Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = de novo missense variants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2458 KB  
Article
Functional Characterization of a Novel PBX1 De Novo Missense Variant Identified in a Pediatric Patient with CAKUT
by Caterina Scolari, Angelo Corso Faini, Giulia Verra, Martina Migliorero, Giulia Margherita Brach Del Prever, Claudia Saglia, Fiorenza Mioli, Carmelo Maria Romeo, Tullia Carradori, Maria Luca, Francesca Arruga, Francesca Mattozzi, Licia Peruzzi, Silvia Deaglio and Tiziana Vaisitti
Genes 2025, 16(11), 1346; https://doi.org/10.3390/genes16111346 - 7 Nov 2025
Viewed by 389
Abstract
Background: Genetic variants in Pre-B cell Leukemia Factor 1 (PBX1) transcription factor (TF) have been associated with Congenital Anomalies of the Kidney and Urinary Tract (CAKUT). This study aims to functionally characterize a novel missense variant in a 4-year-old patient presenting with horseshoe [...] Read more.
Background: Genetic variants in Pre-B cell Leukemia Factor 1 (PBX1) transcription factor (TF) have been associated with Congenital Anomalies of the Kidney and Urinary Tract (CAKUT). This study aims to functionally characterize a novel missense variant in a 4-year-old patient presenting with horseshoe kidney with preserved function, in the absence of a positive familial history. Methods: Clinical exome sequencing was performed on a 4-year-old child, followed by Sanger sequencing and family segregation studies to validate the identified variant. Functional assays to study the protein expression, molecular interactions and localization were then performed. Results: Genetic analysis identified a novel de novo variant [c.712C>T, p.(Arg238Trp), NM_002585.3], mapping in the first nuclear localization signal (NLS) of PBX1. When introduced in HEK293T cells, PBX1c.712C>T did not affect protein expression, which was comparable to the wild-type (WT) counterpart. Similar results were obtained when modeling a missense variant [c.863G>A; p.(Arg288Gln)], located in the second NLS of the protein, previously reported in the literature but never functionally characterized. As a TF, PBX1 may work in association with MEIS and PKNOX1/2 cofactors, but none of the two variants modified the interactions with its cofactor PKNOX1. However, both variants significantly affected the nuclear localization of PBX1, increasing its retention in the cytoplasm while limiting its availability in the nucleus. Conclusions: In conclusion, we identified a novel de novo heterozygous missense variant in PBX1 that impairs nuclear localization of the protein, potentially limiting its role as a TF and possibly explaining the clinical phenotype of the patient. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

24 pages, 10420 KB  
Article
Usmani–Riazuddin Syndrome: Functional Characterization of a Novel c.196G>A Variant in the AP1G1 Gene and Phenotypic Insights Using Zebrafish as a Vertebrate Model
by Valentina Imperatore, Alessandra Mirarchi, Emanuele Agolini, Andrea Astolfi, Maria Letizia Barreca, Antonio Novelli, Elisa Vinciarelli, Sara Ferretti, Daniela Zizioli, Giuseppe Borsani, Cataldo Arcuri and Paolo Prontera
Int. J. Mol. Sci. 2025, 26(21), 10590; https://doi.org/10.3390/ijms262110590 - 30 Oct 2025
Viewed by 712
Abstract
Adaptor Protein-1 (AP-1) is a heterotetrameric essential for intracellular vesicular trafficking and polarized localization of somato-dendritic proteins in neurons. Variants in the AP1G1 gene, encoding the gamma-1 subunit of adaptor-related protein complex 1 (AP1γ1), have recently been associated with Usmani–Riazuddin syndrome (USRISD, MIM#619467), [...] Read more.
Adaptor Protein-1 (AP-1) is a heterotetrameric essential for intracellular vesicular trafficking and polarized localization of somato-dendritic proteins in neurons. Variants in the AP1G1 gene, encoding the gamma-1 subunit of adaptor-related protein complex 1 (AP1γ1), have recently been associated with Usmani–Riazuddin syndrome (USRISD, MIM#619467), a very rare human genetic disorder characterized by intellectual disability (ID), speech and neurodevelopmental delays. Here we report a novel variant (c.196G>A; p.Gly66Arg) identified by exome sequencing analysis in a young girl showing overlapping clinical features with USRIS, such as motor and speech delay, intellectual disability and abnormal aggressive behavior. In silico analysis of the missense de novo variant suggested an alteration in AP1G1 protein folding. Patient’s fibroblasts have been studied with immunofluorescence techniques to analyze the intracellular distribution of AP-1. Zebrafish are widely regarded as an excellent vertebrate model for studying human disease pathogenesis, given their transparent embryonic development, ease of breeding, high genetic similarity to humans, and straightforward genetic manipulation. Leveraging these advantages, we investigated the phenotype, locomotor behavior, and CNS development in zebrafish embryos following the microinjection of human wild-type and mutated AP1G1 mRNAs at the one-cell stage. Knockout (KO) of the AP1G1 gene in zebrafish led to death at the gastrula stage. Lethality in the KO AP1G1 fish model was significantly rescued by injection of the human wild-type AP1G1 mRNA, but not by transcripts encoded by the Gly66Arg missense allele. The phenotype was also not rescued when ap1g1−/− zebrafish embryos were co-injected with both human wild-type and mutated mRNAs, supporting the dominant-negative effect of the new variant. In this study, we defined the effects of a new AP1G1 variant in cellular and animal models of Usmani–Riazzudin syndrome for future therapeutic approaches. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 857 KB  
Review
Otofaciocervical Syndrome and Its Overlap with Branchiootorenal Spectrum: An Integrated Literature Analysis of EYA1-Related Disorders, Including a Novel Case with an 8q13.2q13.3 Deletion
by Ludovico Graziani, Miriam Lucia Carriero, Salvatore Melchionda, Bartolomeo Augello, Orazio Palumbo, Mario Bengala, Marco Castori and Giuseppe Novelli
Genes 2025, 16(11), 1267; https://doi.org/10.3390/genes16111267 - 28 Oct 2025
Viewed by 370
Abstract
Otofaciocervical syndrome (OTFCS) is a rare disorder characterized by facial, auditory, and shoulder girdle anomalies. Its significant phenotypic overlap with branchiootorenal spectrum disorders (BORSD)—both linked to EYA1 (EYA transcriptional coactivator and phosphatase 1) gene defects—has raised questions about whether they are distinct entities [...] Read more.
Otofaciocervical syndrome (OTFCS) is a rare disorder characterized by facial, auditory, and shoulder girdle anomalies. Its significant phenotypic overlap with branchiootorenal spectrum disorders (BORSD)—both linked to EYA1 (EYA transcriptional coactivator and phosphatase 1) gene defects—has raised questions about whether they are distinct entities or part of a single clinical spectrum. We report a novel OTFCS patient with a de novo microdeletion spanning EYA1 and review all published cases of EYA1-related disorders. Our analysis reveals that all EYA1 variant types (truncating, missense, CNV, etc.) can cause BORSD, OTFCS, or hybrid phenotypes, firmly supporting their status as allelic disorders. Crucially, all reported OTFCS patients with EYA1 variants had renal anomalies, a feature previously considered a hallmark of BORSD. We conclude that BORSD and OTFCS constitute a single EYA1-related diagnostic continuum. This reclassification mandates the development of follow-up protocols that integrate renal, otologic, and skeletal surveillance in EYA1-related disorders, including OTFCS, and refines prognostic and genetic counseling. Full article
(This article belongs to the Special Issue Molecular Genetics of Rare Disorders)
Show Figures

Figure 1

14 pages, 672 KB  
Article
Rubinstein–Taybi Syndrome: A Comprehensive Analysis of a Polish Cohort with Most Cases Due to Novel CREBBP and EP300 Variants
by Agata Cieślikowska, Agnieszka Madej-Pilarczyk, Piotr Iwanowski, Katarzyna Iwanicka-Pronicka, Dorota Wicher, Maria Jędrzejowska, Dorota Jurkiewicz, Marzena Gawlik, Dorota Piekutowska-Abramczuk, Paulina Halat-Wolska, Jagoda Błaszkiewicz, Izabela Mendrek, Krystyna Chrzanowska, Marlena Młynek, Piotr Stawiński, Joanna Kosińska, Małgorzata Krajewska-Walasek and Elżbieta Ciara
Genes 2025, 16(10), 1206; https://doi.org/10.3390/genes16101206 - 14 Oct 2025
Viewed by 692
Abstract
Background: Rubinstein–Taybi syndrome (RSTS) is characterized by intellectual disability, short stature, distinctive facial dysmorphism, broad thumbs/halluces, hearing loss, congenital heart or renal defects, and cryptorchidism in males. Pathogenic variants in CREBBP (~90% of cases) or EP300 (~10%) underlie the disorder, with ~88% single [...] Read more.
Background: Rubinstein–Taybi syndrome (RSTS) is characterized by intellectual disability, short stature, distinctive facial dysmorphism, broad thumbs/halluces, hearing loss, congenital heart or renal defects, and cryptorchidism in males. Pathogenic variants in CREBBP (~90% of cases) or EP300 (~10%) underlie the disorder, with ~88% single nucleotide variants (SNVs) and ~12% copy number variants (CNVs) in CREBBP. Materials and Methods: We investigated 17 patients clinically diagnosed with RSTS at a tertiary hospital in Poland. Genetic confirmation was achieved by next-generation sequencing, multiplex ligation-dependent probe amplification (MLPA), array comparative genomic hybridization (aCGH), or Sanger sequencing. Results: Pathogenic variants were identified in CREBBP (13/17, 76%) and EP300 (4/17, 24%). Variant types included frameshift indels (6/17, 35%), missense (4/17, 24%), nonsense (3/17, 18%), splice-site (2/17, 12%), and gross deletions (2/17, 12%). Notably, 13/17 (76%) were novel: ten in CREBBP (c.−49_12del, c.289C>T, c.1093_1096del, c.1094A>G, c.3178A>T, c.3401A>T, c.(3836+1_3837−1)_(4394+1_4395−1)del, c.4133+2T>G, c.4963dup, c.5028_5029dup) and three in EP300 (c.1942C>T, c.3044_3045del, c.4713_4722del). Among the novel CREBBP variants, eight occurred de novo and two had unknown inheritance. Two novel EP300 variants occurred de novo and one was of unknown origin. Conclusions: This first Polish RSTS cohort demonstrates a considerable proportion of gross deletions (12% overall; 15% in CREBBP) and an unexpectedly high rate of novel variants (76%), suggesting possible population-specific differences. These findings underscore the genetic heterogeneity of RSTS and highlight the importance of comprehensive molecular diagnostics and studies in underrepresented populations. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1741 KB  
Article
The p.Ile202Thr Substitution in TUBB2B Can Be Associated with Syndromic Presentation of Congenital Fibrosis of the Extraocular Muscles
by Cecilia Mancini, Luigi Chiriatti, Alessandro Bruselles, Paola D’ambrosio, Andrea Ciolfi, Marco Ferilli, Camilla Cappelletti, Mattia Carvetta, Francesca Clementina Radio, Viviana Cordeddu, Marcello Niceta, Marta Parrino, Rossella Capolino, Corrado Mammì, Rossana Senese, Mario Muto, Manuela Priolo and Marco Tartaglia
Genes 2025, 16(10), 1182; https://doi.org/10.3390/genes16101182 - 11 Oct 2025
Viewed by 598
Abstract
Background: Dominantly acting variants in TUBB2B have primarily been associated with cortical dysplasia complex with other brain malformations 7 (CDCBM7), a disorder in which cortical brain abnormalities are typically linked to developmental delay/intellectual disability (DD/ID) and seizures. While the majority of TUBB2B [...] Read more.
Background: Dominantly acting variants in TUBB2B have primarily been associated with cortical dysplasia complex with other brain malformations 7 (CDCBM7), a disorder in which cortical brain abnormalities are typically linked to developmental delay/intellectual disability (DD/ID) and seizures. While the majority of TUBB2B pathogenic variants have been linked to isolated CDCBM7, only one family with CDCBM7 and congenital fibrosis of the extraocular muscles (CFEOM) has been reported so far. We describe a second individual with a severe phenotype of CFEOM combined with CDCBM7 carrying a pathogenic TUBB2B missense variant previously reported in two individuals with isolated CDCBM7. Methods: A trio-based WGS analysis was performed. The structural impact of the identified substitution was assessed by using the UCSF Chimera (v.1.17.3) software and PyMOL docking plugin DockingPie tool. Results: WGS analysis identified a de novo missense TUBB2B variant (p.Ile202Thr, NM_178012.5), previously associated with isolated CDCBM7. Structural analysis and docking simulations revealed that Ile202 contributes to establishing a proper hydrophobic environment required to stabilize GTP/GDP in the β-tubulin pocket. p.Ile202Thr was predicted to disrupt these interactions. Conclusions: Our findings broaden the mutational spectrum of TUBB2B-related CFEOM, targeting a different functional domain of the protein, and further document the occurrence of phenotypic heterogeneity. We also highlight the limitations of exome sequencing in accurately mapping TUBB2B coding exons due to its high sequence homology with TUBB2A and suggest targeted or genome analyses when clinical suspicion is strong. Full article
(This article belongs to the Special Issue Advances in Genetic Analysis of Congenital Disorders)
Show Figures

Figure 1

7 pages, 1052 KB  
Brief Report
A New Variant in the NALCN Channel Is Responsible for Cerebellar Ataxia and Cognitive Impairment
by Rute Luísa Cabrita Pinto, Roberto Fancellu, Tiziana Benzi Markushi, Silvia Viaggi, Barbara Testa, Giuseppina Conteduca, Lane Fitzsimmons, Domenico Coviello and Angela Elvira Covone
Genes 2025, 16(10), 1181; https://doi.org/10.3390/genes16101181 - 11 Oct 2025
Viewed by 593
Abstract
Background/Objectives: CLIFAHDD syndrome (OMIM # 616266) is a rare neurodevelopmental disorder caused by mutations in the NALCN gene. It is characterized by hypotonia, developmental delay, and congenital contractures of the limbs and face. We report a 33-year-old Italian woman with a mild form [...] Read more.
Background/Objectives: CLIFAHDD syndrome (OMIM # 616266) is a rare neurodevelopmental disorder caused by mutations in the NALCN gene. It is characterized by hypotonia, developmental delay, and congenital contractures of the limbs and face. We report a 33-year-old Italian woman with a mild form of CLIFAHDD who exhibited early-onset language difficulties and mild intellectual disability and later developed gait and balance impairments in adulthood. Methods and Results: Whole Exome Sequencing (WES) identified a novel missense variant c.1514A>T; p.(Lys505Met) in the NALCN gene. The allele frequency of this variant is not detected (MAF = 0.0), the variant is classified as likely pathogenic according to ACMG criteria, and predicted to be probably damaging by PolyPhen-2. It affects a critical residue within the second pore-forming domain of the NALCN channel, potentially altering lipid interactions and channel regulation. Sanger sequencing and segregation analysis confirmed the variant to be heterozygous and de novo. Conclusions: The patient’s milder symptoms and later onset, compared to severe pediatric cases, suggest that the clinical spectrum of CLIFAHDD syndrome may be broader than previously recognized. These findings underscore the potential influence of mutation location on disease presentation and severity. Full article
(This article belongs to the Section Genetic Diagnosis)
Show Figures

Figure 1

18 pages, 931 KB  
Article
Rare BLK, CEL, KLF11, PDX1, and PAX4 Gene Variants in Russian Patients with Monogenic Diabetes: Clinical and Molecular Characterization
by Rita I. Khusainova, Ildar R. Minniakhmetov, Dmitry N. Laptev, Mariya P. Koltakova, Roman V. Deev, Bulat I. Yalaev, Yaroslav V. Dvoryanchikov, Elena A. Sechko and Natalia G. Mokrysheva
Biomedicines 2025, 13(10), 2452; https://doi.org/10.3390/biomedicines13102452 - 9 Oct 2025
Viewed by 561
Abstract
Background: Maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic diabetes forms that are frequently misclassified as type 1 or type 2 diabetes due to overlapping phenotypic features. The true prevalence of MODY is likely substantially underestimated. As DNA-based diagnostics [...] Read more.
Background: Maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic diabetes forms that are frequently misclassified as type 1 or type 2 diabetes due to overlapping phenotypic features. The true prevalence of MODY is likely substantially underestimated. As DNA-based diagnostics become increasingly accessible, an expanding number of novel genetic variants are being identified. Objectives: The aim of this study was to characterize the clinical and genetic features of patients carrying rare variants in the BLK, KLF11, PAX4, PDX1, and CEL genes, with attention to population-specific aspects, family history, and treatment outcomes. Methods: Targeted next-generation sequencing (NGS) using a custom-designed panel covering 27 genes implicated in MODY, neonatal diabetes, and related hereditary syndromes was performed on the Illumina NovaSeq 6000 platform (Illumina). Results: We identified 21 variants in five genes associated with rare MODY subtypes among 24 unrelated patients. MODY9 was diagnosed in two unrelated patients of Russian ethnicity harboring an identical heterozygous missense mutation in exon 5 of the PAX4 gene (HG38, chr7:127615049G>A, c.191C>T, p.Thr64Ile), which has not been previously described in patients with diabetes. MODY11 was diagnosed in a patient carrying the c.773-1G>A variant in the BLK gene. A patient with a de novo c.40_41dupGC (p.Val15Glnfs*41) variant in the KLF11 gene was clinically diagnosed with type 1 diabetes. Conclusion: Our findings expand the current understanding of rare MODY subtypes and contribute to the growing body of evidence on the spectrum and frequency of potentially pathogenic variants in BLK, CEL, KLF11, PDX1, and PAX4 genes across ethnically diverse populations worldwide. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

23 pages, 1417 KB  
Article
Beyond the Curtains: Identification of the Genetic Cause of Foetal Developmental Abnormalities Through the Application of Molecular Autopsy
by Beatrice Spedicati, Giulia Pianigiani, Aurora Santin, Vanessa Rebecca Gasparini, Ilaria Falcomer, Agnese Feresin, Maria Teresa Bonati, Daniela Mazzà, Elisa Paccagnella, Domizia Pasquetti, Elisa Rubinato, Claudio Granata, Flora Maria Murru, Maurizio Pinamonti, Rossana Bussani, Ilaria Fantasia, Tamara Stampalija, Paolo Gasparini, Stefania Zampieri and Giorgia Girotto
Genes 2025, 16(10), 1167; https://doi.org/10.3390/genes16101167 - 2 Oct 2025
Viewed by 694
Abstract
Background: Foetal structural abnormalities can be detected in approximately 3% of all pregnancies and frequently remain without a genetic diagnosis. This study aims to apply an integrated approach with the final goal of providing a molecular diagnosis in the challenging Italian setting [...] Read more.
Background: Foetal structural abnormalities can be detected in approximately 3% of all pregnancies and frequently remain without a genetic diagnosis. This study aims to apply an integrated approach with the final goal of providing a molecular diagnosis in the challenging Italian setting of early termination of pregnancy. Methods: In a cohort of 86 foetuses, post-mortem dysmorphological examination, radiological assessments, and molecular autopsy through Whole-Exome Sequencing—WES—analysis were performed. Results: Forty-two foetuses were phenotypically classified as presenting a single major malformation (i.e., central nervous system, skeletal, urogenital, or cardiac anomalies, or fluid accumulation), while 44 foetuses presented multiple malformations and/or dysmorphic features. Overall, WES provided a diagnostic yield of 26.7%; additionally, seven Variants of Uncertain Significance (VUS) potentially liked to the foetal phenotype were identified. The highest detection rate was achieved for foetuses presenting a single major urogenital (50%) or skeletal (42.9%) malformation, followed by foetuses presenting multiple malformations (27.3%). Peculiar results of particular interest were (1) the identification of two splicing variants (within the INPPL1 and RHOA genes), functionally characterised through minigene assay, which contributed to evaluate their pathogenicity, and (2) the identification of a novel de novo missense ZNF292 variant (NM_015021.3:c.6325A>C p.(Ser2109Arg)) in a foetus affected by corpus callosum hypoplasia. The ZNF292 gene is associated with the Intellectual developmental disorder, autosomal dominant 64 and this finding represents the first report of prenatally detected anomalies of the central nervous system in a foetus carrying a ZNF292 variant. Conclusions: This study underlines the diagnostic utility of an integrated approach to achieve a precise genetic diagnosis for structural foetal abnormalities, thus providing families with precise recurrence risk estimations and detailed options about future pregnancies. Additionally, a systematic implementation of this strategy could be crucial to better characterise new variants and discover new genes involved in embryonic and foetal development. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Graphical abstract

36 pages, 369 KB  
Article
De Novo Variants Predominate in Autism Spectrum Disorder
by Richard G. Boles, Omri Bar, Philip T. Boles, Zoë R. Hill and Richard E. Frye
Genes 2025, 16(9), 1099; https://doi.org/10.3390/genes16091099 - 17 Sep 2025
Cited by 1 | Viewed by 1467
Abstract
Background: Autism spectrum disorder (ASD) is a common condition with substantial personal and financial burdens of lifelong implication. Multiple twin studies have confirmed a genetic or inherited component at ~80%, higher than any other common condition. However, ASD’s rapidly accelerating prevalence, now at [...] Read more.
Background: Autism spectrum disorder (ASD) is a common condition with substantial personal and financial burdens of lifelong implication. Multiple twin studies have confirmed a genetic or inherited component at ~80%, higher than any other common condition. However, ASD’s rapidly accelerating prevalence, now at 1 in 31 in the USA, appears to defy a predominantly genetic basis and implicate our rapidly changing environment. A potential explanation for this paradox is a recent increase in de novo variants (DNVs), which are “new” mutations present in the patient yet absent in both parents. The present authors recently reported using trio whole-genome sequencing (trio-WGS) that DNVs highly likely to be highly disease-associated (“Principal Diagnostic Variants”, PDVs), mostly missense variants, were present in (25/50) 50% of the ASD patients clinically evaluated by our team. Methods: The current study was designed to support this observation with trio-WGS in 100 additional unrelated ASD patients. Results: De novo PDVs were identified in 47/100 (47%) of cases, in close approximation to our previous work. Using non-transcribed (up and downstream) variants for all genes as a control group, these DNV-PDVs were far more likely (p < 0.0001, OR 5.8, 95% C.I. 2.9–11) to be in SFARI-listed genes associated with ASD. Consistent with the emerging polygenic model, using the same analyses, inherited missense variants were also associated with ASD (p < 0.0001). Highly unexpectedly, silent variants, both inherited (p < 0.0001) and de novo (p < 0.007), were also statistically associated with ASD, and, among inherited variants, silent variants were more associated with ASD than were missense variants (p < 0.0001). Adding silent DNVs as PDVs increases the proportion of our subjects with at least one DNV-PDV to 55% of the subjects. Conclusions: Our proposed model for ASD, with prominent DNVs in most that are genetic yet not inherited, predicts the known predominant genetic pathogenesis and the accelerating prevalence of ASD, possibly from environmental factors, including insufficient nutrients and toxicant exposures, and/or the disrupted folate metabolism known to be associated with ASD. Limitations to this study include predominant inclusion of severely affected individuals and the lack of an unaffected control group and functional validation of variant pathogenicity. Full article
(This article belongs to the Special Issue Molecular Genetics of Neurodevelopmental Disorders: 2nd Edition)
11 pages, 4923 KB  
Article
Expanding the Phenotypic Spectrum of SPG4: Autism Spectrum Disorder in Early-Onset and Complex SPAST-HSP and Case Study
by Carlo Alberto Quaranta, Alice Gardani, Giulia Andorno, Anna Pichiecchio, Simone Gana, Renato Borgatti and Simona Orcesi
Genes 2025, 16(8), 970; https://doi.org/10.3390/genes16080970 - 18 Aug 2025
Viewed by 1124
Abstract
Background/Objectives: Hereditary spastic paraplegias (HSPs) comprise a heterogenous spectrum of rare neurogenetic disorders predominantly characterized by progressive spasticity and weakness of the lower extremities. Among autosomal-dominant forms of HSP, molecular defects in the SPAST gene—particularly those associated with the SPG4 subtype—represent the most [...] Read more.
Background/Objectives: Hereditary spastic paraplegias (HSPs) comprise a heterogenous spectrum of rare neurogenetic disorders predominantly characterized by progressive spasticity and weakness of the lower extremities. Among autosomal-dominant forms of HSP, molecular defects in the SPAST gene—particularly those associated with the SPG4 subtype—represent the most frequent genetic cause. SPAST encodes spastin, a microtubule-severing ATPase, crucial for cytoskeletal remodeling, neuronal connectivity, and intracellular trafficking. Disruption of spastin function can impair neurite outgrowth and synaptic formation, processes increasingly implicated in neurodevelopmental disorders (NDDs). Methods: We conducted a comprehensive clinical, neurological, and dysmorphological evaluation of a 4-year-old male. Standardized neuropsychological assessments were administered. Whole-exome sequencing (WES) was performed to identify underlying genetic causes. EEG and 3T-brain MRI were also acquired. Results: The proband harbored two novel de novo heterozygous missense variants in cis of the SPAST gene, displaying the typical features of early-onset and complex HSP, in addition to global developmental delay and severe autism spectrum disorder (ASD), an underexplored manifestation in this rare genetic disorder. Conclusions: These findings broaden the clinical and mutational spectrum of SPG4, underscoring the importance of considering SPAST gene analysis in patients with ASD in the early years of life and early motor delay, even in the presence of only subtle pyramidal signs. We advocate for comprehensive neuropsychiatric assessment in the diagnostic pathway of early-onset complex HSP presentations and support further investigation into the role of spastin in neuronal connectivity. Full article
(This article belongs to the Section Neurogenomics)
Show Figures

Figure 1

13 pages, 3239 KB  
Article
De Novo Heterozygous GATA3 Missense Variant Causes an Unexpected Phenotype of Non-Syndromic Hearing Impairment with Apparently Recessive Inheritance
by María Domínguez-Ruiz, Gema Garrido, Paz Martínez-Beneyto, Francisco J. del Castillo, Manuela Villamar, Elena Gómez-Rosas, Miguel A. Moreno-Pelayo and Ignacio del Castillo
Int. J. Mol. Sci. 2025, 26(13), 6363; https://doi.org/10.3390/ijms26136363 - 2 Jul 2025
Viewed by 614
Abstract
Hearing impairments (HIs) are clinically and genetically very heterogeneous. Finding the causative mutations in patients is frequently a challenge. We investigated two brothers affected by a sensorineural, moderate non-syndromic HI. Exome sequencing revealed that they carried the heterozygous c.812C>T (p.Ser271Leu) variant in GATA3 [...] Read more.
Hearing impairments (HIs) are clinically and genetically very heterogeneous. Finding the causative mutations in patients is frequently a challenge. We investigated two brothers affected by a sensorineural, moderate non-syndromic HI. Exome sequencing revealed that they carried the heterozygous c.812C>T (p.Ser271Leu) variant in GATA3. This gene encodes a transcription factor involved in embryonic development, its mutations causing the autosomal dominant HDR (hypoparathyroidism, deafness, and renal disease) syndrome. The variant affects a conserved residue within the proximal zinc-finger motif of GATA3. Sanger sequencing confirmed the presence of the variant in the two brothers, but it showed that surprisingly it was not carried by any of the parents. Segregation studies on 20 fully informative microsatellite markers in the family confirmed that the variant arose de novo. A benign SNP in the mother, close to the position of the variant, allowed us to determine that this was inherited from the father. Gene reporter functional assays supported the pathogenicity of the variant. Clinical reassessment of the two brothers did not disclose any additional abnormality. We conclude that mosaicism for this de novo mutation in the father’s germ line explains the pattern of inheritance in this family and that p.Ser271Leu is causing this unexpected phenotype of non-syndromic HI. Full article
(This article belongs to the Special Issue Hearing Loss: Molecular Biological Insights)
Show Figures

Figure 1

26 pages, 5272 KB  
Article
Molecular Screening Reveals De Novo Loss-of-Function NR4A2 Variants in Saudi Children with Autism Spectrum Disorders: A Single-Center Study
by Najwa M. Alharbi, Wejdan F. Baaboud, Heba Shawky, Aisha A. Alrofaidi, Reem M. Farsi, Khloud M. Algothmi, Shahira A. Hassoubah, Fatemah S. Basingab, Sheren A. Azhari, Mona G. Alharbi, Reham Yahya and Safiah Alhazmi
Int. J. Mol. Sci. 2025, 26(12), 5468; https://doi.org/10.3390/ijms26125468 - 7 Jun 2025
Cited by 1 | Viewed by 1706
Abstract
Dysregulated expression of nuclear receptor superfamily 4 group A member 2 (NR4A2) has recently been associated with autistic spectrum disorder (ASD), speech impairment, and neurodevelopmental delay (NDD); however, its precise role in the prevalence and etiopathogenesis of ASD has not been [...] Read more.
Dysregulated expression of nuclear receptor superfamily 4 group A member 2 (NR4A2) has recently been associated with autistic spectrum disorder (ASD), speech impairment, and neurodevelopmental delay (NDD); however, its precise role in the prevalence and etiopathogenesis of ASD has not been fully elucidated. Herein, we aimed to explore the role of NR4A2 variants in the genetic underpinnings of ASD among Saudi children of different age ranges and phenotype severities. A total of 338 children with ASD from 315 unrelated families (293 simplex, 2 quads, and 1 quintet) were screened for NR4A2 variants via exome sequencing (ES) of the genomic DNA extracted from peripheral blood mononuclear cells (PBMCs), after which the probands with identified NR4A2 variants were further subjected to trio genetic analyses. ES analysis revealed 10 de novo NR4A2 variants (5 indels/nonsense, 2 missense, and 3 variants affecting splicing) in 8 unrelated probands (2.37%) and 2 affected siblings from 8 unrelated families (6 simplex (2.04%) and 2 quads (8.7%)). Three NR4A2 variants were notably recurrent among both affected and unaffected carriers. All identified indels and two splicing variants met the criteria for pathogenic/loss-of-function (LoF) variants according to the ACMG classification (PVS1), whereas the missense variants were classified as of uncertain significance (VUS). This study is among the first to identify such a high frequency of recurrent variants in an ASD cohort, suggesting their significant contribution to the etiopathogenesis of ASD within this population. Full article
Show Figures

Figure 1

22 pages, 4290 KB  
Article
KCNH3 Loss-of-Function Variant Associated with Epilepsy and Neurodevelopmental Delay Enhances Kv12.2 Channel Inactivation
by Christiane K. Bauer, Arne Bilet, Frederike L. Harms and Robert Bähring
Int. J. Mol. Sci. 2025, 26(10), 4631; https://doi.org/10.3390/ijms26104631 - 13 May 2025
Viewed by 769
Abstract
A de novo missense variant in KCNH3 has been identified in a patient with neurological symptoms including seizures. Here, we confirm the previously reported loss-of-function features for the associated Kv12.2 mutant A371V and investigate the underlying mechanism. Loss of function was not rescued [...] Read more.
A de novo missense variant in KCNH3 has been identified in a patient with neurological symptoms including seizures. Here, we confirm the previously reported loss-of-function features for the associated Kv12.2 mutant A371V and investigate the underlying mechanism. Loss of function was not rescued by low temperature during channel biogenesis. Elevated external K+ reduced the rectification of Kv12.2 conductance as predicted by the GHK current equation, allowing the detection of currents mediated by homomeric A371V Kv12.2 channels and a detailed biophysical analysis of the mutant. Compared to wild-type, the voltage dependences of activation and deactivation of A371V Kv12.2 channels were shifted in the positive direction by 15 to 20 mV. Moreover, A371V Kv12.2 channels exhibited accelerated inactivation kinetics combined with a dramatic negative shift in the voltage dependence of inactivation by more than 100 mV. Even in heteromeric wild-type + A371V Kv12.2 channels, inactivation was enhanced, leading to a significant current reduction at physiological potentials. Our Kv12.2 data show similarities to Kv11 channels regarding C-type inactivation and differences regarding the sensitivity to external K+ and pharmacological inhibition of inactivation. The gating modification caused by the A371V amino acid substitution in Kv12.2 renders loss of function voltage-dependent, with a possible impact on neuronal excitability and firing behavior. Full article
(This article belongs to the Special Issue Voltage-Gated Ion Channels and Human Diseases)
Show Figures

Figure 1

15 pages, 1738 KB  
Article
Clinical Phenotypes of a Pediatric Cohort with GDF2-Related Hereditary Hemorrhagic Telangiectasia
by Owen Oliver, Allison D. Britt, Alexandra J. Borst, Elizabeth Goldmuntz, Nihal Bakeer, Shih-shan Lang, Stephanie Fuller, Arastoo Vossough and Lauren A. Beslow
J. Clin. Med. 2025, 14(10), 3359; https://doi.org/10.3390/jcm14103359 - 12 May 2025
Viewed by 1087
Abstract
Background/Objectives: Pathogenic variants in the growth differentiation factor 2 (GDF2) gene have been linked to a hereditary hemorrhagic telangiectasia (HHT)-like syndrome, yet their clinical significance remains under investigation. This study reports seven pediatric patients with GDF2 variants from a single center. [...] Read more.
Background/Objectives: Pathogenic variants in the growth differentiation factor 2 (GDF2) gene have been linked to a hereditary hemorrhagic telangiectasia (HHT)-like syndrome, yet their clinical significance remains under investigation. This study reports seven pediatric patients with GDF2 variants from a single center. Methods: We identified children with GDF2 pathogenic variants and variants of uncertain significance (VUS) from the Children’s Hospital of Philadelphia Comprehensive HHT Program and cross-referenced the list with a full-text query by GDF2 gene name on >53,000,000 visits to ensure complete ascertainment. Medical records were reviewed retrospectively, and variables of interest were abstracted. Results: The median age at genetic testing was 12 years (range 1.75–16). Reasons for genetic testing included telangiectasias, pulmonary hypertension, familial testing, respiratory symptoms, seizures, developmental disabilities, and lung arteriovenous malformations (AVMs). Four patients had missense VUS, including two novel VUS (c.34C>G; p.Leu12Val, c.41C>T; p.Ser14Phe), while three had pathogenic deletions. All patients experienced epistaxis, starting at a median age of 6 years (range 2–12). Three had telangiectasias. One patient had both a GDF2 VUS and a de novo partial endoglin (ENG) gene deletion. While this patient’s symptoms of HHT are likely related to her ENG variant, synergy cannot be excluded, and two first-degree family members with clinically significant epistaxis also have the same GDF2 VUS. Notably, two patients had visceral AVMs—one with a lung AVM and another with a vein of Galen malformation. Conclusions: Interpretation of GDF2 VUS and their relationship to clinical symptoms is challenging given the rarity of these genetic variants and the inadequate diagnostic utility of the current clinical criteria for HHT in the pediatric population. Further research with larger cohorts is necessary to improve the genotype–phenotype correlation in GDF2-related HHT. Carefully collected clinical information with longitudinal follow-up may also assist in refining classification of GDF2 VUS as benign or pathogenic in the future. Full article
Show Figures

Figure 1

9 pages, 801 KB  
Case Report
Rare Case with Pathogenic Variant in DHX16 Gene Causing Neuromuscular Disease and Oculomotor Anomalies
by Stefania Kalampokini, Dimitrios G. Goulis, Georgia Pepe, Stavrenia Koukoula, Antonis Frontistis, Maria Moschou, Marianthi Arnaoutoglou, Vasileios Papaliagkas and Vasilios K. Kimiskidis
Int. J. Mol. Sci. 2025, 26(6), 2812; https://doi.org/10.3390/ijms26062812 - 20 Mar 2025
Cited by 2 | Viewed by 1278
Abstract
The DEAD/DExD/H-box RNA helicases are a group of RNA-binding proteins involved in the metabolism of mRNAs. They coordinate gene expression programs and play a role in cellular signaling, fate, and survival. We describe a case of a 36-year-old female with neuromuscular disease, sensorineural [...] Read more.
The DEAD/DExD/H-box RNA helicases are a group of RNA-binding proteins involved in the metabolism of mRNAs. They coordinate gene expression programs and play a role in cellular signaling, fate, and survival. We describe a case of a 36-year-old female with neuromuscular disease, sensorineural hearing loss, retinitis pigmentosa, and primary ovarian insufficiency harboring a heterozygous de novo missense pathogenic variant in the DEAH-box helicase 16 (DHX16) gene. This is the first case exhibiting a high intellectual level and the highest survival outcome so far. Eight previous cases of DHX16 disease-causing variant carriers have been described with common features, including muscle weakness with hypotonia, myopathy or peripheral neuropathy, sensorineural hearing loss, abnormal retinal findings, and infantile spasms or epilepsy. Increasing evidence associates RNA-binding proteins, including the DEAD/DExD/H-box helicase family genes, with neuropsychiatric or neurodevelopmental disorders. DHX16 genetic analysis should be considered early when diagnosing a child or young adult with muscular disease, severe hearing loss, and ocular anomalies. Full article
(This article belongs to the Special Issue Neurophysiology and Genetics of Neurological Diseases)
Show Figures

Graphical abstract

Back to TopTop