Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = deglaciation time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6883 KiB  
Review
An Overview of the Indian Monsoon Using Micropaleontological, Geochemical, and Artificial Neural Network (ANN) Proxies During the Late Quaternary
by Harunur Rashid, Xiaohui He, Yang Wang, C. K. Shum and Min Zeng
Geosciences 2025, 15(7), 241; https://doi.org/10.3390/geosciences15070241 - 24 Jun 2025
Viewed by 365
Abstract
Atmospheric pressure gradients determine the dynamics of the southwest monsoon (SWM) and northeast monsoon (NEM), resulting in rainfall in the Indian subcontinent. Consequently, the surface salinity, mixed layer, and thermocline are impacted by the seasonal freshwater outflow and direct rainfall. Moreover, seasonally reversing [...] Read more.
Atmospheric pressure gradients determine the dynamics of the southwest monsoon (SWM) and northeast monsoon (NEM), resulting in rainfall in the Indian subcontinent. Consequently, the surface salinity, mixed layer, and thermocline are impacted by the seasonal freshwater outflow and direct rainfall. Moreover, seasonally reversing monsoon gyre and associated currents govern the northern Indian Ocean surface oceanography. This study provides an overview of the impact of these dynamic changes on sea surface temperature, salinity, and productivity by integrating more than 3000 planktonic foraminiferal censuses and bulk sediment geochemical data from sediment core tops, plankton tows, and nets between 25° N and 10° S and 40° E and 110° E of the past six decades. These data were used to construct spatial maps of the five most dominant planktonic foraminifers and illuminate their underlying environmental factors. Moreover, the cured foraminiferal censuses and the modern oceanographic data were used to test the newly developed artificial neural network (ANN) algorithm to calculate the relationship with modern water column temperatures (WCTs). Furthermore, the tested relationship between the ANN derived models was applied to two foraminiferal censuses from the northern Bay of Bengal core MGS29-GC02 (13°31′59″ N; 91°48′21″ E) and the southern Bay of Bengal Ocean Drilling Program (ODP) Site 758 (5°23.05′ N; 90°21.67′ E) to reconstruct the WCTs of the past 890 ka. The reconstructed WCTs at the 10 m water depth of core GC02 suggest dramatic changes in the sea surface during the deglacial periods (i.e., Bolling–Allerǿd and Younger Dryas) compared to the Holocene. The WCTs at Site 758 indicate a shift in the mixed-layer summer temperature during the past 890 ka at the ODP Site, in which the post-Mid-Brunhes period (at 425 ka) was overall warmer than during the prior time. However, the regional alkenone-derived sea-surface temperatures (SSTs) do not show such a shift in the mixed layer. Therefore, this study hypothesizes that the divergence in regional SSTs is most likely due to differences in seasonality and depth habitats in the paleo-proxies. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

22 pages, 5761 KiB  
Article
Topography and Substrate Lithology Control the Position of Fluvial Channels on a Drained Lake Floor, the Case of the Postglacial Ain Valley (Eastern France)
by Cornelis Kasse and Oeki Verhage
Quaternary 2025, 8(2), 29; https://doi.org/10.3390/quat8020029 - 6 Jun 2025
Viewed by 658
Abstract
The development of fluvial systems over long time scales is a complex interplay of tectonic, climatic, and lithological factors. The initiation and location of fluvial channels in the landscape is less well understood. Recently exposed surfaces provide opportunities to determine factors controlling fluvial [...] Read more.
The development of fluvial systems over long time scales is a complex interplay of tectonic, climatic, and lithological factors. The initiation and location of fluvial channels in the landscape is less well understood. Recently exposed surfaces provide opportunities to determine factors controlling fluvial channel initiation. During the Würm Last Glacial Maximum (c. 20 ka), the Ain valley in eastern France transformed into a large proglacial lake. Following deglaciation, new drainage channels initiated on the drained lake floor. Extensive morphological and sedimentological mapping and lithogenetic interpretation of the valley fill enable to determine the forcing factors of fluvial channel initiation. The location of the postglacial channels is determined by the initial topography of the lake floor and lithological variability of the sediments. Tributary channels of the Ain preferentially initiated in depressions of gently sloping former delta bottomsets, which prograded from different directions. In addition, the location of channels is determined by the presence of low-permeability, glacio-lacustrine deposits, that favored overland flow and erosion, compared to the highly permeable terrace deposits on the former lake floor. The differences in erodibility of the fine-grained and coarse-grained deposits resulted in relief inversion. Full article
Show Figures

Figure 1

19 pages, 15754 KiB  
Article
Time Lag Analysis of Atmospheric CO2 and Proxy-Based Climate Stacks on Global–Hemispheric Scales in the Last Deglaciation
by Zhi Liu and Xingxing Liu
Quaternary 2025, 8(1), 11; https://doi.org/10.3390/quat8010011 - 18 Feb 2025
Viewed by 1095
Abstract
Based on 88 well-dated and high-resolution paleoclimate records, global and hemispheric stacks of the last deglacial climate were synthesized by utilizing the normalized average method. A sequential relationship between the West Antarctic Ice Sheet Divide ice core CO2 concentration and the composited [...] Read more.
Based on 88 well-dated and high-resolution paleoclimate records, global and hemispheric stacks of the last deglacial climate were synthesized by utilizing the normalized average method. A sequential relationship between the West Antarctic Ice Sheet Divide ice core CO2 concentration and the composited proxy-based global–hemispheric climate stacks was detected using the Wilcoxon rank-sum test and wavelet analysis. The results indicate that the climate stack of the Northern Hemisphere started to increase slowly before 22 kabp, possibly due to the enhancement of summer insolation at high northern latitudes, the onset of warming in the Southern Hemisphere occurred around 19 kabp, and the atmospheric CO2 concentration began to raise around 18.1 kabp. This suggests that the change in northern high-latitude summer insolation was the initial trigger of the last deglaciation, and atmospheric CO2 concentration was an internal feedback associated with global ocean circulation in the Earth’s system. Both the Wilcoxon rank-sum test and wavelet analysis showed that during the BØlling–AllerØd and the Younger Dryas periods there was no obvious asynchrony between the global climate and atmospheric CO2 concentration, which perhaps implies a fast feedback–response mechanism. The seesawing changes in interhemispheric climate and the abrupt variations in the atmospheric CO2 concentration could be explained by the influences of Atlantic meridional overturning circulation strength during the BØlling–AllerØd and the Younger Dryas periods. This reveals that Atlantic meridional overturning circulation played an important role in the course of the last deglaciation. Full article
Show Figures

Figure 1

17 pages, 3199 KiB  
Article
NDVI Analysis for Monitoring Land-Cover Evolution on Selected Deglaciated Areas in the Gran Paradiso Group (Italian Western Alps)
by Simona Gennaro, Riccardo Cerrato, Maria Cristina Salvatore, Roberto Salzano, Rosamaria Salvatori and Carlo Baroni
Remote Sens. 2023, 15(15), 3847; https://doi.org/10.3390/rs15153847 - 2 Aug 2023
Cited by 2 | Viewed by 2724
Abstract
The ongoing climate warming is affecting high-elevation areas, reducing the extent and the duration of glacier and snow covers, driving a widespread greening effect on the Alpine region. The impact assessment requires therefore the integration of the geomorphological context with altitudinal and ecological [...] Read more.
The ongoing climate warming is affecting high-elevation areas, reducing the extent and the duration of glacier and snow covers, driving a widespread greening effect on the Alpine region. The impact assessment requires therefore the integration of the geomorphological context with altitudinal and ecological features of the study areas. The proposed approach introduces chronologically-constrained zones as geomorphological evidence for selecting deglaciated areas in the alpine and non-alpine belts. In the present study, the protected and low-anthropic-impacted areas of the Gran Paradiso Group (Italian Western Alps) were analysed using Landsat NDVI time series (1984–2022 CE). The obtained results highlighted a progressive greening even at a higher altitude, albeit not ubiquitous. The detected NDVI trends showed, moreover, how the local factors trigger the greening in low-elevation areas. Spectral reflectance showed a general decrease over time, evidencing the progressive colonisation of recently deglaciated surfaces. The results improved the discrimination between different greening rates in the deglaciated areas of the Alpine regions. The geomorphological-driven approach showed significant potential to support the comprehension of these processes, especially for fast-changing areas such as the high mountain regions. Full article
(This article belongs to the Special Issue New Insights in Remote Sensing of Snow and Glaciers)
Show Figures

Figure 1

7 pages, 1697 KiB  
Proceeding Paper
The Association of Antarctic Sea Ice with the Subantarctic Mode and Antarctic Intermediate Waters during the Last Deglaciation
by Gagan Mandal, Shih-Yu Lee and Jia-Yuh Yu
Proceedings 2023, 87(1), 38; https://doi.org/10.3390/IECG2022-14816 - 21 Jul 2023
Viewed by 950
Abstract
The Southern Ocean waters exchange freshwater, nutrients, carbon, heat, and salt to the Equator and influence the global carbon budget. Therefore, it is essential to understand the variations in Southern Ocean circulation during the last deglacial period to comprehend its changes with climate [...] Read more.
The Southern Ocean waters exchange freshwater, nutrients, carbon, heat, and salt to the Equator and influence the global carbon budget. Therefore, it is essential to understand the variations in Southern Ocean circulation during the last deglacial period to comprehend its changes with climate change. To understand the spread of the Southern Ocean Antarctic Intermediate and Subantarctic Mode Waters during the last deglaciation (from about 19 to 11 thousand years before the present (kyr BP)), this modeling study employs a synchronously coupled general circulation model. The results show that the Southern Hemisphere’s low-level winds overlap with the zone of maximum mixed layer depth, signifying the influence of westerlies in the Southern Ocean waters. The results also indicate that the Southern Ocean Antarctic Intermediate and Subantarctic Mode Waters are fresher, warmer, and about 2.4 times deeper during the early Holocene compared to Heinrich-1. The model simulated the Antarctic sea ice edge (grid points in the ice model have a sea ice concentration above ten percent) overlapping with the poleward edge of the Antarctic Intermediate Waters, and the Southern Ocean mixed layers. Additionally, the simulated quasi-permanent Antarctic sea ice edge (grid points in the ice model have a sea ice concentration above eighty percent) and the surface distribution of Antarctic Intermediate and Subantarctic Mode Waters shifted poleward by about 5° and 10°, respectively, during the early Holocene compared to the Heinrich-1. Therefore, this study highlights a close linkage between the Southern Ocean Antarctic Intermediate and Subantarctic Mode Waters with the Antarctic sea ice distribution throughout the last deglacial period. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Geosciences)
Show Figures

Figure 1

17 pages, 12700 KiB  
Article
In Situ Cosmogenic 10Be Dating of Laurentide Ice Sheet Retreat from Central New England, USA
by Jason S. Drebber, Christopher T. Halsted, Lee B. Corbett, Paul R. Bierman and Marc W. Caffee
Geosciences 2023, 13(7), 213; https://doi.org/10.3390/geosciences13070213 - 15 Jul 2023
Cited by 3 | Viewed by 3274
Abstract
Constraining the timing and rate of Laurentide Ice Sheet (LIS) retreat through the northeastern United States is important for understanding the co-evolution of complex climatic and glaciologic events that characterized the end of the Pleistocene epoch. However, no in situ cosmogenic 10Be [...] Read more.
Constraining the timing and rate of Laurentide Ice Sheet (LIS) retreat through the northeastern United States is important for understanding the co-evolution of complex climatic and glaciologic events that characterized the end of the Pleistocene epoch. However, no in situ cosmogenic 10Be exposure age estimates for LIS retreat exist through large parts of Connecticut or Massachusetts. Due to the large disagreement between radiocarbon and 10Be ages constraining LIS retreat at the maximum southern margin and the paucity of data in central New England, the timing of LIS retreat through this region is uncertain. Here, we date LIS retreat through south-central New England using 14 new in situ cosmogenic 10Be exposure ages measured in samples collected from bedrock and boulders. Our results suggest ice retreated entirely from Connecticut by 18.3 ± 0.3 ka (n = 3). In Massachusetts, exposure ages from similar latitudes suggest ice may have occupied the Hudson River Valley up to 2 kyr longer (15.2 ± 0.3 ka, average, n = 2) than the Connecticut River Valley (17.4 ± 1.0 ka, average, n = 5). We use these new ages to provide insight about LIS retreat timing during the early deglacial period and to explore the mismatch between radiocarbon and cosmogenic deglacial age chronologies in this region. Full article
Show Figures

Figure 1

21 pages, 4991 KiB  
Article
Metabarcoding of Antarctic Lichens from Areas with Different Deglaciation Times Reveals a High Diversity of Lichen-Associated Communities
by Andreas Beck, Angélica Casanova-Katny and Julia Gerasimova
Genes 2023, 14(5), 1019; https://doi.org/10.3390/genes14051019 - 29 Apr 2023
Cited by 5 | Viewed by 3114
Abstract
Lichens have developed numerous adaptations to optimise their survival under harsh abiotic stress, colonise different substrates, and reach substantial population sizes and high coverage in ice-free Antarctic areas, benefiting from a symbiotic lifestyle. As lichen thalli represent consortia with an unknown number of [...] Read more.
Lichens have developed numerous adaptations to optimise their survival under harsh abiotic stress, colonise different substrates, and reach substantial population sizes and high coverage in ice-free Antarctic areas, benefiting from a symbiotic lifestyle. As lichen thalli represent consortia with an unknown number of participants, it is important to know about the accessory organisms and their relationships with various environmental conditions. To this end, we analysed lichen-associated communities from Himantormia lugubris, Placopsis antarctica, P. contortuplicata, and Ramalina terebrata, collected from soils with differing deglaciation times, using a metabarcoding approach. In general, many more Ascomycete taxa are associated with the investigated lichens compared to Basidiomycota. Given our sampling, a consistently higher number of lichen-associated eukaryotes are estimated to be present in areas with deglaciation times of longer than 5000 years compared to more recently deglaciated areas. Thus far, members of Dothideomycetes, Leotiomycetes, and Arthoniomycetes have been restricted to the Placopsis specimens from areas with deglaciation times longer than 5000 years. Striking differences between the associated organisms of R. terebrata and H. lugubris have also been discovered. Thus, a species-specific basidiomycete, Tremella, was revealed for R. terebrata, as was a member of Capnodiales for H. lugubris. Our study provides further understanding of the complex terricolous lichen-associated mycobiome using the metabarcoding approach. It also illustrates the necessity to extend our knowledge of complex lichen symbiosis and further improve the coverage of microbial eukaryotes in DNA barcode libraries, including more extended sampling. Full article
(This article belongs to the Special Issue Polar Genomics)
Show Figures

Figure 1

13 pages, 1974 KiB  
Article
Phylogeography and Genetic Diversity of Duck Mussel Anodonta anatina (Bivalvia: Unionidae) in Eurasia
by Artem A. Lyubas, Alena A. Tomilova, Alexander V. Kondakov, Ekaterina S. Konopleva, Ilya V. Vikhrev, Mikhail Yu. Gofarov, Tatyana A. Eliseeva, Olga V. Aksenova, Galina V. Bovykina, Darya V. Kryuk, Tatyana L. Gorbunova, Oxana Munjiu, Oleg S. Pokrovsky and Ivan N. Bolotov
Diversity 2023, 15(2), 260; https://doi.org/10.3390/d15020260 - 12 Feb 2023
Cited by 8 | Viewed by 3405
Abstract
The duck mussel Anodonta anatina is widely distributed throughout the freshwater basins of Northern, Central, and Western Eurasia, and it has a comprehensive genetic structure. This study was devoted to the analysis of lineages, which are defined based on COI gene sequences. Our [...] Read more.
The duck mussel Anodonta anatina is widely distributed throughout the freshwater basins of Northern, Central, and Western Eurasia, and it has a comprehensive genetic structure. This study was devoted to the analysis of lineages, which are defined based on COI gene sequences. Our new dataset was expanded by samples from freshwater basins of Northern and Central Eurasia. It allowed us to reveal a high level of genetic diversity for the widely distributed trans-Eurasian lineage of A. anatina for the first time. As for results, representative samples from the Russian Plain, Southern Siberia, and the Ural region showed the presence of multiple interactions between duck mussel populations, indicating the existence of connections between freshwater basins in this region during the Late Quaternary. The genetic group from the freshwater basins of Northern Eurasia may be divided into two sub-lineages, which have differences in genetic structure and distribution patterns. It was revealed that there was a post-glacial expansion of duck mussels in the freshwater basins of Northern Eurasia after deglaciations of these territories and that the wide distribution of this species in this region was shaped via ancient connections between periglacial waterbodies. The lineage of A. anatina from the Ponto-Caspian region is a genetically rich and diverged group, which is present in the riverine basins of West-Central Asia related to the Caspian Sea. Full article
(This article belongs to the Special Issue Systematics, Phylogeography, Evolution and Conservation of Molluscs)
Show Figures

Figure 1

13 pages, 9296 KiB  
Article
Soil Fungal Diversity and Ecology Assessed Using DNA Metabarcoding along a Deglaciated Chronosequence at Clearwater Mesa, James Ross Island, Antarctic Peninsula
by Vivian N. Gonçalves, Juan M. Lirio, Silvia H. Coria, Fabyano A. C. Lopes, Peter Convey, Fábio S. de Oliveira, Micheline Carvalho-Silva, Paulo E. A. S. Câmara and Luiz H. Rosa
Biology 2023, 12(2), 275; https://doi.org/10.3390/biology12020275 - 9 Feb 2023
Cited by 12 | Viewed by 3407
Abstract
We studied the fungal diversity present in soils sampled along a deglaciated chronosequence from para- to periglacial conditions on James Ross Island, north-east Antarctic Peninsula, using DNA metabarcoding. A total of 88 amplicon sequence variants (ASVs) were detected, dominated by the phyla Ascomycota [...] Read more.
We studied the fungal diversity present in soils sampled along a deglaciated chronosequence from para- to periglacial conditions on James Ross Island, north-east Antarctic Peninsula, using DNA metabarcoding. A total of 88 amplicon sequence variants (ASVs) were detected, dominated by the phyla Ascomycota, Basidiomycota and Mortierellomycota. The uncommon phyla Chytridiomycota, Rozellomycota, Monoblepharomycota, Zoopagomycota and Basidiobolomycota were detected. Unknown fungi identified at higher hierarchical taxonomic levels (Fungal sp. 1, Fungal sp. 2, Spizellomycetales sp. and Rozellomycotina sp.) and taxa identified at generic and specific levels (Mortierella sp., Pseudogymnoascus sp., Mortierella alpina, M. turficola, Neoascochyta paspali, Penicillium sp. and Betamyces sp.) dominated the assemblages. In general, the assemblages displayed high diversity and richness, and moderate dominance. Only 12 of the fungal ASVs were detected in all chronosequence soils sampled. Sequences representing saprophytic, pathogenic and symbiotic fungi were detected. Based on the sequence diversity obtained, Clearwater Mesa soils contain a complex fungal community, including the presence of fungal groups generally considered rare in Antarctica, with dominant taxa recognized as cold-adapted cosmopolitan, endemic, saprotrophic and phytopathogenic fungi. Clearwater Mesa ecosystems are impacted by the effects of regional climatic changes, and may provide a natural observatory to understand climate change effects over time. Full article
(This article belongs to the Special Issue 2nd Edition of Diversity of Soil Fungal Communities)
Show Figures

Figure 1

21 pages, 6292 KiB  
Article
Detection of Crustal Uplift Deformation in Response to Glacier Wastage in Southern Patagonia
by María Gabriela Lenzano, Andrés Rivera, Marcelo Durand, Paulina Vacaflor, Micaela Carbonetti, Esteban Lannutti, Mauricio Gende and Luis Lenzano
Remote Sens. 2023, 15(3), 584; https://doi.org/10.3390/rs15030584 - 18 Jan 2023
Cited by 5 | Viewed by 2929
Abstract
The Southern Patagonian Icefield (SPI) is the largest continuous ice mass in the Southern Hemisphere outside Antarctica. It has been shrinking since the Little Ice Age (LIA) period, with increasing rates in recent years. An uplift of crustal deformation in response to this [...] Read more.
The Southern Patagonian Icefield (SPI) is the largest continuous ice mass in the Southern Hemisphere outside Antarctica. It has been shrinking since the Little Ice Age (LIA) period, with increasing rates in recent years. An uplift of crustal deformation in response to this deglaciation process has been expected. The goal of this investigation is to analyze the crustal deformation caused by ice retreat using time-series data from continuous GPS stations (2015–2020) in the northern area of the SPI. For this purpose, we installed two continuous GPS stations on rocky nunataks of the SPI (the GRCS near Greve glacier and the GBCS close by Cerro Gorra Blanca). In addition, ice elevation changes (2000–2019) were analyzed by the co-registration of the SRTM digital elevation model and ICESat elevation data points. The results of the vertical components are positive (36.55 ± 2.58 mm a−1), with a maximum at GBCS, indicating the highest rate of crustal uplift ever continuously recorded in Patagonia; in addition, the mean horizontal velocities reached 11.7 mm a−1 with an azimuth of 43°. The negative ice elevation changes detected in the region have also accelerated in the recent two decades, with a median Δh (elevation change) of −3.36 ± 0.01 m a−1 in the ablation zone. The seasonality of the GPS signals was contrasted with the water levels of the main Patagonian lakes around the SPI, detecting a complex interplay between them. Hence, the study sheds light on the knowledge of the crustal uplift as evidence of the wastage experienced by the SPI glaciers. Full article
(This article belongs to the Special Issue Remote Sensing in Geomatics)
Show Figures

Figure 1

22 pages, 10713 KiB  
Article
The Large Rivers of the Past in West Siberia: Unknown Hydrological Regimen
by Aleksey Sidorchuk
Water 2023, 15(2), 258; https://doi.org/10.3390/w15020258 - 7 Jan 2023
Cited by 3 | Viewed by 3154
Abstract
The hydrological regime of large meandering rivers of the West Siberian Plain in the Late Pleniglacial/Late Glacial was reconstructed from the hydraulic geometry of palaeochannels. The main tools for the reconstruction were the power law relationship between channel bankfull width and mean maximum [...] Read more.
The hydrological regime of large meandering rivers of the West Siberian Plain in the Late Pleniglacial/Late Glacial was reconstructed from the hydraulic geometry of palaeochannels. The main tools for the reconstruction were the power law relationship between channel bankfull width and mean maximum discharge, taken in the downstream direction, and relationships between peak flood discharge and the contributing basin area. Reconstructed values of daily maximum surface runoff depth during the snow thaw period in the Late Pleniglacial/Late Glacial were 60–75 mm/day in the north of the plain with tundra and sparse forest and 20–40 mm/day in the south with periglacial steppe. The mean daily maximum surface runoff depth for the entirety of West Siberia was about 46 mm, which is more than five times greater than the modern value. Annual river runoff was calculated with the ratio between mean annual and mean maximum runoff depths, estimated for the modern region’s analogues of ancient periglacial landscapes and climates. Total annual flow of the Ob into the ocean was about 1000 km3. This is three times the current flow from the same basin, so the river was a significant source of fresh water to the Arctic Ocean during the last deglaciation. Full article
(This article belongs to the Special Issue Hydrology and Climate Change)
Show Figures

Figure 1

18 pages, 5780 KiB  
Article
Effective Moisture Evolution since the Last Glacial Maximum Revealed by a Loess Record from the Westerlies-Dominated Ili Basin, NW China
by Yudong Li, Yue Li, Yougui Song, Haoru Wei, Yanping Wang and Nosir Shukurov
Atmosphere 2022, 13(11), 1931; https://doi.org/10.3390/atmos13111931 - 19 Nov 2022
Cited by 7 | Viewed by 2770
Abstract
Moisture variation is extremely relevant for the stability of ecosystems in Central Asia (CA). Therefore, moisture evolution and its potential driving mechanism over the region are always a hot research topic. Although much effort has been devoted to understanding the processes of moisture [...] Read more.
Moisture variation is extremely relevant for the stability of ecosystems in Central Asia (CA). Therefore, moisture evolution and its potential driving mechanism over the region are always a hot research topic. Although much effort has been devoted to understanding the processes of moisture evolutions in CA during the Quaternary, particularly the Holocene, the associated underlying mechanisms remain in a state of persistent debate. In this study, the granulometry, clay mineral and chroma properties of a loess section (named ZSP section) in the westerlies-dominated Ili Basin, NW China are investigated. With the accelerator mass spectrometry radiocarbon dating (AMS 14C)-based Bayesian age–depth model, we provide a sensitive record of effective moisture evolution since the last glacial maximum (LGM) in the basin, and the results help enhance understanding of the possible driving mechanisms for westerly climate change. Comparisons of clay mineralogy indices shows that the study area is involved in the Northern Hemisphere dust cycle processes as a dust source, and the content of <2 μm grain size fraction in the ZSP section can thereby be used to reflect the westerlies’ intensity. After deducting the complicated influencing factors for lightness changes throughout the section, the calibrated lightness is adopted to indicate the regional effective moisture. Our findings show that effective moisture is relatively abundant during the LGM and the middle–late Holocene, with dry climate conditions during the last deglaciation and early Holocene. We argue that westerlies’ intensity was the main factor for driving the effective moisture evolution in the Ili Basin since the LGM. Local and source evaporation intensity and effective intra-annual control time of the westerlies over the study area exerted a minor influence on the moisture changes. Full article
(This article belongs to the Special Issue Quaternary Westerlies and Monsoon Interaction in Asia)
Show Figures

Figure 1

22 pages, 3811 KiB  
Article
A Theory of Abrupt Climate Changes: Their Genesis and Anatomy
by Hsien-Wang Ou
Geosciences 2022, 12(11), 391; https://doi.org/10.3390/geosciences12110391 - 24 Oct 2022
Cited by 1 | Viewed by 2071
Abstract
We combine our ice-sheet and climate models to formulate a deductive theory of abrupt climate changes pertaining to Heinrich/Dansgaard–Oeschger (H/DO) cycles and the last deglaciation punctuated by the Younger Dryas (YD). Since they are all accompanied by ice-rafted debris, we posit their common [...] Read more.
We combine our ice-sheet and climate models to formulate a deductive theory of abrupt climate changes pertaining to Heinrich/Dansgaard–Oeschger (H/DO) cycles and the last deglaciation punctuated by the Younger Dryas (YD). Since they are all accompanied by ice-rafted debris, we posit their common origin in the calving of the ice sheet due to a thermal switch at its bed, which naturally endows abruptness to these climate signals of the millennial timescale characteristics of the ice-mass balance. To distinguish the H/DO cycles, we differentiate the thermal triggers by geothermal-heat/surface-melt in the calving of inland/coastal ice, which provide their respective freshwater sources. Since surface-melt requires post-H warmth during the glacial, but is already operative in the Holocene, the DO cycles are encased within the H cycle during the glacial, but self-sustaining in the Holocene. They otherwise share the same time signature, thus resolving this seeming puzzle of commonality without invoking unknown climate forcing. The DO cycles transcend deglaciation to produce the observed sequence, but the calving-induced freshwater flux needs to be boosted by the rerouting of continental meltwater to cause YD. We discern a key process of an eddying ocean in its millennial adjustment toward maximum entropy production (MEP), which would melt the H-induced sea ice to cause an abrupt post-H warming followed by a gradual cooling that anchors the DO cycles to form the hierarchical Bond cycle. Since the modelled anatomies resemble the observed ones, our theory may provide a robust and unified account of abrupt climate changes. Full article
(This article belongs to the Special Issue Climate Variations at Millennial Timescales)
Show Figures

Figure 1

36 pages, 7282 KiB  
Review
The Remotely and Directly Obtained Results of Glaciological Studies on King George Island: A Review
by Michał Dziembowski and Robert Józef Bialik
Remote Sens. 2022, 14(12), 2736; https://doi.org/10.3390/rs14122736 - 7 Jun 2022
Cited by 8 | Viewed by 3149
Abstract
Climate warming has become indisputable, and it is now crucial to increase our understanding of both the mechanisms and consequences of climate change. The Antarctic region is subjected to substantial changes, the trends of which have been recognized for several decades. In the [...] Read more.
Climate warming has become indisputable, and it is now crucial to increase our understanding of both the mechanisms and consequences of climate change. The Antarctic region is subjected to substantial changes, the trends of which have been recognized for several decades. In the South Shetland Islands, the most visible effect of climate change is progressive deglaciation. The following review focuses on past glaciological studies conducted on King George Island (KGI). The results of collected cryosphere element observations are discussed herein in a comprehensive manner. Our analysis showed that there is a lack of temporal as well as spatial continuity for studies on the basic mass balance parameters on the entire KGI ice dome and only Bellingshausen Dome has a relatively long history of data collection. The methodologies of past work, which have improved over time, are also discussed. When studying the glacier front fluctuations, the authors most frequently use a 1956 aerial photography as reference ice coverage. This was the case for seven papers, while other sources are seldomly mentioned. In other papers as many as 41 other sources were used, and therefore comparison to photos taken up to 60 years later can give misleading trends, as small glaciers may have both advanced and retreated in that time. In the case of glacial velocities there is also an apparent lack of consistency, as different glaciers were indicated as the fastest on KGI. Only Lange, Anna, Crystal, Eldred, and eastern part of Usher glaciers were determined by more than one author as the fastest. Additionally, there are gaps in the KGI Ground Penetrating Radar (GPR) survey area, which includes three ice domes: the Warszawa Icefield, the Krakow Icefield, and eastern part of King George Island. Ideas for further work on the topic are also suggested, allowing for easier access to data and thus contributing to a better understanding of glacier development mechanisms. Full article
(This article belongs to the Special Issue Applications of Remote Sensing in Glaciology)
Show Figures

Graphical abstract

12 pages, 2721 KiB  
Article
Palaeo-Shoreline Configuration of the Adventure Plateau (Sicilian Channel) at the Last Glacial Maximum
by Emanuele Lodolo, Maria Filomena Loreto, Daniele Melini, Giorgio Spada and Dario Civile
Geosciences 2022, 12(3), 125; https://doi.org/10.3390/geosciences12030125 - 8 Mar 2022
Cited by 6 | Viewed by 3435
Abstract
The Adventure Plateau, located in the NW sector of the Sicilian Channel, experienced several episodes of exposure/erosion and subsequent drowning, with the most recent occurring after the Last Glacial Maximum (LGM). Unlike other parts of the Sicilian Channel, the Adventure Plateau is relatively [...] Read more.
The Adventure Plateau, located in the NW sector of the Sicilian Channel, experienced several episodes of exposure/erosion and subsequent drowning, with the most recent occurring after the Last Glacial Maximum (LGM). Unlike other parts of the Sicilian Channel, the Adventure Plateau is relatively tectonically stable and is therefore best suitable for reconstructing its coastal configuration before the post-LGM marine transgression. Here, we use high-resolution seismic data to identify and map the palaeo-coastline at the LGM on the basis of the internal architecture of the prograding wedges (i.e., the location of the subaqueous clinoform rollover point) and the erosional markers such as the subaerial unconformities and the wave ravinement surfaces. These data, which show an extreme variability in the palaeo-morphology of the coastal margins of the Adventure Plateau, have been complemented with vintage seismic profiles in order to entirely cover its perimeter. The mapped LGM coastline has then been compared to predictions from glacial isostatic adjustment (GIA) modeling, which considers the horizontal migration of the shorelines in response to sea level rise and to Earth’s rotational and deformational effects associated with deglaciation. The two shorelines (i.e., the coastline derived from the marine data interpretation and the one derived from the GIA model) are in good agreement at 21 kyears BP, although some discrepancies occur in the southern part of the plateau, where the seabed slope is extremely gentle, which makes the clinoform rollover points and the buried erosional unconformities difficult to detect. After 20 kyears BP, an acceleration in the rate of the sea level rise occurred. The results of this study indicate the importance of comparing experimental data with model predictions in order to refine and calibrate boundary parameters and to gain a better picture of the evolution of sea level rise over various time scales. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

Back to TopTop