and Jiaqing Song
Molecules 2025, 30(21), 4200; https://doi.org/10.3390/molecules30214200 - 27 Oct 2025
Viewed by 188
Abstract
To address the issues of insufficient capacity and difficult regeneration of adsorbents for phosphate removal from wastewater, in this study, FeOOH/Al2O3 adsorbents were successfully developed by in situ growing amorphous iron oxyhydroxide (FeOOH) within the pores of alumina (Al2 [...] Read more.
To address the issues of insufficient capacity and difficult regeneration of adsorbents for phosphate removal from wastewater, in this study, FeOOH/Al2O3 adsorbents were successfully developed by in situ growing amorphous iron oxyhydroxide (FeOOH) within the pores of alumina (Al2O3) using a simple method. The physicochemical properties of FeOOH/Al2O3 adsorbents were characterized using X-ray Diffraction (XRD), N2 adsorption/desorption analysis, and scanning electron microscopy (SEM). Additionally, their phosphate adsorption properties were comparatively investigated. The results revealed that FO-A-3, one of the FeOOH/Al2O3 samples prepared with Fe/Al molar ratio of 0.47, exhibited excellent adsorption capacity and a relatively fast adsorption rate, surpassing those of Al2O3 and amorphous FeOOH alone. The adsorption process of phosphate using FO-A-3 conformed to the pseudo-second-order kinetic model and the Langmuir isotherm model, with a maximum adsorption capacity of 131.00 mg/g. To tackle the problem of poor regeneration performance, this study innovatively proposed a repeatable and simple regeneration strategy. Experiments demonstrated that FO-A-3 maintained a relatively high adsorption capacity after four cycles of regeneration. Full article
Show Figures

Figure 1

23 pages, 4452 KB  
Article
Characterization of CO2 Adsorption Behavior in Pyrolyzed Shales for Enhanced Sequestration Applications
by Asmau Iyabo Balogun, Haylay Tsegab Gebretsadik, Jemilat Yetunde Yusuf, Hassan Soleimani, Eswaran Padmanabhan and Abdullateef Oluwagbemiga Balogun
Molecules 2025, 30(21), 4196; https://doi.org/10.3390/molecules30214196 - 27 Oct 2025
Viewed by 246
Abstract
Mitigating climate change through the reduction of atmospheric CO2 emissions remains a critical global priority. Solid adsorbents, particularly shales, have become promising options for CO2 storage due to their favorable structural and chemical properties. In this study, a solid sorbent was [...] Read more.
Mitigating climate change through the reduction of atmospheric CO2 emissions remains a critical global priority. Solid adsorbents, particularly shales, have become promising options for CO2 storage due to their favorable structural and chemical properties. In this study, a solid sorbent was developed by pyrolyzing shale at 800 °C under a nitrogen (N2) atmospheric condition, yielding spent shale. The key physicochemical properties influencing CO2 sorption were characterized using X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Brunauer–Emmett–Teller (BET) surface area analysis, and Temperature-Programmed Desorption (TPD). Mineralogical analysis revealed the presence of quartz, feldspars, clays, and carbonate minerals. The spent shale exhibited surface areas of 30–34 m2/g and pore diameters ranging from 3 to 10 nm. TPD results confirmed the presence of active adsorption sites, with a maximum CO2 sorption capacity of about 1.62 mmol/g—surpassing several commercial sorbents. Adsorption behavior was best described by the Sips and Toth isotherm models (R2 > 0.99), indicating multilayer and heterogeneous adsorption processes. Kinetic modeling using both pseudo-first-order and pseudo-second-order equations revealed that CO2 uptake was governed by both diffusion and chemisorption mechanisms. These findings positioned spent shale as a low-cost, efficient sorbent for CO2 storage, promoting circular resource utilization and advancing sustainable carbon management strategies. This novel shale-derived material offers a competitive pathway for carbon capture, storage, and sequestration applications. Full article
(This article belongs to the Special Issue Porous Carbons for CO2 Adsorption and Capture)
Show Figures

Figure 1

14 pages, 5622 KB  
Article
Numerical Simulation of Shallow Coalbed Methane Based on Geology–Engineering Integration
by Bin Pang, Tengze Ge, Jianjun Wu, Qian Gong, Shangui Luo, Yinhua Liu and Decai Yin
Processes 2025, 13(11), 3381; https://doi.org/10.3390/pr13113381 - 22 Oct 2025
Viewed by 226
Abstract
Coalbed-methane (CBM) extraction involves complex processes such as desorption, diffusion, and seepage, significantly increasing the difficulty of numerical simulation. To enable efficient CBM development, this study establishes an integrated simulation workflow for CBM, encompassing geological modeling, geomechanical modeling, hydraulic fracture simulation, and production [...] Read more.
Coalbed-methane (CBM) extraction involves complex processes such as desorption, diffusion, and seepage, significantly increasing the difficulty of numerical simulation. To enable efficient CBM development, this study establishes an integrated simulation workflow for CBM, encompassing geological modeling, geomechanical modeling, hydraulic fracture simulation, and production dynamic simulation. Specifically, the unconventional fracture model (UFM), integrated within the Petrel commercial software, is applied for fracture simulation, with an unstructured grid constructing the CBM production model. Subsequently, based on the case study of well pad A in the Daning–Jixian block, the effects of well spacing and hydraulic fractures on gas production were analyzed. The results indicate that the significant stress difference between the coal seam and the top/bottom strata constrains fracture height, with simulated hydraulic fractures ranging from 169.79 to 215.84 m in length, 8.91 to 10.45 m in height, and 121.92 to 248.71 mD·m in conductivity. Due to the low matrix permeability, pressure drop and desorption primarily occur in the stimulated reservoir volume (SRV) region. The calibrated model predicts a 10-year cumulative gas production of 616 × 104 m3 for the well group, with a recovery rate of 10.17%, indicating significant potential for enhancing recovery rates. Maximum cumulative gas production occurs when well spacing slightly exceeds fracture length. Beyond 200 mD·m, fracture conductivity has diminishing returns on production. Fracture length increases from 100 to 250 m show near-linear growth in production, but further increases yield smaller gains. These findings provide valuable insights for evaluating development performance and exploiting remaining gas resources for CBM. Full article
(This article belongs to the Special Issue Advances in Enhancing Unconventional Oil/Gas Recovery, 2nd Edition)
Show Figures

Figure 1

31 pages, 2842 KB  
Review
Bottom Sediments as Dynamic Arenas for Anthropogenic Pollutants: Profiling Sources, Unraveling Fate Mechanisms, and Assessing Ecological Consequences
by Abdullah Maqsood and Ewa Łobos-Moysa
Int. J. Mol. Sci. 2025, 26(20), 10219; https://doi.org/10.3390/ijms262010219 - 21 Oct 2025
Viewed by 389
Abstract
Bottom sediments play a central role in regulating contaminant dynamics in aquatic systems. They act as both storage sites and reactive zones where contaminants undergo transformation, sequestration, or remobilization. Contaminants primarily enter sediments through anthropogenic activities, including agricultural runoff, industrial effluents, wastewater discharge, [...] Read more.
Bottom sediments play a central role in regulating contaminant dynamics in aquatic systems. They act as both storage sites and reactive zones where contaminants undergo transformation, sequestration, or remobilization. Contaminants primarily enter sediments through anthropogenic activities, including agricultural runoff, industrial effluents, wastewater discharge, urban runoff, and mining operations. This review focuses on six major contaminant groups, including nutrients, heavy metals, pharmaceutical residues, pesticides, polycyclic aromatic hydrocarbons, and microplastics, and examines the mechanistic processes that govern their fate in sediments. The main mechanisms includesorption–desorption on minerals and organic materials, sedimentation, and redox processes that regulate metal immobilization and sulfide formation. The persistence and mobility of contaminants are also influenced by synergistic or antagonistic interactions among pollutants, microbial transformation of organic compounds, and oxidative degradation of microplastics by reactive oxygen species. Contaminants can affect benthic communities by causing toxic effects and oxygen depletion. They also may alter microbial and macrofaunal populations and contribute to bioaccumulation and biomagnification. Ultimately, these insights are important for predicting contaminant behavior and assessing ecological risks, which directly informs the development of effective environmental monitoring programs and sustainable sediment remediation strategies for the long-term protection of aquatic ecosystems. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

18 pages, 4120 KB  
Article
Enhancing CO2 Desorption Efficiency in Activated MDEA Using Titanium Oxyhydrate Particles
by Siti Aishah Mohd Rozaiddin, Kok Keong Lau and Fatemeh Shokrollahi
Catalysts 2025, 15(10), 999; https://doi.org/10.3390/catal15100999 - 20 Oct 2025
Viewed by 718
Abstract
The urgent global issue of climate change caused by rising carbon dioxide (CO2) levels has led to the widespread use of gas separation processes. Among the available processes, chemical absorption has received more attention due to its maturity and higher efficiency [...] Read more.
The urgent global issue of climate change caused by rising carbon dioxide (CO2) levels has led to the widespread use of gas separation processes. Among the available processes, chemical absorption has received more attention due to its maturity and higher efficiency compared to others. However, the high energy consumption during the desorption step poses several technical challenges, limiting its industrial applications. To overcome those challenges, several research studies have been conducted to improve the performance of the desorption process. In particular, various types of catalysts have been tested to improve the performance of the CO2 desorption process. Among the available catalysts, Titanium Oxyhydrate (TiO(OH)2) has shown remarkable characteristics for replacing conventional catalysts, mainly due to its stability and the potential for increasing the CO2 desorption rate. However, limited studies have been conducted to evaluate the performance of the CO2 desorption process, especially by utilizing commercial solvents such as piperazine (PZ) promoted methyldiethanolamine (MDEA). Hence, this study aims to evaluate the stability of TiO(OH)2 as a catalyst during the CO2 desorption process using various characterization techniques. The CO2 desorption performance is also assessed under different operating conditions. Moreover, the regeneration energy is determined and reported as the sensible heat duty per released CO2. The results show no significant difference between fresh and cycled TiO(OH)2, indicating its substantial thermal stability. Furthermore, a notable rise of 19.58% is observed in desorption rate while utilizing TiO(OH)2 with a mass concentration of 5 wt%, reflecting less energy consumption. These findings suggest that TiO(OH)2 could serve as a transformative catalyst in industrial-scale CO2 desorption processes, potentially paving the way for more sustainable CO2 capture technologies. Full article
(This article belongs to the Special Issue Catalysis and Technology for CO2 Capture, Conversion and Utilization)
Show Figures

Figure 1

16 pages, 2743 KB  
Article
Unique Design of Functionalized Covalent Organic Frameworks for Highly Selective Removal of Cyano-Neonicotinoids
by Yan Yang, Shuojie Wang, Wenxin Mai, Shiyu Wei, Guixiang Teng, Peng Pu, Jiaxing Zhao and Yongqiang Tian
Nanomaterials 2025, 15(20), 1596; https://doi.org/10.3390/nano15201596 - 20 Oct 2025
Viewed by 255
Abstract
Acetamiprid (ACE) and thiacloprid (THIA) are the dominant cyano-substituted neonicotinoids detected in fruit juices and bottled water, which raises food-safety concerns and regulatory scrutiny. Conventional purification with activated carbon or advanced oxidation shows limited selectivity and has a high energy demand. Covalent organic [...] Read more.
Acetamiprid (ACE) and thiacloprid (THIA) are the dominant cyano-substituted neonicotinoids detected in fruit juices and bottled water, which raises food-safety concerns and regulatory scrutiny. Conventional purification with activated carbon or advanced oxidation shows limited selectivity and has a high energy demand. Covalent organic frameworks (COFs) offer tunable chemistry for targeted adsorption, yet no strategy exists to engineer COF sites that preferentially recognize the cyano group of ACE/THIA. Here, we synthesized a magnetic core-shell adsorbent, Fe3O4@COF(TBTD-BD)-Au, by growing cyano-affinitive Au nanoparticles on a Cl-decorated COF shell surrounding a Fe3O4 core. Under optimized conditions (pH 6.0, 25 °C), the Fe3O4@COF(TBTD-BD)-Au achieved maximum adsorption capacities of 157 mg g−1 (ACE) and 156 mg g−1 (THIA). Uptake followed pseudo-second-order kinetics and the Freundlich isotherm; thermodynamic analysis confirmed an endothermic, spontaneous process. Competitive tests showed >80% removal of ACE and THIA in the presence of four co-occurring neonicotinoids, and the adsorbent retained 91.5% of its initial capacity after six adsorption–desorption cycles. Synergistic Au-cyano coordination, Cl-mediated hydrogen bonding, and π–π stacking confinement confer high selectivity and capacity. This ligand-guided, post-functionalized COF provides promising potential in the field of food sample treatment for contaminant removal. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

15 pages, 3595 KB  
Article
Time-Varying Characteristics of CH4 Displacement–Replacement Effect in Coal Seams During CO2-Enhanced Coalbed Methane Recovery
by Jianchi Hao, Shuangming Wang, Hu Wen, Zegong Liu and Xuezhao Zheng
Energies 2025, 18(20), 5507; https://doi.org/10.3390/en18205507 - 18 Oct 2025
Viewed by 304
Abstract
Carbon dioxide (CO2)-enhanced coalbed methane recovery involves a complex process of mixed-gas adsorption, desorption, and diffusion–transport. The literature suggests that an appropriate range of CO2 injection pressure and an optimal injection time window are critical for coal seams with varying [...] Read more.
Carbon dioxide (CO2)-enhanced coalbed methane recovery involves a complex process of mixed-gas adsorption, desorption, and diffusion–transport. The literature suggests that an appropriate range of CO2 injection pressure and an optimal injection time window are critical for coal seams with varying reservoir conditions. That is, higher pressure and longer injection periods do not necessarily lead to better displacement performance. Therefore, in this study, experimental research was conducted on the time-varying characteristics of the displacement–replacement effect of CO2-enhanced methane (CH4) extraction from coal seams, and the following results were obtained. (1) The process of displacement–replacement of CH4 by CO2 in coal seams can be divided into five stages: a stage of spontaneous CH4 desorption caused by partial-pressure effects, a replacement-dominated stage, a stage where replacement and displacement act jointly, a displacement-dominated stage, and a stabilization stage. (2) For all three coal samples (anthracite, coking coal, and long-flame coal), cumulative CH4 desorption increases with increasing CO2 injection pressure below 5 MPa and finally stabilizes. However, when CO2 injection pressure exceeds 5 MPa, the effect weakens, possibly due to the dynamic changes in CO2 partial pressure. (3) The displacement–replacement ratio decreases with increasing CH4 equilibrium pressure. Additionally, the larger the difference between the CO2 injection pressure and the CH4 equilibrium pressure, the better the displacement–replacement effect. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

18 pages, 2432 KB  
Article
Citric Acid-Modified Sepiolite as an Efficient and Sustainable Adsorbent for the Removal of Methylene Blue from Aqueous Solutions
by Zhuangzhuang Tian, Ziyi Chen, Qing Wang, Xin Gao and Wei Wei
Water 2025, 17(20), 2998; https://doi.org/10.3390/w17202998 - 17 Oct 2025
Viewed by 338
Abstract
Eco-friendly clay-based adsorbents with low cost and high adsorption capacity for toxic dyes have attracted significant attention. In this study, a novel citric acid-modified sepiolite (CA-SEP) composite was developed for the efficient removal of methylene blue (MB) from aqueous solutions. The morphological, crystalline, [...] Read more.
Eco-friendly clay-based adsorbents with low cost and high adsorption capacity for toxic dyes have attracted significant attention. In this study, a novel citric acid-modified sepiolite (CA-SEP) composite was developed for the efficient removal of methylene blue (MB) from aqueous solutions. The morphological, crystalline, and structural properties of the composite were characterized using XRD, FTIR, SEM, and BET analyses. Compared to pristine SEP, CA-SEP exhibited a 2.6-fold increase in adsorption capacity for MB and demonstrated excellent reusability. The effects of key parameters—including solution pH (2.0–10.0), contact time (0–300 min), adsorbent dosage (0.2–2.0 g/L), and initial MB concentration (10–150 mg/L)—on adsorption performance were systematically investigated. Modeling results indicated that the Sips isotherm provided the optimal fit for the equilibrium data. In kinetic studies, the adsorption process was best described by the pseudo-second-order model. The maximum adsorption capacity of CA-SEP for MB was estimated to be 40.61 mg/g. Moreover, the adsorbent retained high removal efficiency after five adsorption-desorption cycles, demonstrating good regenerability. These results indicate that CA-SEP is a highly efficient, sustainable, and economically viable adsorbent for the elimination of MB from contaminated water. Full article
Show Figures

Figure 1

21 pages, 6090 KB  
Article
Preparation of ZnCl2-Activated Magnetic Biochar and Its Performance in Removing Hexavalent Chromium from Water
by Pingqiang Gao, Zhe Tan, Yonghao Yan, Min Yang, Shuai Han, Chen Yang, Shuai Li and Yan Zhang
Nanomaterials 2025, 15(20), 1586; https://doi.org/10.3390/nano15201586 - 17 Oct 2025
Viewed by 353
Abstract
Magnetic biochar (Zn/Fe-BC) was prepared from jujube branches via an impregnation pyrolysis–coprecipitation technique to eliminate Cr(VI) from water. ZnFe2O4 was introduced through ZnCl2-based impregnation and pyrolysis, which can regulate the microstructure of hydrocarbon frameworks. Furthermore, FeSO4·7H [...] Read more.
Magnetic biochar (Zn/Fe-BC) was prepared from jujube branches via an impregnation pyrolysis–coprecipitation technique to eliminate Cr(VI) from water. ZnFe2O4 was introduced through ZnCl2-based impregnation and pyrolysis, which can regulate the microstructure of hydrocarbon frameworks. Furthermore, FeSO4·7H2O was used as the precursor for co-precipitation to embed Fe3O4 into the material, improving its reducibility and magnetism. The results demonstrated that Zn/Fe-BC exhibited excellent Cr(VI) removal efficiency. Under optimal conditions (an initial Cr(VI) concentration of 50 mg/L, pH 2, and an adsorbent dosage of 2 g/L), the maximum adsorption capacity of Zn/Fe-BC reached 27.85 mg/g, which was significantly higher than that of unmodified biochar (23.20 mg/g). Following five cycles of adsorption and desorption, the desorption efficiency was still higher than 60.35%. The following were the inhibitory effects of coexisting anions on the elimination of Cr(VI): CO32− > PO43− > SO42− > NO3. According to kinetic and isothermal adsorption experiments, the adsorption process adhered to the Freundlich isotherm and followed a pseudo-second-order kinetic model, indicating a multilayer adsorption process. Cr(VI) removal by Zn/Fe-BC was driven by physical adsorption and chemical reduction, involving a synergistic combination of electrostatic attraction, reduction, complexation, precipitation, and pore filling. These findings demonstrate the potential of the Zn/Fe-BC magnetic biochar as an effective adsorbent for Cr(VI) remediation in water treatment applications. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

20 pages, 3567 KB  
Article
Molecular Modelling of the Adsorption and Delivery of α-Pinene and Similar Terpenes of Essential Oils on Montmorillonite Surfaces
by Shamsa Kanwal, Alfonso Hernández-Laguna and C. Ignacio Sainz-Díaz
Nanomaterials 2025, 15(20), 1573; https://doi.org/10.3390/nano15201573 - 16 Oct 2025
Viewed by 268
Abstract
Alkylic molecules are found as some of the main components of natural essential oils. These essential oils offer several therapeutic properties in skin treatments and cosmetics. Systems providing controlled release of these molecules through the skin tissue are a challenge for their applications. [...] Read more.
Alkylic molecules are found as some of the main components of natural essential oils. These essential oils offer several therapeutic properties in skin treatments and cosmetics. Systems providing controlled release of these molecules through the skin tissue are a challenge for their applications. This work explores some properties of the crystal structure of α-pinene and the adsorption and desorption of five terpenoid components of essential oils, such as α-pinene, limonene, β-ocimene, β-caryophyllene, and β-elemene, in the confined surfaces provided by natural clay minerals, particularly montmorillonite (MNT). These terpenoids have a methyl-ethenyl group as their common structural feature. Molecular modelling calculations have been applied at the atomic scale, including force fields, quantum mechanical methods, and molecular dynamics simulations. We calculated the crystallographic and spectroscopic properties of the α-pinene crystal via density functional theory (DFT)-level calculations, which were very close to the known experimental data. Moreover, this work explored the adsorption and desorption of these molecules in confined surfaces provided by MNT. Molecular dynamics simulations also showed the adsorption of these organics in the confined interlayer space of MNT at room temperature and allowed us to know the diffusion coefficient of these adsorbates in this material. The direct adsorption process of these molecules in the vapour phase is not energetically favourable, suggesting the use of non-aqueous solvents and kinetics and thermodynamic conditions for this process. However, the release of these molecules into aqueous media are energetically favourable, predicting that MNT–essential oil can be an excellent pharmaceutical formulation to be delivered in skin as a bioactive preparation with anti-inflammatory or cosmetic power. This research was performed to predict possible therapeutic applications for future experimental works. Full article
(This article belongs to the Special Issue Advanced Nanomedicine for Drug Delivery)
Show Figures

Figure 1

22 pages, 6369 KB  
Article
Keggin Heteropolyacid Immobilized on Nanosilica as a Heterogeneous Catalyst for Sugar Dehydration in an Aqueous Medium
by Vincenzo Campisciano, Serena Lima, Giuseppe Marcì, Filippo Vitale, Maria Luisa Saladino, Francesco Giacalone and Elisa I. García-López
Molecules 2025, 30(20), 4097; https://doi.org/10.3390/molecules30204097 - 15 Oct 2025
Viewed by 241
Abstract
The dehydration of fructose and glucose to 5-hydroxymethylfurfural (HMF) in water solution was carried out in the presence of functionalized heteropolyanion-based heterogeneous catalysts. Two catalysts were prepared by immobilizing the Keggin polyoxometalate H3PW12O40 (PW12) onto nanoSiO [...] Read more.
The dehydration of fructose and glucose to 5-hydroxymethylfurfural (HMF) in water solution was carried out in the presence of functionalized heteropolyanion-based heterogeneous catalysts. Two catalysts were prepared by immobilizing the Keggin polyoxometalate H3PW12O40 (PW12) onto nanoSiO2 by the use of imidazoline and -SO3 surface species through acid–base reactions. The catalysts were characterized by N2 adsorption–desorption isotherms, XRD, TGA, FTIR, solid-state NMR, SEM, and acidity–basicity measurements. Catalytic reactions in batch conditions were performed at 165 °C in the presence of suspended catalysts, and the yield of furfural and 5-hydroxymethylfurfural (5-HMF) was determined. The catalytic activity of the materials was tested for sugars at 1M concentration in a water solution. The valorization of sugars (fructose and glucose) was found to be more effective in the case of fructose. Furthermore, the two catalysts in which the heteropolyacid was immobilized showed activity similar to that observed for naked PW12 (reaction in homogeneous phase), despite the heterogeneous nature of the process, but with the advantage of easier separation at the end of the reaction by simple filtration. The material’s substantial stability was demonstrated through three consecutive catalytic test cycles, in which the same catalyst was recovered after each experiment and washed several times with hot water. Finally, tests devoted to the valorization of sugars contained in wastewater from the brewing industry provided a poor yield in 5-HMF, indicating that the catalysts prepared here were, unfortunately, not suitable for this transformation under the conditions tested. This was because the catalysts prepared in this work showed a low capacity to transform glucose (the most present sugar in the carbohydrate fraction of this biomass) into furans. Full article
(This article belongs to the Special Issue From Biomass to High-Value Products: Processes and Applications)
Show Figures

Graphical abstract

21 pages, 3712 KB  
Article
LiCl@C-BMZIF Porous Composites: Synthesis, Structural Characterization, and the Effects of Carbonization Temperature and Salt Loading on Thermochemical Energy Storage
by Fuyao Zhang, Wenjing Wei, Quanrong Fang and Xianfeng Fan
Crystals 2025, 15(10), 889; https://doi.org/10.3390/cryst15100889 - 14 Oct 2025
Viewed by 238
Abstract
To address the imbalance in energy supply and demand across different regions and seasons, the thermochemical conversion process was selected to efficiently utilize surplus energy. In the search for suitable novel materials, this study developed a porous matrix “in-salt” composite using a carbonized [...] Read more.
To address the imbalance in energy supply and demand across different regions and seasons, the thermochemical conversion process was selected to efficiently utilize surplus energy. In the search for suitable novel materials, this study developed a porous matrix “in-salt” composite using a carbonized metal-organic framework as the carrier and LiCl as the primary reactant. When exposed to water vapor, the innovative material enabled both adsorption and desorption of water vapor, leading to the release and storage of thermal energy, thereby achieving effective energy storage. Using Zn(NO3)2·6H2O and Co(NO3)2·6H2O as metal ion sources and 2-methylimidazole as the ligand, bimetallic zeolitic imidazolate frameworks (BMZIFs) were fabricated via the liquid-phase precipitation method. The composite specimen prepared at a carbonization temperature of 1000 °C with a 20% LiCl mass concentration exhibited the most promising thermal storage performance, achieving the highest capacity, with a final water loss of 53.56% and a stable water adsorption capacity of about 0.831 g·g−1. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

24 pages, 728 KB  
Article
Looking for ESKAPE Bacteria: Occurrence and Phenotypic Antimicrobial Resistance Profiles in Wild Birds from Northern and Central Italy Sites
by Guido Grilli, Maria Cristina Rapi, Laura Musa, Giacomo Di Giacinto, Fabrizio Passamonti, Stefano Raimondi, Oriana Cianca and Maria Pia Franciosini
Antibiotics 2025, 14(10), 1025; https://doi.org/10.3390/antibiotics14101025 - 14 Oct 2025
Viewed by 495
Abstract
Background/Objectives: Antimicrobial resistance is a critical global health challenge. Among resistant pathogens, the group of bacteria collectively referred to as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) is of particular [...] Read more.
Background/Objectives: Antimicrobial resistance is a critical global health challenge. Among resistant pathogens, the group of bacteria collectively referred to as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) is of particular concern due to their ability to evade multiple classes of antimicrobials. This study aimed to investigate the occurrence and resistance patterns of ESKAPE bacteria in wild birds from Northern and Central Italy sites, and to assess the presence of other bacteria of public health relevance. Methods: Cloacal swabs were collected from 141 wild birds. Samples were processed on selective and differential media, and bacterial identification was performed using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Antimicrobial susceptibility was evaluated through Minimum Inhibitory Concentration assays and interpreted according to international guidelines. Results: Thirty-seven isolates belonging to the ESKAPE group were identified: E. faecium (n = 10), K. pneumoniae (n = 9), P. aeruginosa (n = 8), Enterobacter spp. (n = 7), S. aureus (n = 2), and A. baumannii (n = 1). Multidrug-resistant isolates were observed among K. pneumoniae and Enterobacter hormaechei. Escherichia coli, although not included in the ESKAPE group, was frequently detected and often co-isolated with clinically relevant bacteria, highlighting its potential role as a reservoir of resistance genes. Conclusions: Wild birds can harbor resistant bacteria of clinical importance, including multidrug-resistant ESKAPE species. Their presence in avian populations underscores the role of wildlife in the environmental dissemination of antimicrobial resistance, with implications for both animal and human health. Full article
(This article belongs to the Special Issue Epidemiology, Drug Resistance, and Virulence in Zoonotic Pathogens)
Show Figures

Figure 1

Back to TopTop