Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (178)

Search Parameters:
Keywords = dehydrogenation and hydrogenation reactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3812 KB  
Article
MnO2-Supported Pd Nanocatalyst for Efficient Electrochemical Reduction of 2,4-Dichlorobenzoic Acid
by Yaxuan Peng and Meiyan Wang
Clean Technol. 2025, 7(4), 102; https://doi.org/10.3390/cleantechnol7040102 - 11 Nov 2025
Abstract
Chlorobenzoic acids (CBAs) are a group of chlorinated persistent environmental pollutants with hard biodegradability, high water solubility, and well-documented carcinogenic and endocrine-disrupting properties. Electrocatalytic hydrodechlorination (ECH) is a highly efficient method under mild conditions without harmful by-products, but the ECH process commonly requires [...] Read more.
Chlorobenzoic acids (CBAs) are a group of chlorinated persistent environmental pollutants with hard biodegradability, high water solubility, and well-documented carcinogenic and endocrine-disrupting properties. Electrocatalytic hydrodechlorination (ECH) is a highly efficient method under mild conditions without harmful by-products, but the ECH process commonly requires adding precious metal catalysts such as palladium (Pd). To address the economic constraints and more effective utilization of Pd, a palladium/manganese dioxide (Pd/MnO2) composite catalyst was developed in this study by chemical deposition. This method utilized the excellent electrochemical activity of MnO2 as a carrier as well as the hydrogen storage and activation capacity of Pd. The test showed the optimal Pd loading was 7.5%, and the removal percent of 2,4-dichlorobenzoic acid (2,4-DCBA), a typical CBA, reached 97.3% using 0.5 g/L of Pd/MnO2 after 120 min of electrochemical reaction. Under these conditions, the dechlorination percent can also be as high as 89.6%. A higher current density enhanced the dechlorination efficiency but showed the lower current utilization efficiency. In practical applications, current density should be minimized on the premise of compliance with the water treatment requirement. Mechanistic studies showed that MnO2 synergistically promoted hydrolysis dissociation and hydrogen spillover and facilitated Pd-mediated adsorption of atomic hydrogen (H*) for dehydrogenation of 2,4-DCBA. The presence of MnO2 can effectively disperse the loaded Pd and reduce the amount of Pd via the above process. The catalyst exhibited excellent stability over multiple cycles, and the 2,4-DCBA removal could still reach more than 80% after the five cycles. This work establishes electrocatalytic strategies for effectively reducing Pd usage and maintaining high removal of typical CBAs to support CBA-related water treatment. Full article
(This article belongs to the Collection Water and Wastewater Treatment Technologies)
Show Figures

Figure 1

13 pages, 1060 KB  
Article
Reaction Mechanisms of Aqueous Methane Reforming by Continuous Flow Two-Phase Plasma Discharge
by Ekow Agyekum-Oduro, Md. Mokter Hossain, Ahmad Mukhtar and Sarah Wu
Catalysts 2025, 15(10), 980; https://doi.org/10.3390/catal15100980 - 14 Oct 2025
Viewed by 603
Abstract
This study explores nonthermal plasma reactions of methane and water in a two-phase system to produce methanol, examining reaction pathways, kinetics, and product distribution over time. The results show that methanol is the dominant liquid phase product among other oxygenates, including ethanol and [...] Read more.
This study explores nonthermal plasma reactions of methane and water in a two-phase system to produce methanol, examining reaction pathways, kinetics, and product distribution over time. The results show that methanol is the dominant liquid phase product among other oxygenates, including ethanol and acetic acid, with hydrogen as the largest fraction among gas-phase products comprising carbon monoxide, carbon dioxide, ethylene, and acetylene. Conductivity and pH trends of reactant water and their influence on reaction products were also analyzed. Methanol was found to be formed principally from the reactive coupling of methyl and hydroxyl radicals, as well as from methoxy and hydrogen radical combinations. Hydrogen was produced from three pathways: stepwise dehydrogenation of methane through electron-mediated hydrogen abstraction, sequential hydrogenation of ethane to acetylene, and water splitting. The methanol-yielding reactions proceeded at different rates in the liquid and gas phases, with gas-phase reactions occurring approximately nine times faster than the liquid-phase reactions. This work provides valuable insights into reaction pathways for direct methane conversion to oxygenates and value-added gas products under mild conditions using water as an environmentally friendly oxidant. Full article
Show Figures

Graphical abstract

24 pages, 1255 KB  
Article
Hydrogenation of Aromatic Ethers and Lactones: Does the Oxygen Functionality Really Improve the Thermodynamics of Reversible Hydrogen Storage in the Related LOHC Systems?
by Riko Siewert, Artemiy A. Samarov, Sergey V. Vostrikov, Karsten Müller, Peter Wasserscheid and Sergey P. Verevkin
Oxygen 2025, 5(3), 18; https://doi.org/10.3390/oxygen5030018 - 30 Aug 2025
Viewed by 761
Abstract
Compounds known as liquid organic hydrogen carriers (LOHCs) offer a promising pathway for storing hydrogen. Beyond the use of pure hydrocarbons, the incorporation of oxygen atoms offers a way to modify thermodynamic properties and potentially improve suitability for hydrogen storage. This study explores [...] Read more.
Compounds known as liquid organic hydrogen carriers (LOHCs) offer a promising pathway for storing hydrogen. Beyond the use of pure hydrocarbons, the incorporation of oxygen atoms offers a way to modify thermodynamic properties and potentially improve suitability for hydrogen storage. This study explores the effect of oxygen functionalization in aromatic ethers and lactones on the reaction equilibrium of reversible hydrogenation. To address this question, reaction enthalpies and entropies are calculated using both experimental and theoretically determined pure substance data. The equilibrium position shift in the hydrogenation of furan derivatives has been shown to follow a similar trend to that of their hydrocarbon counterparts upon the addition of aromatic rings. This shift is, however, more pronounced in the case of the furan-based systems. The effect is reflected in increasing Gibbs reaction energies during the dehydrogenation process. Both the formation of lactones and the addition of a second ring to the furan core leads to a further increase in the Gibbs reaction energy. The highest value is observed for dibenzofuran, with a Gibbs reaction energy of 36.6 kJ∙mol−1 at 500 K. These findings indicate that, from a thermodynamic perspective, hydrogen release is feasible at temperatures below 500 K, which is an important feature for the potential application as a hydrogen storage system. Full article
Show Figures

Figure 1

15 pages, 1687 KB  
Article
Catalytic Role of Nickel in Hydrogen Storage and Release Using Dibenzyltoluene as a Liquid Organic Hydrogen Carrier
by Jesús Rodríguez Ruiz, Nuria García-Mancha, Roberto Campana and Carlos Tardío
Energies 2025, 18(16), 4429; https://doi.org/10.3390/en18164429 - 20 Aug 2025
Viewed by 1147
Abstract
Liquid Organic Hydrogen Carriers (LOHCs) represent a promising technology for the safe storage and transport of hydrogen. Its technical development largely depends on the catalysts used in the hydrogenation and dehydrogenation processes. Typically, noble metal-based monometallic catalysts are employed, although they present limitations [...] Read more.
Liquid Organic Hydrogen Carriers (LOHCs) represent a promising technology for the safe storage and transport of hydrogen. Its technical development largely depends on the catalysts used in the hydrogenation and dehydrogenation processes. Typically, noble metal-based monometallic catalysts are employed, although they present limitations in terms of cost and availability. This study uses the DBT system to explore the potential of nickel (Ni) as a catalytic alternative. In dehydrogenation, its role as an additive in low-loaded Pt-based catalysts (0.25 wt%) was evaluated, showing a significant increase in activity, with dehydrogenation levels exceeding 95%, compared to 82% obtained with monometallic Pt catalysts. This improvement is attributed to the formation of Pt-Ni alloys. On the other hand, although the bimetallic systems were not effective in hydrogenation, a commercial Ni/Al2O3-SiO2 catalyst was tested, achieving hydrogenation degrees of 80% in just 40 min, after pressure and catalyst loading optimization. These results position Ni as a key component in LOHC catalysis, either as an effective additive in Pt-based systems or as an active metal itself, due to its excellent performance and low cost. This paves the way for economically viable and efficient catalytic solutions for hydrogen storage applications, bridging the gap between performance and practicality. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Figure 1

32 pages, 3004 KB  
Review
Research and Application of Ga-Based Liquid Metals in Catalysis
by Yu Zhang, Ying Xin and Qingshan Zhao
Nanomaterials 2025, 15(15), 1176; https://doi.org/10.3390/nano15151176 - 30 Jul 2025
Cited by 1 | Viewed by 1400
Abstract
In recent years, Ga-based liquid metals have emerged as a prominent research focus in catalysis, owing to their unique properties, including fluidity, low melting point, high thermal and electrical conductivity, and tunable surface characteristics. This review summarizes the synthesis strategies for Ga-based liquid [...] Read more.
In recent years, Ga-based liquid metals have emerged as a prominent research focus in catalysis, owing to their unique properties, including fluidity, low melting point, high thermal and electrical conductivity, and tunable surface characteristics. This review summarizes the synthesis strategies for Ga-based liquid metal catalysts, with a focus on recent advances in their applications across electrocatalysis, thermal catalysis, photocatalysis, and related fields. In electrocatalysis, these catalysts exhibit potential for reactions such as electrocatalytic CO2 reduction, electrocatalytic ammonia synthesis, electrocatalytic hydrogen production, and the electrocatalytic oxidation of alcohols. As to thermal catalysis, these catalysts are employed in processes such as alkane dehydrogenation, selective hydrogenation, thermocatalytic CO2 reduction, thermocatalytic ammonia synthesis, and thermocatalytic plastic degradation. In photocatalysis, they can be used in other photocatalytic reactions such as organic matter degradation and overall water splitting. Furthermore, Ga-based liquid metal catalysts also exhibit distinct advantages in catalytic reactions within battery systems and mechano-driven catalysis, offering innovative concepts and technical pathways for developing novel catalytic systems. Finally, this review discusses the current challenges and future prospects in Ga-based liquid metal catalysis. Full article
Show Figures

Figure 1

21 pages, 601 KB  
Article
Cladolosides of Groups S and T: Triterpene Glycosides from the Sea Cucumber Cladolabes schmeltzii with Unique Sulfation; Human Breast Cancer Cytotoxicity and QSAR
by Alexandra S. Silchenko, Elena A. Zelepuga, Ekaterina A. Chingizova, Ekaterina S. Menchinskaya, Kseniya M. Tabakmakher, Anatoly I. Kalinovsky, Sergey A. Avilov, Roman S. Popov, Pavel S. Dmitrenok and Vladimir I. Kalinin
Mar. Drugs 2025, 23(7), 265; https://doi.org/10.3390/md23070265 - 25 Jun 2025
Cited by 1 | Viewed by 1033
Abstract
Four new minor monosulfated triterpene penta- and hexaosides, cladolosides S (1), S1 (2), T (3), and T1 (4), were isolated from the Vietnamese sea cucumber Cladolabes schmeltzii (Sclerodactylidae, Dendrochirotida). The structures of the [...] Read more.
Four new minor monosulfated triterpene penta- and hexaosides, cladolosides S (1), S1 (2), T (3), and T1 (4), were isolated from the Vietnamese sea cucumber Cladolabes schmeltzii (Sclerodactylidae, Dendrochirotida). The structures of the compounds were established based on extensive analysis of 1D and 2D NMR spectra as well as HR-ESI-MS data. Cladodosides S (1), S1 (2) and T (3), T1 (4) are two pairs of dehydrogenated/hydrogenated compounds that share identical carbohydrate chains. The oligosaccharide chain of cladolosides of the group S is new for the sea cucumber glycosides due to the presence of xylose residue attached to C-4 Xyl1 in combination with a sulfate group at C-6 MeGlc4. The oligosaccharide moiety of cladolosides of the group T is unique because of the position of the sulfate group at C-3 of the terminal sugar residue instead of the 3-O-Me group. This suggests that the enzymatic processes of sulfation and O-methylation that occur during the biosynthesis of glycosides can compete with each other. This can presumably occur due to the high level of expression or activity of the enzymes that biosynthesize glycosides. The mosaicism of glycoside biosynthesis (time shifting or dropping out of some biosynthetic stages) may indicate a lack of compartmentalization inside the cells of organism producers, leading to a certain degree of randomness in enzymatic reactions; however, this also offers the advantage of providing chemical diversity of the glycosides. Analysis of the hemolytic activity of a series of 26 glycosides from C. schmeltzii revealed some patterns of structure–activity relationships: the presence or absence of 3-O-methyl groups has no significant impact, hexaosides, which are the final products of biosynthesis and predominant compounds of the glycosidic fraction of C. schmeltzii, are more active than their precursors, pentaosides, and the minor tetraosides, cladolosides of the group A, are weak membranolytics and therefore are not synthesized in large quantities. Two glycosides from C. schmeltzii, cladolosides D (18) and H1 (26), display selectivity of cytotoxic action toward triple-negative breast cancer cells MDA-MB-231, while remaining non-toxic in relation to normal mammary cells MCF-10A. Quantitative structure–activity relationships (QSAR) were calculated based on the correlational analysis of the physicochemical properties and structural features of the glycosides and their hemolytic and cytotoxic activities against healthy MCF-10A cells and cancer MCF-7 and MDA-MB-231 cell lines. QSAR highlighted the complexity of the relationships as the cumulative effect of many minor contributions from individual descriptors can have a significant impact. Furthermore, many structural elements were found to have different effects on the activity of the glycosides against different cell lines. The opposing effects were especially pronounced in relation to hormone-dependent breast cancer cells MCF-7 and triple-negative MDA-MB-231 cells. Full article
(This article belongs to the Special Issue Novel Biomaterials and Active Compounds from Sea Cucumbers)
Show Figures

Graphical abstract

19 pages, 6947 KB  
Article
Simulation of the Pyrolysis Process of Cyclohexane-Containing Semi-Aromatic Polyamide Based on ReaxFF-MD
by Xiaotong Zhang, Yuanbo Zheng, Qian Zhang, Kai Wu, Qinwei Yu and Jianming Yang
Polymers 2025, 17(12), 1593; https://doi.org/10.3390/polym17121593 - 6 Jun 2025
Cited by 1 | Viewed by 1347
Abstract
Cyclohexane-containing semi-aromatic polyamides (c-SaPA) exhibit excellent comprehensive properties. Existing studies predominantly focus on synthesis and modification, while fundamental investigations into pyrolysis mechanisms remain limited, which restricts the development of advanced materials for high-performance applications such as automotive and energy systems. This study employs [...] Read more.
Cyclohexane-containing semi-aromatic polyamides (c-SaPA) exhibit excellent comprehensive properties. Existing studies predominantly focus on synthesis and modification, while fundamental investigations into pyrolysis mechanisms remain limited, which restricts the development of advanced materials for high-performance applications such as automotive and energy systems. This study employs Reactive Force Field Molecular Dynamics (ReaxFF-MD) simulations to establish a pyrolysis model for poly(terephthaloyl-hexahydro-m-xylylenediamine) (PHXDT), systematically probing its pyrolysis kinetics and evolutionary pathways under elevated temperatures. The simulation results reveal an activation energy of 107.55 kJ/mol and a pre-exponential factor of 9.64 × 1013 s−1 for the pyrolysis process. The primary decomposition pathway involves three distinct stages. The first is initial backbone scission generating macromolecular fragments, followed by secondary fragmentation that preferentially occurs at short-chain hydrocarbon formation sites alongside radical recombination. Ultimately, the process progresses to deep dehydrogenation, carbonization, and heteroatom elimination through sequential reaction steps. Mechanistic analysis identifies multi-pathway pyrolysis involving carboxyl/amide bond cleavage and radical-mediated transformations (N-C-O, C-C-O, OH· and H·), yielding primary products including H2, CO, H2O, CH3N, C2H2, and C2H4. Crucially, the cyclohexane structure demonstrates preferential participation in dehydrogenation and hydrogen transfer reactions due to its conformational dynamic instability and low bond dissociation energy, significantly accelerating the rapid generation of small molecules like H2. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

32 pages, 7008 KB  
Article
Revealing the Roles of Heat Transfer, Thermal Dynamics, and Reaction Kinetics in Hydrogenation/Dehydrogenation Processes for Mg-Based Metal Hydride Hydrogen Storage
by Zhiqian Li, Min Zhang and Huijin Xu
Energies 2025, 18(11), 2924; https://doi.org/10.3390/en18112924 - 4 Jun 2025
Viewed by 1125
Abstract
Hydrogen is critical for achieving carbon neutrality as a clean energy source. However, its low ambient energy density poses challenges for storage, making efficient and safe hydrogen storage a bottleneck. Metal hydride-based solid-state hydrogen storage has emerged as a promising solution due to [...] Read more.
Hydrogen is critical for achieving carbon neutrality as a clean energy source. However, its low ambient energy density poses challenges for storage, making efficient and safe hydrogen storage a bottleneck. Metal hydride-based solid-state hydrogen storage has emerged as a promising solution due to its high energy density, low operating pressure, and safety. In this work, the thermodynamic and kinetic characteristics of the hydrogenation and dehydrogenation processes are investigated and analyzed in detail, and the effects of initial conditions on the thermochemical hydrogen storage reactor are discussed. Multiphysics field modeling of the magnesium-based hydrogen storage tank was conducted to analyze the reaction processes. Distributions of temperature and reaction rate in the reactor and temperature and pressure during the hydrogen loading process were discussed. Radially, wall-adjacent regions rapidly dissipate heat with short reaction times, while the central area warms into a thermal plateau. Inward cooling propagation shortens the plateau, homogenizing temperatures—reflecting inward-to-outward thermal diffusion and exothermic attenuation, alongside a reaction rate peak migrating from edge to center. Axially, initial uniformity transitions to bottom-up thermal expansion after 60 min, with sustained high top temperatures showing nonlinear decay under t = 20 min intervals, where cooling rates monotonically accelerate. The greater the hydrogen pressure, the shorter the period of the temperature rise and the steeper the curve, while lower initial temperatures preserve local maxima but shorten plateaus and cooling time via enhanced thermal gradients. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Graphical abstract

12 pages, 1594 KB  
Communication
Theoretical Insights into Hydrogen Production from Formic Acid Catalyzed by Pt-Group Single-Atom Catalysts
by Tao Jin, Sen Liang, Jiahao Zhang, Yaru Li, Yukun Bai, Hangjin Wu, Ihar Razanau, Kunming Pan and Fang Wang
Materials 2025, 18(10), 2328; https://doi.org/10.3390/ma18102328 - 16 May 2025
Viewed by 811
Abstract
The rational development of single-atom catalysts (SACs) for selective formic acid dehydrogenation (FAD) requires an atomic-scale understanding of metal–support interactions and electronic modulation. In this study, spin-polarized density functional theory (DFT) calculations were performed to systematically examine platinum-group SACs anchored on graphitic carbon [...] Read more.
The rational development of single-atom catalysts (SACs) for selective formic acid dehydrogenation (FAD) requires an atomic-scale understanding of metal–support interactions and electronic modulation. In this study, spin-polarized density functional theory (DFT) calculations were performed to systematically examine platinum-group SACs anchored on graphitic carbon nitride (g-C3N4). The findings reveal that Pd and Au SACs exhibit superior selectivity toward the dehydrogenation pathway, lowering the free energy barrier by 1.42 eV and 1.39 eV, respectively, compared to the competing dehydration route. Conversely, Rh SACs demonstrate limited selectivity due to nearly equivalent energy barriers for both reaction pathways. Stability assessments indicate robust metal–support interactions driven by d–p orbital hybridization, while a linear correlation is established between the d-band center position relative to the Fermi level and catalytic selectivity. Additionally, charge transfer (ranging from 0.029 to 0.467 e) substantially modulates the electronic structure of the active sites. These insights define a key electronic descriptor for SAC design and offer a mechanistic framework for optimizing selective hydrogen production. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

23 pages, 12241 KB  
Article
Biodiesel Isomerization Using Sulfated Tin(IV) Oxide as a Superacid Catalyst to Improve Cold Flow Properties
by Yano Surya Pradana, I Gusti Bagus Ngurah Makertihartha, Tirto Prakoso, Tatang Hernas Soerawidjaja and Antonius Indarto
Technologies 2025, 13(5), 203; https://doi.org/10.3390/technologies13050203 - 16 May 2025
Cited by 1 | Viewed by 884
Abstract
The development of alternative energies has become a concern for all countries to ensure domestic energy supply and provide environmental friendliness. One of the providential alternative energies is biodiesel. Biodiesel, commonly stated as fatty acid alkyl ester (FAAE), is a liquid fuel intended [...] Read more.
The development of alternative energies has become a concern for all countries to ensure domestic energy supply and provide environmental friendliness. One of the providential alternative energies is biodiesel. Biodiesel, commonly stated as fatty acid alkyl ester (FAAE), is a liquid fuel intended to substitute petroleum diesel. Nevertheless, implementation of pure biodiesel is not recommended for conventional diesel engines. It holds poor values of cold flow properties, as the effect of high saturated FAAE content contributes to this constraint. Several processes have been proposed to enhance cold flow properties of biodiesel, but this work focuses on the skeletal isomerization process. This process rearranges the skeletal carbon chain of straight-chain FAAE into branched isomeric products to lower the melting point, related to the good cold flow behavior. This method specifically requires an acid catalyst to elevate the isomerization reaction rate. And then, sulfated tin(IV) oxide emerged as a solid superacid catalyst due to its superiority in acidity. The results of biodiesel isomerization over this catalyst and its modification with iron had not satisfied the expectation of high isomerization yield and significant CFP improvement. However, they emphasized that the skeletal isomers demonstrated minimum impact on biodiesel oxidation stability. They also affirmed the role of an acid catalyst in the reaction mechanism in terms of protonation, isomerization, and deprotonation. Furthermore, the metal promotion was theoretically necessary to boost the catalytic activity of this material. It initiated the dehydrogenation of linear hydrocarbon before protonation and terminated the isomerization by hydrogenating the branched carbon chain after deprotonation. Finally, the overall findings indicated promising prospects for further enhancement of catalyst performance and reusability. Full article
(This article belongs to the Topic Advances in Green Energy and Energy Derivatives)
Show Figures

Graphical abstract

21 pages, 2917 KB  
Article
Biodiesel Stability Enhancement Through Catalytic Transfer Hydrogenation Using Glycerol as Hydrogen Donor
by Graecia Lugito, Andreas Yulius Pamungkas, Muhammad Naufaal Daffa Realdi, Alif Kembara Alam, Candra Egiyawati, Yano Surya Pradana, Tri Partono Adhi, Tatang Hernas Soerawidjaja, I Gusti Bagus Ngurah Makertihartha, Wan Hanna Melini Wan Mohtar, Irwan Kurnia and Antonius Indarto
Eng 2025, 6(5), 94; https://doi.org/10.3390/eng6050094 - 6 May 2025
Cited by 3 | Viewed by 2599
Abstract
This research aimed to enhance biodiesel stability through catalytic transfer hydrogenation using a biomimetic bimetallic catalyst and glycerol as a hydrogen donor. The effects of catalyst species, intermediate solvent, glycerol feed, and glycerol form on biodiesel stability were investigated. In this study, the [...] Read more.
This research aimed to enhance biodiesel stability through catalytic transfer hydrogenation using a biomimetic bimetallic catalyst and glycerol as a hydrogen donor. The effects of catalyst species, intermediate solvent, glycerol feed, and glycerol form on biodiesel stability were investigated. In this study, the examined bimetallic catalysts were Zn-Cr-bicarbonate, Zn-Cr-formate, Zn-Cr-Ni, and Cu-Ni/SiO2. Based on the results, the most excellent catalyst was presented by Cu-Ni/SiO2 catalyst with DMF solvent and 10 wt% glycerol feed. This combination demonstrated a significant reduction in iodine (ΔIV = −4.9 g-I2/100 g) and peroxide values (ΔPV = −5.2 meq-O2/kg) accompanied by an elevation of oxidative stability (ΔOS = 4.3 h). Moreover, the reaction of catalytic transfer hydrogenation using these bimetallic catalysts followed the theoretical mechanism of the simultaneous dehydrogenation–hydrogenation process with two different metals. The promotion of bicarbonate and formate ions on the bimetallic catalyst provided hydrogen transfer assistance in the catalyst. Hence, the continuous improvement of biodiesel properties is expected to promote sustainable implementation of cleaner diesel fuel. Full article
(This article belongs to the Special Issue Advances in Decarbonisation Technologies for Industrial Processes)
Show Figures

Figure 1

21 pages, 9608 KB  
Article
Impact of K on the Basicity and Selectivity of Pt/m-ZrO2 Catalysts for Methanol Steam Reforming with co-fed H2
by Braedon McFee, Michela Martinelli, Dali Qian, Phoenix Macfarlane, Fernanda Perez Marin and Gary Jacobs
Catalysts 2025, 15(5), 435; https://doi.org/10.3390/catal15050435 - 29 Apr 2025
Cited by 1 | Viewed by 831
Abstract
This study investigates the effect of potassium (K) promotion on Pt/m-ZrO2 catalysts in methanol steam reforming (MSR), revealing critical insights into reaction pathways and catalyst performance. While increasing K loading reduces catalytic activity, it selectively enhances the hydrogen-producing formate dehydrogenation and de-carboxylation [...] Read more.
This study investigates the effect of potassium (K) promotion on Pt/m-ZrO2 catalysts in methanol steam reforming (MSR), revealing critical insights into reaction pathways and catalyst performance. While increasing K loading reduces catalytic activity, it selectively enhances the hydrogen-producing formate dehydrogenation and de-carboxylation pathway. Structural analyses using HR-TEM and DRIFTS show that higher K concentrations block Pt sites and promote agglomeration, reshaping catalytic behavior. Notably, the 3.1% K-promoted catalyst achieves high stability at 358 °C, with a CO2 selectivity exceeding 80% and minimal methane formation, outperforming the unpromoted catalyst in terms of CO and CH4 selectivity. Temperature studies further demonstrate reduced CO selectivity at higher temperatures, highlighting distinct advantages of K-doped catalysts. These findings underscore the role of K in enhancing surface basicity and its impact on formate interaction, offering valuable insights for optimizing MSR catalysts and advancing hydrogen production technologies. Full article
(This article belongs to the Special Issue Catalytic Processes for Green Hydrogen Production)
Show Figures

Figure 1

19 pages, 6324 KB  
Article
Computational Study on the Pd-Catalyzed Pathway for the Formation of (R)-Methyl-(2-Hydroxy-1-Phenylethyl)Carbamate
by Silvia González, Consuelo Mendoza Herrera, Lydia María Pérez Díaz, Laura Orea Flores, José Antonio Rivera Márquez and Ximena Jaramillo-Fierro
Molecules 2025, 30(8), 1781; https://doi.org/10.3390/molecules30081781 - 16 Apr 2025
Viewed by 1839
Abstract
The formation of (R)-methyl-(2-hydroxy-1-phenylethyl)carbamate through Pd(PPh3)4-catalyzed synthesis was investigated using computational methods to elucidate the reaction pathway and energetic feasibility. Density functional theory (DFT) calculations confirmed that the direct reaction between (R)-(-)-2-phenylglycinol and methyl chloroformate [...] Read more.
The formation of (R)-methyl-(2-hydroxy-1-phenylethyl)carbamate through Pd(PPh3)4-catalyzed synthesis was investigated using computational methods to elucidate the reaction pathway and energetic feasibility. Density functional theory (DFT) calculations confirmed that the direct reaction between (R)-(-)-2-phenylglycinol and methyl chloroformate is not spontaneous, requiring a catalyst to proceed efficiently. The study proposes a detailed mechanistic pathway involving ligand dissociation, intermediate formation, and hydrogenation. The role of Pd(PPh3)4 was examined, demonstrating its ability to stabilize reaction intermediates and facilitate key transformations, such as dehydrogenation and chlorine elimination. Two reaction pathways were identified, with Pathway 1 exhibiting a net energy of –84.7 kcal/mol and Pathway 2 showing an initial positive energy of 90.1 kcal/mol. However, the regeneration of key intermediates in Pathway 2 ultimately reduces the total reaction energy to –238.7 kcal/mol, confirming the feasibility of both routes. Computational results align with experimental NMR data, supporting the formation of the proposed intermediates. These findings provide valuable insights into catalyst optimization, suggesting that ligand modifications or alternative palladium-based catalysts could enhance efficiency. This study advances the understanding of Pd-catalyzed carbamate synthesis and offers a basis for future experimental and computational investigations. Full article
Show Figures

Figure 1

10 pages, 1757 KB  
Article
Ab Initio MD Study of the Mechanism of Carbonization of Si(001) Surfaces with Methane at High Temperatures
by Dobromir A. Kalchevski, Dimitar V. Trifonov, Stefan K. Kolev, Hristiyan A. Aleksandrov, Dimitar A. Dimov, Valentin N. Popov and Teodor I. Milenov
Coatings 2025, 15(4), 427; https://doi.org/10.3390/coatings15040427 - 4 Apr 2025
Cited by 1 | Viewed by 759
Abstract
This study employs ab initio metadynamics to simulate the carbonization of Si(001) surfaces with chemical vapor deposition at a temperature of 1423 K. We reveal the complete reaction mechanism, including the beginning of silicon carbide crystal formation. The existence of surficial native oxide [...] Read more.
This study employs ab initio metadynamics to simulate the carbonization of Si(001) surfaces with chemical vapor deposition at a temperature of 1423 K. We reveal the complete reaction mechanism, including the beginning of silicon carbide crystal formation. The existence of surficial native oxide is incorporated into the theoretical model. The mechanism determination includes clarification of all intermediate products and transition states. The free-energy surface of the reaction chain has been found. Carbonization initiates with alkylated surface products and continues with consecutive dehydrogenation steps. Carbon is integrated in the volume, near the crystal surface, only if no covalent interactions with hydrogen atoms remain. The native oxide was not found to prohibit the process of carbonization. The oxygen atoms have certain surface mobility at high temperatures. It was revealed that hypervalency of carbon atoms is possible in transition state structures. The theoretical activation free energy of the rate-determining step was found to be only 166 kJ/mol. This work sheds light on the advantage of the practical use of Si(001) substrates for the synthesis of silicon carbide and Si-O-C glasses using direct carbonization via chemical vapor deposition. We also aim to enable more methodical designs of future synthetic routes and better-informed decisions for experimental investigations. Full article
Show Figures

Graphical abstract

17 pages, 2725 KB  
Article
Butanol Production by Ethanol Condensation: Improvements and Limitations in the Rational Design of Cu-Ni-MgO/Graphite Catalysts
by Inmaculada Rodríguez-Ramos, Cristina Lopez-Olmos and Antonio Guerrero-Ruiz
Catalysts 2025, 15(3), 272; https://doi.org/10.3390/catal15030272 - 13 Mar 2025
Viewed by 1239
Abstract
The advancement in catalytic processes utilizing sustainable raw materials, such as bioethanol, represents a key scientific challenge in this century. One potential approach to producing 1-butanol, a compound primarily obtained from petroleum-derived sources, is through the Guerbet reaction. For this transformation, various multifunctional [...] Read more.
The advancement in catalytic processes utilizing sustainable raw materials, such as bioethanol, represents a key scientific challenge in this century. One potential approach to producing 1-butanol, a compound primarily obtained from petroleum-derived sources, is through the Guerbet reaction. For this transformation, various multifunctional catalysts have been explored, some of which incorporate Cu and/or Ni nanoparticles that facilitate hydrogenation and dehydrogenation reactions, along with magnesium oxide, which provides the necessary acid/base functionality. To promote nanoparticle formation and maximize the exposed active surface area, high-surface-area graphite (HSAG), a hydrophobic and inert support material, emerges as a promising candidate. In this study, different catalyst formulations containing these components were tested under moderate reaction conditions, at temperatures between 440 and 580 K and a pressure of 50 bar. A strong correlation was observed between butanol selectivity and the presence of medium–high strength basic sites, complemented by moderate acidity. Furthermore, optimizing the copper and nickel loadings to 4 wt.% Cu and 1 wt.% Ni significantly minimized the formation of unwanted byproducts. The highest butanol selectivity (44%) was achieved using a 4Cu1Ni-Mg/HSAG catalyst, which had been pretreated in helium at 723 K before H2 reduction, yielding approximately 9% 1-butanol. Full article
(This article belongs to the Special Issue Carbon-Based Catalysts to Address Environmental Challenges)
Show Figures

Graphical abstract

Back to TopTop