Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = deltaic areas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 8793 KB  
Article
Middle Jurassic Reservoir Characterization in the Central Sichuan Basin, SW China: Implications for Oil Exploration
by Chunyu Qin, Lurui Dang, Haitao Hong, Kai Yu, Jingchang Liu, Shuaiwei Zhang and Wenbin Tang
Minerals 2025, 15(11), 1189; https://doi.org/10.3390/min15111189 - 13 Nov 2025
Abstract
The Middle Jurassic Lianggaoshan and Shaximiao Formations are the primary crude oil reservoirs in the central Sichuan Basin, offering significant resource potential. However, studies on reservoir characterization across different lithologies remain limited. This study focuses on fluvial–deltaic sandstones, siltstones, and lacustrine shales, analyzing [...] Read more.
The Middle Jurassic Lianggaoshan and Shaximiao Formations are the primary crude oil reservoirs in the central Sichuan Basin, offering significant resource potential. However, studies on reservoir characterization across different lithologies remain limited. This study focuses on fluvial–deltaic sandstones, siltstones, and lacustrine shales, analyzing pore types, structures, pore size distribution, and connectivity using various methods, including X-ray diffraction (XRD), thin-section analysis, scanning electron microscopy (SEM), high-pressure mercury injection, low-temperature nitrogen adsorption, and nuclear magnetic resonance (NMR) spectroscopy. The results show that sandstones exhibit the largest pore space, followed by siltstones, while shales have the smallest pore space. These reservoirs are relatively tight, with poor connectivity and high heterogeneity. Sandstone reservoirs, with their high quartz content, represent high-quality reservoirs because of their relatively good connectivity. Therefore, areas with well-developed natural fractures in sandstone are considered high-quality targets. For nanoscale reservoirs in siltstone and shale, horizontal fracturing is essential to improve reservoir properties, provided that source–reservoir matching is adequate. This study offers a detailed reservoir characterization across different lithologies, providing new insights for the optimization of favorable crude oil zones in the central Sichuan Basin. Full article
Show Figures

Figure 1

27 pages, 15135 KB  
Article
Preliminary Assessment of Long-Term Sea-Level Rise-Induced Inundation in the Deltaic System of the Northern Coast of the Amvrakikos Gulf (Western Greece)
by Sofia Rossi, Dimitrios Keimeris, Charikleia Papachristou, Konstantinos Tsanakas, Antigoni Faka, Dimitrios-Vasileios Batzakis, Mauro Soldati and Efthimios Karymbalis
J. Mar. Sci. Eng. 2025, 13(11), 2114; https://doi.org/10.3390/jmse13112114 - 7 Nov 2025
Viewed by 644
Abstract
The latest climate change predictions indicate that the sea level will accelerate in the coming decades as a direct consequence of global warming. This is expected to seriously threaten low-lying coastal areas worldwide, resulting in severe coastal flooding with significant socio-economic impacts, leading [...] Read more.
The latest climate change predictions indicate that the sea level will accelerate in the coming decades as a direct consequence of global warming. This is expected to seriously threaten low-lying coastal areas worldwide, resulting in severe coastal flooding with significant socio-economic impacts, leading to the loss of coastal settlements, exploitable land, and natural ecosystems. The main objective of this study is to provide a first-order preliminary estimation of potential inundation extents along the northern coastline of the Amvrakikos Gulf, a deltaic complex formed by the Arachthos, Louros, and Vouvos rivers in Western Greece, resulting from long-term sea-level rise induced by climate change, using the integrated Bathtub and Hydraulic Connectivity (HC) inundation method. A 2 m resolution Digital Elevation Model (DEM) was used, along with local long-term sea-level projections, for the years 2050 and 2100. Additionally, subsidence rates due to the compaction of deltaic sediments were taken into account. To assess the area’s proneness to inundation caused or enhanced by sea-level rise, the extent of each land cover type, the Natura 2000 Network protected area, the settlements, the total length of the road network, and the cultural assets located within the inundation zones under each climate change scenario were considered. The analysis revealed that under the optimistic SSP1-1.9 scenario of the Intergovernmental Panel on Climate Change (IPCC), areas of 40.81 km2 (min 20.34 km2, max 63.55 km2) and 69.10 km2 (min 41.75 km2, max 88.02 km2) could potentially be inundated by 2050 and 2100, respectively. Under the pessimistic SSP5-8.5 scenario, the inundation zone expands to 42.56 km2 (min 37.05 km2, max 66.31 km2) by 2050 and 84.55 km2 (min 67.54 km2, max 116.86 km2) by 2100, affecting a significant portion of ecologically valuable wetlands and water bodies within the Natura 2000 protected area. Specifically, the inundated Natura 2000 area is projected to range from 37.77 km2 (min 20.30 km2, max 46.82 km2) by 2050 to 50.74 km2 (min 38.71 km2, max 62.84 km2) by 2100 under the SSP1-1.9 scenario, and from 39.34 km2 (min 34.53 km2, max 49.09 km2) by 2050 to 60.48 km2 (min 49.73 km2, max 82.5 km2) by 2100 under the SSP5-8.5 scenario. Four settlements with a total population of approximately 800 people, as well as 32 economic facilities most of which operate in the secondary and tertiary sectors and are small to medium-sized economic units, such as olive mills, farms, gas stations, spare parts stores, construction companies, and food service establishments, are expected to experience significant exposure to coastal flooding and operational disruptions in the near future due to sea-level rise. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

21 pages, 10673 KB  
Article
Sedimentary Environment and Evolution of the Lower Cretaceous Jiufotang Formation in the Pijiagou and Tanjiagou Sections, Southern Fuxin Basin, NE China
by Yiming Huang, Shichao Li, Fei Xiao, Lei Shi, Yulai Yao and Jianguo Yang
Appl. Sci. 2025, 15(19), 10637; https://doi.org/10.3390/app151910637 - 1 Oct 2025
Viewed by 346
Abstract
The Lower Cretaceous Jiufotang Formation in the Fuxin Basin contains a proven petroleum system. However, its southern part remains underexplored due to limited drilling and fragmentary sedimentary studies. To address this issue, we conducted detailed sedimentological logging of the two typical outcrop sections, [...] Read more.
The Lower Cretaceous Jiufotang Formation in the Fuxin Basin contains a proven petroleum system. However, its southern part remains underexplored due to limited drilling and fragmentary sedimentary studies. To address this issue, we conducted detailed sedimentological logging of the two typical outcrop sections, Pijiagou and Tanjiagou. Field observations, petrographic data, and grain-size analysis were integrated to decipher hydrodynamic conditions, calibrate microfacies associations, and reconstruct the sedimentary evolution through facies stacking pattern analysis. The results show that the Jiufotang Formation predominantly consists of calcareous fine-grained clastic rocks, with poorly sorted sandstones indicative of low-energy conditions. Sediment transport mechanisms include both traction and turbidity currents, with suspension being predominant. The succession records a depositional transition from fan-delta to lacustrine environments. Two subfacies, fan-delta front and shore-shallow lacustrine, were identified and subdivided into seven microfacies: subaqueous distributary channels, interdistributary bays, subaqueous levees, mouth bars, muddy shoals, sandy shoals, and carbonate shoals. The sedimentary evolution reflects an initial lacustrine transgression followed by regression, interrupted by multiple lacustrine-level fluctuations. The alternating depositional pattern of lacustrine and deltaic facies has formed complete source-reservoir-seal assemblages in the Jiufotang Formation in the study area, making it a potential favorable target for hydrocarbon accumulation. Full article
(This article belongs to the Topic Advanced Technology for Oil and Nature Gas Exploration)
Show Figures

Figure 1

29 pages, 11834 KB  
Article
Sedimentary Characteristics and Reservoir Quality of Shallow-Water Delta in Arid Lacustrine Basins: The Upper Jurassic Qigu Formation in the Yongjin Area, Junggar Basin, China
by Lin Wang, Qiqi Lyu, Yibo Chen, Xinshou Xu and Xinying Zhou
Appl. Sci. 2025, 15(15), 8458; https://doi.org/10.3390/app15158458 - 30 Jul 2025
Viewed by 559
Abstract
The lacustrine to deltaic depositional systems of the Upper Jurassic Qigu Formation in the Yongjin area constitute a significant petroleum reservoir in the central Junggar Basin, China. Based on core observations, petrology analyses, paleoenvironment indicators and modern sedimentary analyses, sequence stratigraphy, lithofacies associations, [...] Read more.
The lacustrine to deltaic depositional systems of the Upper Jurassic Qigu Formation in the Yongjin area constitute a significant petroleum reservoir in the central Junggar Basin, China. Based on core observations, petrology analyses, paleoenvironment indicators and modern sedimentary analyses, sequence stratigraphy, lithofacies associations, sedimentary environment, evolution, and models were investigated. The Qigu Formation can be divided into a third-order sequence consisting of a lowstand systems tract (LST) and a transgressive systems tract (TST), which is further subdivided into six fourth-order sequences. Thirteen lithofacies and five lithofacies associations were identified, corresponding to shallow-water delta-front deposits. The paleoenvironment of the Qigu Formation is generally characterized by an arid freshwater environment, with a dysoxic to oxic environment. During the LST depositional period (SQ1–SQ3), the water depth was relatively shallow with abundant sediment supply, resulting in a widespread distribution of channel and mouth bar deposits. During the TST depositional period (SQ4–SQ6), the rapid rise in base level, combined with reduced sediment supply, resulted in swift delta retrogradation and widespread lacustrine sedimentation. Combined with modern sedimentary analysis, the shallow-water delta in the study area primarily comprises a composite system of single main channels and distributary channel-mouth bar complexes. The channel-bar complex eventually forms radially distributed bar assemblages with lateral incision and stacking. The distributary channel could incise a mouth bar deeply or shallowly, typically forming architectural patterns of going over or in the mouth bar. Reservoir test data suggest that the mouth bar sandstones are favorable targets for lithological reservoir exploration in shallow-water deltas. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

19 pages, 13286 KB  
Article
Differential Evolutionary Mechanisms of Tight Sandstone Reservoirs and Their Influence on Reservoir Quality: A Case Study of Carboniferous–Permian Sandstones in the Shenfu Area, Ordos Basin, China
by Xiangdong Gao, You Guo, Hui Guo, Hao Sun, Xiang Wu, Mingda Zhang, Xirui Liu and Jiawen Deng
Minerals 2025, 15(7), 744; https://doi.org/10.3390/min15070744 - 16 Jul 2025
Viewed by 430
Abstract
The Carboniferous–Permian tight sandstone gas reservoirs in the Shenfu area of the Ordos Basin in China are characterized by the widespread development of multiple formations. However, significant differences exist among the tight sandstones of different formations, and their formation mechanisms and key controlling [...] Read more.
The Carboniferous–Permian tight sandstone gas reservoirs in the Shenfu area of the Ordos Basin in China are characterized by the widespread development of multiple formations. However, significant differences exist among the tight sandstones of different formations, and their formation mechanisms and key controlling factors remain unclear, hindering the effective selection and development of favorable tight gas intervals in the study area. Through comprehensive analysis of casting thin section (CTS), scanning electron microscopy (SEM), cathodoluminescence (CL), X-ray diffraction (XRD), particle size and sorting, porosity and permeability data from Upper Paleozoic tight sandstone samples, combined with insights into depositional environments, burial history, and chemical reaction processes, this study clarifies the characteristics of tight sandstone reservoirs, reveals the key controlling factors of reservoir quality, confirms the differential evolutionary mechanisms of tight sandstone of different formations, reconstructs the diagenetic sequence, and constructs an evolution model of reservoir minerals and porosity. The research results indicate depositional processes laid the foundation for the original reservoir properties. Sandstones deposited in tidal flat and deltaic environments exhibit superior initial reservoir qualities. Compaction is a critical factor leading to the decline in reservoir quality across all formations. However, rigid particles such as quartz can partially mitigate the pore reduction caused by compaction. Early diagenetic carbonate cementation reduces reservoir quality by occupying primary pores and hindering the generation of secondary porosity induced by acidic fluids, while later-formed carbonate further densifies the sandstone by filling secondary intragranular pores. Clay mineral cements diminish reservoir porosity and permeability by filling intergranular and intragranular pores. The Shanxi and Taiyuan Formations display relatively poorer reservoir quality due to intense illitization. Overall, the reservoir quality of Benxi Formation is the best, followed by Xiashihezi Formation, with the Taiyuan and Shanxi Formations exhibiting comparatively lower qualities. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

27 pages, 53601 KB  
Article
Depositional Evolution and Controlling Factors of the Lower–Middle Jurassic in the Kuqa Depression, Tarim Basin, Northwest China
by Ming Ma, Changsong Lin, Yongfu Liu, Hao Li, Wenfang Yuan, Jingyan Liu, Chaoqun Shi, Manli Zhang and Fan Xu
Appl. Sci. 2025, 15(14), 7783; https://doi.org/10.3390/app15147783 - 11 Jul 2025
Viewed by 858
Abstract
The Lower–Middle Jurassic of the Kuqa Depression consists of terrestrial clastic deposits containing coal seams and thick lacustrine mudstones, and is of great significance for oil and gas exploration. Based on the comprehensive analysis of core, well-logging, outcrop, and seismic data, the sequence [...] Read more.
The Lower–Middle Jurassic of the Kuqa Depression consists of terrestrial clastic deposits containing coal seams and thick lacustrine mudstones, and is of great significance for oil and gas exploration. Based on the comprehensive analysis of core, well-logging, outcrop, and seismic data, the sequence stratigraphy, depositional systems, and the controlling factors of the basin filling in the depression are systematically documented. Four primary depositional systems, including braided river delta, meandering river delta, lacustrine, and swamp deposits, are identified within the Ahe, Yangxia, and Kezilenuer Formations of the Lower–Middle Jurassic. The basin fills can be classified into two second-order and nine third-order sequences (SQ1–SQ9) confined by regional or local unconformities and their correlative conformities. This study shows that the sedimentary evolution has undergone the following three stages: Stage I (SQ1–SQ2) primarily developed braided river, braided river delta, and shallow lacustrine deposits; Stage II (SQ3–SQ5) primarily developed meandering river, meandering river delta, and extensive deep and semi-deep lacustrine deposits; Stage III (SQ6–SQ9) primarily developed swamp (SQ6–SQ7), meandering river delta, and shore–shallow lacustrine deposits (SQ8–SQ9). The uplift of the Tianshan Orogenic Belt in the Early Jurassic (Stage I) may have facilitated the development of braided fluvial–deltaic deposits. The subsequential expansion of the sedimentary area and the weakened sediment supply can be attributed to the planation of the source area and widespread basin subsidence, with the transition of the depositional environments from braided river delta deposits to meandering river delta and swamp deposits. The regional expansion or rise of the lake during Stage II was likely triggered by the hot and humid climate conditions, possibly associated with the Early Jurassic Toarcian Oceanic Anoxic Event. The thick swamp deposits formed during Stage III may be controlled by the interplay of rational accommodation, warm and humid climatic conditions, and limited sediment supply. Milankovitch cycles identified in Stage III further reveal that coal accumulation was primarily modulated by long-period eccentricity forcing. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

17 pages, 5070 KB  
Article
Sustainable Coastal Evolution and Critical Sediment Load Estimation in the Yellow River Delta
by Lishan Rong, Yanyi Zhou, He Li and Chong Huang
Sustainability 2025, 17(13), 5943; https://doi.org/10.3390/su17135943 - 27 Jun 2025
Cited by 1 | Viewed by 606
Abstract
The coastline of the Yellow River Delta in China has experienced significant dynamic changes due to both natural and human activities. Investigating its coastal dynamics and understanding the equilibrium with riverine runoff and sediment discharge is crucial for ecological balance and sustainable development [...] Read more.
The coastline of the Yellow River Delta in China has experienced significant dynamic changes due to both natural and human activities. Investigating its coastal dynamics and understanding the equilibrium with riverine runoff and sediment discharge is crucial for ecological balance and sustainable development in the region. In this study, a coastline extraction algorithm was developed by integrating water index and dynamic frequency thresholds based on the Google Earth Engine platform. Long-term optical remote sensing datasets from Landsat (1988–2016) and Sentinel-2 (2017–2023) were utilized. The End Point Rate (EPR) and Linear Regression Rate (LRR) methods were employed to quantify coastline changes, and the relationship between coastal evolution and runoff–sediment dynamics was investigated. The results revealed the following: (1) The coastline of the Yellow River Delta exhibits pronounced spatiotemporal variability. From 1988 to 2023, the Diaokou estuary recorded the lowest EPR and LRR values (−206.05 m/a and −248.33 m/a, respectively), whereas the Beicha estuary recorded the highest values (317.54 m/a and 374.14 m/a, respectively). (2) The cumulative land area change displayed a fluctuating pattern, characterized by a general trend of increase–decrease–increase, indicating a gradual progression toward dynamic equilibrium. The Diaokou estuary has been predominantly erosional, while the Qingshuigou estuary experienced deposition prior to 1996, followed by subsequent erosion. In contrast, the land area of the Beicha estuary has continued to increase since 1997. (3) Deltaic progradation has been primarily governed by runoff–sediment dynamics. Coastline advancement has occurred along active river channels as a result of sediment deposition, whereas former river mouths have retreated landward due to insufficient fluvial sediment input. In the Beicha estuary, increased land area has exhibited a strong positive correlation with annual sedimentary influx. The critical sediment discharge required to maintain equilibrium has been estimated at 79 million t/a for the Beicha estuary and 107 million t/a for the entire deltaic region. These findings provide a scientific foundation for sustainable sediment management, coastal restoration, and integrated land–water planning. This study supports sustainable coastal management, informs policymaking, and enhances ecosystem resilience. Full article
Show Figures

Figure 1

18 pages, 5357 KB  
Article
Multi-Scale Validation of Suspended Sediment Retrievals in Dynamic Estuaries: Integrating Geostationary and Low-Earth-Orbiting Optical Imagery for Hangzhou Bay
by Yi Dai, Jiangfei Wang, Bin Zhou, Wangbing Liu, Ben Wang, C. K. Shum, Xiaohong Yuan and Zhifeng Yu
Remote Sens. 2025, 17(12), 1975; https://doi.org/10.3390/rs17121975 - 6 Jun 2025
Viewed by 608
Abstract
Water color remote sensing is vital for the monitoring and quantification of marine suspended sediment dynamics and their distributions. Yet validations of these observables in coastal regions and deltaic estuaries, including the Hangzhou Bay in the East China Sea, remain challenging, primarily due [...] Read more.
Water color remote sensing is vital for the monitoring and quantification of marine suspended sediment dynamics and their distributions. Yet validations of these observables in coastal regions and deltaic estuaries, including the Hangzhou Bay in the East China Sea, remain challenging, primarily due to the pronounced complex oceanic dynamics that exhibit high spatiotemporal variability in the signals of the suspended sediment concentration (SSC) in the ocean. Here, we integrate satellite images from the sun-synchronous satellites, China’s Huanjing (Chinese for environmental, HJ)-1A/B (charged couple device) CCD (30 m), and from Korea’s Geostationary Ocean Color Imager GOCI (500 m) to the spatiotemporal scale effects to validate SSC remote sensing-retrieved data products. A multi-scale validation framework based on coefficient of variation (CV)-based zoning was developed, where high-resolution HJ CCD SSC data were resampled to the GOCI scale (500 m), and spatial variability was quantified using CV values within corresponding HJ CCD windows. Traditional validation, comparing in situ point measurements directly with GOCI pixel-averaged data, introduces significant uncertainties due to pixel heterogeneity. The results indicate that in regions with high spatial heterogeneity (CV > 0.10), using central pixel values significantly weakens correlations and increases errors, with performance declining further in highly heterogeneous areas (CV > 0.15), underscoring the critical role of spatial averaging in mitigating scale-related biases. This study enhances the quantitative assessment of uncertainties in validating medium-to-low-resolution water color products, providing a robust approach for high-dynamic oceanic environment estuaries and bays. Full article
(This article belongs to the Special Issue Remote Sensing Band Ratios for the Assessment of Water Quality)
Show Figures

Graphical abstract

18 pages, 24260 KB  
Article
Sedimentary Characteristics of the Sandstone Intervals in the Fourth Member of Triassic Akekule Formation, Tarim Basin: Implications for Petroleum Exploration
by Zehua Liu, Ye Yu, Li Wang, Haidong Wu and Qi Lin
Appl. Sci. 2025, 15(6), 3297; https://doi.org/10.3390/app15063297 - 18 Mar 2025
Cited by 1 | Viewed by 668
Abstract
The fourth member of the Triassic in the Tahe Oilfield, as one of the key strata for clastic rock reservoirs, poses significant challenges to oil and gas exploration due to unclear identification of its depositional environments and sedimentary microfacies. Based on the guidance [...] Read more.
The fourth member of the Triassic in the Tahe Oilfield, as one of the key strata for clastic rock reservoirs, poses significant challenges to oil and gas exploration due to unclear identification of its depositional environments and sedimentary microfacies. Based on the guidance of sequence stratigraphy and sedimentological theories, this study comprehensively analyzed well logging data from more than 130 wells, core analysis from 9 coring wells (including lithology, sedimentary structures, and facies sequence characteristics), 3D seismic data (covering an area of 360 km2), and regional geological background. Combined with screening and settling method granularity experiments, the sedimentary characteristics of the sand body in the fourth member were systematically characterized. The results indicate the following: (1) In the Tahe Oilfield, the strata within the fourth member of the Triassic are predominantly characterized by marginal lacustrine subfacies deposits, with delta-front subfacies deposits developing in localized areas. (2) From the planar distribution perspective, influenced by the northwestern provenance, a small deltaic depositional system developed in the early stage of the fourth member in the northwestern part of the Triassic Akekule Formation. This system was dominated by subaqueous distributary channel sand bodies, which were subjected to erosion and reshaping by lake water, leading to the formation of several stable sand bars along the lake shoreline. In the later stage of the fourth member, as the lake level continued to recede, the area of deltaic deposition expanded westward, and deltaic deposits also developed in the central to slightly eastern parts of the study area. Based on this, a depositional model for the fourth member of the Triassic in the Tahe Oilfield has been established. (3) In the Tahe Oilfield, the sand bodies within the fourth member of the Triassic system gradually pinch out into mudstone, forming lithological pinch-out traps. Among these, the channel sand bodies and long belt sand ridges, due to their good sorting and high permeability, become favorable reservoirs for oil and gas accumulation. This study clarifies the sedimentary model of the fourth member and reveals the spatial differentiation mechanism of sand bodies under the control of lake-level fluctuations and ancient structures. It can provide exploration guidance for delta lake sedimentary systems similar to the edge of foreland basins, especially for efficient development of complex lithological oil and gas reservoirs controlled by multistage lake invasion–lake retreat cycles. Full article
Show Figures

Figure 1

29 pages, 6438 KB  
Article
Potato Cultivation Under Zero Tillage and Straw Mulching: Option for Land and Cropping System Intensification for Indian Sundarbans
by Saikat Dey, Sukamal Sarkar, Anannya Dhar, Koushik Brahmachari, Argha Ghosh, Rupak Goswami and Mohammed Mainuddin
Land 2025, 14(3), 563; https://doi.org/10.3390/land14030563 - 7 Mar 2025
Cited by 3 | Viewed by 2753
Abstract
Agriculture in the Indian Sundarbans deltaic region primarily depends on a rice-based monocropping system during the rainy season, with the subsequent season often remaining fallow. To mitigate this issue, a series of experiments using zero tillage and straw mulching (ZTSM) potato cultivation were [...] Read more.
Agriculture in the Indian Sundarbans deltaic region primarily depends on a rice-based monocropping system during the rainy season, with the subsequent season often remaining fallow. To mitigate this issue, a series of experiments using zero tillage and straw mulching (ZTSM) potato cultivation were conducted over eight consecutive years (2017–2024) across various islands in the Sundarbans Delta, West Bengal, aimed to intensify the cropping system and ensure the betterment of the land use pattern using climate-smart agricultural practices. In the initial two years, the experiments concentrated on assessing different potato cultivars and nutrient dosages under zero tillage and paddy straw mulching conditions. During the subsequent years, the focus shifted to field demonstrations under diverse climatic conditions. The research included the application of different macronutrients and growth regulators, in combination with different depths of straw mulching. In the final years of the study, the intervention was dedicated solely to the horizontal expansion of cultivated land. These initiatives aimed to enhance agricultural productivity and sustainable land use in the polders, promoting climate-resilient farming practices. From the sets of experiments, we standardized the sustainable nutrient management strategies and selection of appropriate potato cultivars vis-à-vis depth of straw mulching and, finally, the overall best agronomic practices for the region. The adoption of the ZTSM potato cultivation system demonstrated considerable success, as evidenced by the remarkable increase in the number of farmers employing this sustainable agricultural practice. The number of farmers practicing zero tillage potato cultivation surged from 23 in the initial year to over 1100, covering an area of more than 15 ha, highlighting the effectiveness of the technology. The analysis of the estimated adoption also showed that more than 90% adoption is likely to be achieved within a decade. This potential expansion underscores the benefits of the ZTSM potato cultivation system in improving soil health, conserving water, and reducing labour and costs. As more farmers recognize the advantages of zero tillage potato mulching, this approach is poised to play a pivotal role in sustainable agriculture, enhancing productivity while promoting environmental stewardship. Full article
(This article belongs to the Special Issue Tillage Methods on Soil Properties and Crop Growth)
Show Figures

Figure 1

23 pages, 9593 KB  
Article
Numerical Assessment of the Coastal Reservoir’s Water Reliability and Flushing in a Shallow Estuary
by Usman Khalil, Mariam Sajid, Rong Ji, Yizhuang Liu, Shuqing Yang and Muttucumaru Sivakumar
Water 2025, 17(3), 333; https://doi.org/10.3390/w17030333 - 24 Jan 2025
Cited by 1 | Viewed by 978
Abstract
Freshwater shortages in coastal regions are intensifying due to rapid urbanisation, economic growth, and climate variability, particularly in deltaic areas where rivers meet the sea. This study evaluates the feasibility of implementing a Coastal Reservoir (CR) as an innovative solution to increase freshwater [...] Read more.
Freshwater shortages in coastal regions are intensifying due to rapid urbanisation, economic growth, and climate variability, particularly in deltaic areas where rivers meet the sea. This study evaluates the feasibility of implementing a Coastal Reservoir (CR) as an innovative solution to increase freshwater availability without relying on desalination. Using the Brisbane River Estuary (BRE), Australia, as a case study, the research examines critical factors such as freshwater inflow, seawater intrusion, and reservoir volume requirements. A three-dimensional hydrodynamic model (MIKE 3) was calibrated and validated using observed data from the 2008 and 2011 flow events. Simulation results indicate that a freshwater discharge of 150 m3/s during a spring-neap tidal cycle effectively pushes saline water out of the estuary. The CR can store 300 GL/year of freshwater with 92% reliability, meeting Southeast Queensland’s (SEQ) annual water demand of 440 GL during drought conditions combined with existing infrastructure. During its initial filling phase, the CR can flush 95% of saltwater within 240 days, using a steady inflow of 150 m3/s. The findings demonstrate the technical feasibility of CRs as a sustainable and practical water management strategy for mitigating freshwater shortages in BRE and other similar coastal regions. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

18 pages, 35067 KB  
Article
Comprehensive Reservoir Architecture Dissection and Microfacies Analysis of the Chang 8 Oil Group in the Luo 1 Well Area, Jiyuan Oilfield
by Jing Wang, Lixin Wang, Yanshu Yin, Pengfei Xie and Ge Xiong
Appl. Sci. 2025, 15(3), 1082; https://doi.org/10.3390/app15031082 - 22 Jan 2025
Cited by 2 | Viewed by 1062
Abstract
The Chang 8 oil group within the Luo 1 well area of Jiyuan Oilfield, situated in the Ordos Basin, exemplifies an ultra-low-permeability reservoir with an average permeability of 0.84 mD. Despite primary development efforts through acid fracturing, suboptimal recovery efficiency has been observed [...] Read more.
The Chang 8 oil group within the Luo 1 well area of Jiyuan Oilfield, situated in the Ordos Basin, exemplifies an ultra-low-permeability reservoir with an average permeability of 0.84 mD. Despite primary development efforts through acid fracturing, suboptimal recovery efficiency has been observed due to inadequate injection–production matching. To mitigate this issue and enhance reservoir utilization, a comprehensive understanding of sand body architecture is imperative. This study employs a detailed reservoir architecture element analysis approach, integrating core samples, thin-section petrography, and geophysical logging data. The objective is to elucidate the internal structure and heterogeneity of sand bodies, which significantly influence hydrocarbon recovery. Key findings reveal that the study area is characterized by a shallow-water deltaic depositional system, featuring three principal sedimentary microfacies: subaqueous distributary channels, sheet sands, and lacustrine muds. Notably, subaqueous distributary channel sand bodies dominate, forming composite units via lateral accretion or vertical stacking of 2–5 individual channels, with widths exceeding 2000 m. Individual distributary channels range from 83 to 535 m in width, exhibiting both isolated and stacked contact styles. Importantly, only 25.97% of channels demonstrate connectivity, underscoring the critical role of channel scale and continuity in ultra-low-permeability reservoir development. By addressing the previously identified gap in architectural configuration knowledge, this study contributes foundational data for future development improvements. In conclusion, the detailed characterization of reservoir architecture offers pivotal insights into tailoring development strategies that align with the specific characteristics of ultra-low-permeability reservoirs, thereby improving overall recovery rates. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

30 pages, 19890 KB  
Article
The Sedimentary Characteristics and Resource Potential of a Lacustrine Shallow-Water Delta on a Hanging-Wall Ramp in a Rift Basin: A Case Study from the Paleogene of the Raoyang Sag, Bohai Bay Basin, China
by Lei Ye, Xiaomin Zhu, Nigel P. Mountney, Shuanghui Xie, Renhao Zhang and Luca Colombera
Sustainability 2025, 17(1), 208; https://doi.org/10.3390/su17010208 - 30 Dec 2024
Viewed by 1979
Abstract
The hanging-wall ramps of rift basins are prone to the accumulation of large sedimentary bodies and are potential areas for the presence of large subsurface geological reservoir volumes. This paper comprehensively utilizes data from sedimentology, seismic reflection, geochemistry, and palynology to study the [...] Read more.
The hanging-wall ramps of rift basins are prone to the accumulation of large sedimentary bodies and are potential areas for the presence of large subsurface geological reservoir volumes. This paper comprehensively utilizes data from sedimentology, seismic reflection, geochemistry, and palynology to study the paleotopography, water conditions, paleoclimate, and sediment supply of the fourth member (Mbr 4) of the Shahejie Formation in the Raoyang Sag of the Bohai Bay Basin, China. The sedimentary characteristics, evolution, and preserved stratigraphic architectures of shallow-water deltaic successions are analyzed. Multiple indicators—such as sporopollen, ostracoda, fossil algae, major elements, and trace elements—suggest that when Mbr 4 was deposited, the climate became progressively more humid, and the lake underwent deepening followed by shallowing. During rift expansion, the lake level began to rise with supplied sediment progressively filling available accommodation; sand delivery to the inner delta front was higher than in other parts of the delta, and highly active distributary channels formed a reticular drainage network on the delta plain, which was conducive to the formation of sandstone up-dip pinch-out traps. In the post-rift period, the lake water level dropped, and the rate and volume of sediment supply decreased, leading to the formation of a stable dendritic network of distributary channels. At channel mouths, sediments were easily reworked into sandsheets. The distribution of sandstone and mudstone volumes is characterized by up-dip pinch-out traps and sandstone lens traps. The network of channel body elements of the shallow-water deltaic successions is expected to act as an effective carbon dioxide storage reservoir. This study reveals the influence of multiple factors on the sedimentary characteristics, evolution, and internal network of shallow-water deltas at different stages of rift basin evolution. This knowledge helps improve resource utilization and the sustainable development of comparable subsurface successions. Full article
Show Figures

Figure 1

18 pages, 9075 KB  
Article
Intelligent Methods for Estimating the Flood Susceptibility in the Danube Delta, Romania
by Romulus Costache, Anca Crăciun, Nicu Ciobotaru and Alina Bărbulescu
Water 2024, 16(23), 3511; https://doi.org/10.3390/w16233511 - 6 Dec 2024
Cited by 3 | Viewed by 1473
Abstract
Floods, along with other natural and anthropogenic disasters, profoundly disrupt both society and the environment. Populations residing in deltaic regions worldwide are particularly vulnerable to these threats. A prime example is the Danube Delta (DD), located in the Romanian sector of the Black [...] Read more.
Floods, along with other natural and anthropogenic disasters, profoundly disrupt both society and the environment. Populations residing in deltaic regions worldwide are particularly vulnerable to these threats. A prime example is the Danube Delta (DD), located in the Romanian sector of the Black Sea. This research paper aims to identify areas within the DD that are highly or very highly susceptible to flooding. To accomplish this, we employed a combination of multicriteria decision-making (AHP) and artificial intelligence (AI) techniques, including deep learning neural networks (DLNNs), support vector machines (SVMs), and multilayer perceptron (MLP). The input data comprised previously flooded regions alongside eight geographical factors. All models identified high or very high flood potential of over 65% of the studied area. The models’ performance was assessed using receiver operating characteristic (ROC) analysis, demonstrating excellent outcomes evaluated by the area under the curve (AUC) exceeding 0.908. This study is significant as it lays the groundwork for implementing measures against flood impacts in the DD. Full article
(This article belongs to the Special Issue Climate Change and Hydrological Processes)
Show Figures

Figure 1

24 pages, 10807 KB  
Article
Pollution and Ecological Risk Assessment of Potentially Toxic Elements in Sediments Along the Fluvial-to-Marine Transition Zone of the Don River
by Elizaveta Konstantinova, Tatiana Minkina, Dina Nevidomskaya, Tatiana Bauer, Inna Zamulina, Elizaveta Latsynnik, Tamara Dudnikova, Rajendra Kumar Yadav, Marina Burachevskaya and Saglara Mandzhieva
Water 2024, 16(22), 3200; https://doi.org/10.3390/w16223200 - 7 Nov 2024
Cited by 3 | Viewed by 1998
Abstract
The quality of sediments in the mixing zone of river freshwater and marine saline water as an important geochemical barrier for potentially toxic elements (PTEs) remains poorly understood. This study aims to analyze the current pollution with PTEs and associated ecological risks in [...] Read more.
The quality of sediments in the mixing zone of river freshwater and marine saline water as an important geochemical barrier for potentially toxic elements (PTEs) remains poorly understood. This study aims to analyze the current pollution with PTEs and associated ecological risks in sediments of the Don River delta and the surrounding area of the Taganrog Bay of the Sea of Azov (Russia). The PTE content was determined in fifty-four collected samples using the WDXRF and assessed using geochemical and ecotoxicological indicators. The source of Cr, Mn, Ni and Pb is mainly river runoff, and Cu, Zn and Cd are from a variety of anthropogenic sources. As shown by the assessment of the geoaccumulation index (Igeo), single pollution index (PI) and contamination factor (CF), these elements are the priority pollutants. According to these estimates, high and very high contamination of sediments in the estuarine zone of the Don River with Cd and Pb was detected in 72–94% and 2–57% of samples, respectively. However, environmental risks are determined almost exclusively by the level of Cd. Total contamination as assessed by the Nemerow pollution index (NPI), modified degree of contamination (mCd) and metal pollution index (MPI) is of concern in 83–98% of the samples studied. The most heavily polluted sediments are in the vicinity of residential areas of the Taganrog Bay. Despite the lower average pollution levels of deltaic sediments, freshwater biota are exposed to higher potential toxic risks of adverse effects by PTE, particularly from Ni and Pb. Thus, the complex hydrological regime and uneven anthropogenic impact predetermine the geochemical state of the sediments of the estuarine zone of the Don River. Full article
Show Figures

Figure 1

Back to TopTop