Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = crystalline photovoltaic modules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 857 KB  
Communication
Multilayer Haze-Assisted Luminescent Solar Concentrators for Enhanced Photovoltaic Performance
by Jae-Jin Lee, Tae-Woong Moon, Dong-Ha Kim and Suk-Won Choi
Materials 2025, 18(23), 5422; https://doi.org/10.3390/ma18235422 (registering DOI) - 1 Dec 2025
Abstract
Building-integrated photovoltaics (BIPVs) can benefit not only from transparent but also from opaque modules that maximize light capture. We present haze-assisted luminescent solar concentrators (HALSCs) that integrate scattering and luminescence in multilayer designs. Polymer–liquid crystal composites with embedded dyes form micron-scale domains that [...] Read more.
Building-integrated photovoltaics (BIPVs) can benefit not only from transparent but also from opaque modules that maximize light capture. We present haze-assisted luminescent solar concentrators (HALSCs) that integrate scattering and luminescence in multilayer designs. Polymer–liquid crystal composites with embedded dyes form micron-scale domains that act as broadband Mie scattering centers, while the dye provides spectral conversion. Monte Carlo ray-tracing simulations and experiments reveal that edge-emitted intensity increases with haze thickness but saturates beyond a threshold; segmenting the same thickness into multiple thinner layers enables repeated scattering, markedly enhancing side-guided emission. When coupled with crystalline silicon solar cells, multilayer HALSCs converted this optical advantage into enhanced photocurrent, with triple-layer devices nearly doubling output relative to transparent controls. These findings establish opacity–luminescence coupling and multilayer haze engineering as effective design principles, positioning HALSCs as practical platforms for advanced BIPVs and optical energy-management systems. Full article
(This article belongs to the Special Issue Advances in Electronic and Photonic Materials)
Show Figures

Figure 1

27 pages, 3088 KB  
Review
Thin-Film Solar Cells for Building-Integrated Photovoltaic (BIPV) Systems
by Subodh Kumar Jha, Abubakar Siddique Farooq and Aritra Ghosh
Architecture 2025, 5(4), 116; https://doi.org/10.3390/architecture5040116 - 20 Nov 2025
Viewed by 603
Abstract
The global temperature increase has posed urgent challenges, with buildings accountable for as much as 40% of CO2 emissions, and their decarbonization is critical to meet the net-zero target by 2050. Solar photovoltaics present a promising trajectory, especially through building-integrated photovoltaics (BIPVs), [...] Read more.
The global temperature increase has posed urgent challenges, with buildings accountable for as much as 40% of CO2 emissions, and their decarbonization is critical to meet the net-zero target by 2050. Solar photovoltaics present a promising trajectory, especially through building-integrated photovoltaics (BIPVs), where thin-film technologies can be used to replace traditional building materials. This article critically examined the development of thin-film solar cells for BIPVs, including their working mechanisms, material structures, and efficiency improvements in various generations. The discussion underscored that thin-film technologies, including CdTe and CIGS, had noticeably shorter energy payback times between 0.8 and 1.5 years compared to crystalline silicon modules that took 2 to 3 years, thus promising quicker recovery of energy and higher sustainability values. Whereas certain materials posed toxicity and environmental concerns, these were discovered to be surmountable through sound material selection and manufacturing innovation. The conclusions highlighted that the integration of lower material usage, high efficiency potential, and better energy payback performance placed thin-film BIPVs as an extremely viable option for mitigating lifecycle emissions. In summary, the review emphasized the critical role of thin-film solar technologies in making possible the large-scale implementation of BIPVs to drive the world toward net-zero emissions at a faster pace. Full article
Show Figures

Figure 1

30 pages, 3727 KB  
Article
A Novel Model Chain for Analysing the Performance of Vehicle Integrated Photovoltaic (VIPV) Systems
by Hamid Samadi, Guido Ala, Miguel Centeno Brito, Marzia Traverso, Silvia Licciardi, Pietro Romano and Fabio Viola
World Electr. Veh. J. 2025, 16(11), 619; https://doi.org/10.3390/wevj16110619 - 13 Nov 2025
Viewed by 330
Abstract
This study proposes a novel framework for analyzing Vehicle-Integrated Photovoltaic (VIPV) systems, integrating optical, thermal, and electrical models. The model modifies existing fixed PV methodologies for VIPV applications to assess received irradiance, PV module temperature, and energy production, and is available as an [...] Read more.
This study proposes a novel framework for analyzing Vehicle-Integrated Photovoltaic (VIPV) systems, integrating optical, thermal, and electrical models. The model modifies existing fixed PV methodologies for VIPV applications to assess received irradiance, PV module temperature, and energy production, and is available as an open-source MATLAB tool (VIPVLIB) enabling simulations via a smartphone. A key innovation is the integration of meteorological data and real-time driving, dynamically updating vehicle position and orientation every second. Different time resolutions were explored to balance accuracy and computational efficiency for optical model, while the thermal model, enhanced by vehicle speed, wind effects, and thermal inertia, improved temperature and power predictions. Validation on a minibus operating within the University of Palermo campus confirmed the applicability of the proposed framework. The roof received 45–47% of total annual irradiation, and the total yearly energy yield reached about 4.3 MWh/Year for crystalline-silicon, 3.7 MWh/Year for CdTe, and 3.1 MWh/Year for CIGS, with the roof alone producing up to 2.1 MWh/Year (c-Si). Under hourly operation, the generated solar energy was sufficient to fully meet daily demand from April to August, while during continuous operation it supplied up to 60% of total consumption. The corresponding CO2-emission reduction ranged from about 3.5 ton/Year for internal-combustion vehicles to around 2 ton/Year for electric ones. The framework provides a structured, data-driven approach for VIPV analysis, capable of simulating dynamic optical, thermal, and electrical behaviors under actual driving conditions. Its modular architecture ensures both immediate applicability and long-term adaptability, serving as a solid foundation for advanced VIPV design, fleet-scale optimization, and sustainability-oriented policy assessment. Full article
(This article belongs to the Section Energy Supply and Sustainability)
Show Figures

Figure 1

25 pages, 2627 KB  
Article
Photovoltaic Power Estimation for Energy Management Systems Addressing NMOT Removal with Simplified Thermal Models
by Juan G. Marroquín-Pimentel, Manuel Madrigal-Martínez, Juan C. Olivares-Galvan and Alma L. Núñez-González
Technologies 2025, 13(6), 240; https://doi.org/10.3390/technologies13060240 - 11 Jun 2025
Viewed by 767
Abstract
For energy management systems, it is crucial to determine, in advance, the available energy from renewable sources to be dispatched in the next hours or days, in order to meet their generation and consumption goals. Predicting the photovoltaic power output strongly depends on [...] Read more.
For energy management systems, it is crucial to determine, in advance, the available energy from renewable sources to be dispatched in the next hours or days, in order to meet their generation and consumption goals. Predicting the photovoltaic power output strongly depends on accurate weather forecasting data and properly photovoltaic panel models. In this context, several traditional thermal models are expected to become obsolete due to the removal of the widely used Nominal Module Operating Temperature parameter, stated in the IEC 61215-2:2021 standard, according to reports of longer time periods in test data processing. The main contribution of the photovoltaic power estimation algorithm developed in this paper is the integration of an accurate procedure to calculate the hourly day-ahead power output of a photovoltaic plant, based on three simplified thermal models in steady state. These models are proposed and evaluated as remedial alternatives to the removal of the Nominal Module Operating Temperature parameter—a subject that has not been widely addressed in the related literature. The proposed estimation algorithm converts specific Numerical Weather Prediction data and solar module specifications into photovoltaic power output, which can be used in energy management applications to provide economic and ecological benefits. This approach focuses on rooftop-mounted mono-crystalline silicon photovoltaic panel arrays and incorporates a nonlinear translation of Standard Test Conditions parameters to real operating conditions. All necessary input data are provided for the analysis, and the accuracy of experimental results is validated using appropriate error metrics. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

22 pages, 2282 KB  
Article
Enhancement of Photovoltaic Systems Using Plasmonic Technology
by Humam Al-Baidhani, Saif Hasan Abdulnabi and Maher A. R. Sadiq Al-Baghdadi
Processes 2025, 13(5), 1568; https://doi.org/10.3390/pr13051568 - 19 May 2025
Viewed by 1429
Abstract
The rise in temperature worldwide, especially in hot regions with extreme weather conditions, has made climate change one of the critical issues that degrades the solar photovoltaic (PV) system performance. In this paper, a new design of solar cells based on plasmonic thin-film [...] Read more.
The rise in temperature worldwide, especially in hot regions with extreme weather conditions, has made climate change one of the critical issues that degrades the solar photovoltaic (PV) system performance. In this paper, a new design of solar cells based on plasmonic thin-film Silver (Ag) technology is introduced. The new design is characterized by enhancing thermal effects, optical power absorption, and output power significantly, thus compensating for the deterioration in the solar cells efficiency when the ambient temperature rises to high levels. The temperature distribution on a PV solar module is determined using a three-dimensional computational fluid dynamics (CFD) model that includes the front glass, crystalline cells, and back sheet. Experimental and analytical results are presented to validate the CFD model. The parameters of temperature distribution, absorbed optical power, and output electrical power are considered to evaluate the device performance during daylight hours in summer. The effects of solar radiation falling on the solar cell, actual temperature of the environment, and wind speed are investigated. The results show that the proposed cells’ temperature is reduced by 1.2 °C thanks to the plasmonic Ag thin-film technology, which leads to enhance 0.48% real value as compared to that in the regular solar cells. Consequently, the absorbed optical power and output electrical power of the new solar cells are improved by 2.344 W and 0.38 W, respectively. Full article
Show Figures

Figure 1

34 pages, 3259 KB  
Review
Recent Progress in the Recovery and Recycling of Polymers from End-of-Life Silicon PV Modules
by Pradeep Padhamnath
Sustainability 2025, 17(10), 4583; https://doi.org/10.3390/su17104583 - 16 May 2025
Cited by 1 | Viewed by 3031
Abstract
Solar photovoltaic (PV) technology has emerged as the most preferred source of clean energy generation and has been deployed at a large scale. However, end-of-life management of the PV modules is a critical issue that has garnered the recent attention of lawmakers and [...] Read more.
Solar photovoltaic (PV) technology has emerged as the most preferred source of clean energy generation and has been deployed at a large scale. However, end-of-life management of the PV modules is a critical issue that has garnered the recent attention of lawmakers and researchers alike. Consequently, several researchers are actively developing technology to recycle the end-of-life PV modules. Since silicon PV modules account for more than 90% of the modules deployed globally, most of these efforts are focused on recycling crystalline silicon PV modules. Researchers have primarily focused on recovering pure silver from the contacts and pure Si from the solar cells. However, to ensure complete recyclability of such panels, the different polymers used in these modules must also be recycled. This review addresses the issue of recycling the polymers from end-of-life c-Si modules. Scopus and Google Scholar were used to search for the relevant literature. This review presents the current state-of-the-art technology related to polymer recycling found in the PV modules, the challenges encountered in their recycling, and the outlook. While research on the recycling of polymers has progressed in the last few decades, the instances of their applications in the recycling of polymers from PV panels are rarely reported in the literature. In this work, certain technical pathways, which can be employed to recycled polymers obtained from end-of-life PV panels, are presented. Recycling the polymers from the end-of-life silicon PV modules is crucial for improving the sustainability of solar PV technology. Full article
Show Figures

Graphical abstract

19 pages, 1740 KB  
Article
The Solar Waste Challenge: Estimating and Managing End-of-Life Photovoltaic Panels in Italy
by Soroush Khakpour, Le Quyen Luu, Francesco Nocera, Alberta Latteri and Maurizio Cellura
Energies 2025, 18(9), 2219; https://doi.org/10.3390/en18092219 - 27 Apr 2025
Cited by 3 | Viewed by 2331
Abstract
Italy ranks among the leading countries in photovoltaic (PV) adoption, having installed 6.80 GW of new PV capacity, bringing the total installed capacity to 37.09 GW in 2024. However, this widespread deployment also leads to a substantial amount of PV waste as systems [...] Read more.
Italy ranks among the leading countries in photovoltaic (PV) adoption, having installed 6.80 GW of new PV capacity, bringing the total installed capacity to 37.09 GW in 2024. However, this widespread deployment also leads to a substantial amount of PV waste as systems reach the end of their lifespan. This study aims to estimate the volume of PV waste expected to be generated in Italy due to the decommissioning of end-of-life (EoL) PV panels and to explore landfill and recovery scenarios that could offer the most sustainable management strategies. The findings indicate that 4520 kilotonnes of PV waste will be produced in Italy between 2030 and 2050. Of this, a significant share consists of glass (2704.9 kilotonnes) and aluminum (762.1 kilotonnes). Additionally, Italy will produce 174.6 kt of landfill waste in 2036. In 2049 and 2050, the total composition recovery is predicted to reach 571 kt and 604.7 kt, respectively. To summarize, the main contributions of this work include (1) projections of the EoL of crystalline silicon PV waste by material quantity for 2050, (2) the economic value share of PV module materials based on waste estimates and recovery, and (3) the estimation of the EoL solar compositions generated by 2050. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

15 pages, 1757 KB  
Article
Accelerated Aging Method of Performance Attenuation of Crystalline Silicon Photovoltaic Modules Under Full-Spectrum Conditions
by Rui Liu, Xin Li, Ying Liu, Zhuoyuan Zhang and Mingli Wu
Materials 2025, 18(7), 1507; https://doi.org/10.3390/ma18071507 - 27 Mar 2025
Cited by 1 | Viewed by 729
Abstract
Crystalline silicon photovoltaic modules, when subjected to diverse environmental conditions, undergo progressive performance degradation due to factors such as temperature, humidity, light irradiation, and operational duration. Understanding this degradation is essential for reliably correlating laboratory tests with actual operational performance. This study examines [...] Read more.
Crystalline silicon photovoltaic modules, when subjected to diverse environmental conditions, undergo progressive performance degradation due to factors such as temperature, humidity, light irradiation, and operational duration. Understanding this degradation is essential for reliably correlating laboratory tests with actual operational performance. This study examines the reduction in power generation capacity resulting from the prolonged interaction of these modules with various environmental factors. We developed an accelerated aging model that simulates real-world conditions in the lab, using multiple doses of environmental factors, full-spectrum conditions, and varying light intensities. The developed model indicates an aging acceleration factor of 143.36, though this factor might be higher in actual conditions. To validate our model, we conducted a series of tests under controlled conditions, specifically at a temperature of 70 °C, humidity level of 60%, and triple the standard incident light intensity. The findings revealed a significant correlation between the accelerated aging model and the long-term performance degradation observed in modules operational for 8–10 years. For polycrystalline silicon modules, the correction coefficient associated with the accelerated aging method was determined to range from 0.3 to 0.5. This study presents a reliable approach for connecting long-term performance projections of photovoltaic modules to laboratory testing, providing critical insights into the operational reliability and degradation patterns of crystalline silicon photovoltaic modules within the industry. Full article
Show Figures

Figure 1

40 pages, 1207 KB  
Review
Recent Advances in Flexible Solar Cells; Materials, Fabrication, and Commercialization
by Maoz Maoz, Zohair Abbas, Syed Abdul Basit Shah and Vanni Lughi
Sustainability 2025, 17(5), 1820; https://doi.org/10.3390/su17051820 - 21 Feb 2025
Cited by 7 | Viewed by 10765
Abstract
Flexibility, light weight, and mechanical robustness are the key advantages of flexible photovoltaic (PV) modules, making them highly versatile for sustainable energy solutions. Unlike traditional rigid PV modules, their flexible nature makes them incredibly versatile for harnessing energy in places where doing so [...] Read more.
Flexibility, light weight, and mechanical robustness are the key advantages of flexible photovoltaic (PV) modules, making them highly versatile for sustainable energy solutions. Unlike traditional rigid PV modules, their flexible nature makes them incredibly versatile for harnessing energy in places where doing so was once impossible. They have a wide range of applications due to their flexibility and moldability, making it possible to conform these modules to surfaces like curved rooftops and other irregular structures. In this paper, we provide a comprehensive review of all the materials used in flexible PV modules with a focus on their role in sustainability. We thoroughly discuss the active-layer materials for crystalline silicon (c-Si)-based solar cells (SC) and thin-film solar cells such as cadmium telluride (CdTe), as well as copper indium gallium diselenide (CIGS), amorphous thin-film silicon (a-Si), perovskite and organic solar cells. Various properties, such as the optical, barrier, thermal, and mechanical properties of different substrate materials, are reviewed. Transport layers and conductive electrode materials are discussed with a focus on emerging trends and contributions to sustainable PV technology. Various fabrication techniques involved in making flexible PV modules, along with advantages, disadvantages, and future trends, are highlighted in the paper. The commercialization of flexible PV is also discussed, which is a crucial milestone in advancing and adapting new technologies in the PV industry with a focus on contributing toward sustainability. Full article
Show Figures

Figure 1

31 pages, 4525 KB  
Review
From Waste to Resource: Exploring the Current Challenges and Future Directions of Photovoltaic Solar Cell Recycling
by Ghadeer Badran and Vlado K. Lazarov
Solar 2025, 5(1), 4; https://doi.org/10.3390/solar5010004 - 11 Feb 2025
Cited by 6 | Viewed by 5310
Abstract
The rapid proliferation of photovoltaic (PV) solar cells as a clean energy source has raised significant concerns regarding their end-of-life (EoL) management, particularly in terms of sustainability and waste reduction. This review comprehensively examines challenges, opportunities, and future directions in the recycling of [...] Read more.
The rapid proliferation of photovoltaic (PV) solar cells as a clean energy source has raised significant concerns regarding their end-of-life (EoL) management, particularly in terms of sustainability and waste reduction. This review comprehensively examines challenges, opportunities, and future directions in the recycling of PV solar cells, focusing on mechanical, thermal, and chemical recycling techniques. It also evaluates the scalability and practicality of these methods to different PV technologies, including crystalline silicon and thin-film modules. It explores the economic and environmental impacts of these processes, highlighting the necessity of developing robust recycling infrastructure and innovative technologies to address the anticipated surge in PV waste. Additionally, this review discusses the critical role of government policies and industry collaboration in overcoming the barriers to effective recycling. Furthermore, the importance of integrating design-for-recyclability principles into PV module development is emphasized, as it can significantly enhance material recovery and process efficiency. By advancing these strategies, the solar industry can achieve greater sustainability, reduce resource depletion, and mitigate environmental risks, thereby ensuring the long-term viability of solar energy as a key component of global renewable energy initiatives. Full article
Show Figures

Figure 1

32 pages, 11259 KB  
Article
An Assessment of the Environmental Impact of Construction Materials of Monocrystalline and Perovskite Photovoltaic Power Plants Toward Their Sustainable Development
by Izabela Piasecka and Zbigniew Kłos
Materials 2024, 17(23), 5787; https://doi.org/10.3390/ma17235787 - 26 Nov 2024
Cited by 6 | Viewed by 1571
Abstract
The interest in alternative energy sources, including the use of solar radiation energy, is growing year by year. Currently, the most frequently installed photovoltaic modules are made of single-crystalline silicon solar cells (sc-Si). However, one of the latest solutions are perovskite solar cells [...] Read more.
The interest in alternative energy sources, including the use of solar radiation energy, is growing year by year. Currently, the most frequently installed photovoltaic modules are made of single-crystalline silicon solar cells (sc-Si). However, one of the latest solutions are perovskite solar cells (PSC), which are considered the future of photovoltaics. Therefore, the main objective of this research was to assess the environmental impact of the construction materials of monocrystalline and perovskite photovoltaic power plants toward their sustainable development. The research object was the construction materials and components of two 1 MW photovoltaic power plants: one based on monocrystalline modules and the other on perovskite modules. The life cycle assessment (LCA) method was used for the analyses. The IMPACT World+, IPCC and CED models were used in it. The analyses were performed separately for five sets of elements: support structures, photovoltaic panels, inverter stations, electrical installations and transformers. Two post-consumer management scenarios were adopted: storage and recycling. The life cycle of a photovoltaic power plant based on photovoltaic modules made of perovskite cells is characterized by a smaller negative impact on the environment compared to traditional power plants with monocrystalline silicon modules. Perovskites, as a construction material of photovoltaic modules, fit better into the main assumptions of sustainable development compared to cells made of monocrystalline silicon. However, it is necessary to conduct further work which aims at reducing energy and material consumption in the life cycles of photovoltaic power plants. Full article
(This article belongs to the Special Issue Sustainable Materials for Engineering Applications)
Show Figures

Graphical abstract

13 pages, 6760 KB  
Article
Efficiency Ranking of Photovoltaic Microinverters and Energy Yield Estimations for Photovoltaic Balcony Power Plants
by Stefan Krauter and Jörg Bendfeld
Energies 2024, 17(22), 5551; https://doi.org/10.3390/en17225551 - 6 Nov 2024
Cited by 1 | Viewed by 4255
Abstract
The market for microinverters is growing, especially in Europe. Driven by rising electricity prices and an easing in legislation since 2024, the number of mini-photovoltaic energy systems (mini-PVs) being installed is increasing substantially. Indoor and outdoor studies of microinverters have been carried out [...] Read more.
The market for microinverters is growing, especially in Europe. Driven by rising electricity prices and an easing in legislation since 2024, the number of mini-photovoltaic energy systems (mini-PVs) being installed is increasing substantially. Indoor and outdoor studies of microinverters have been carried out at Paderborn University since 2014. In the indoor lab, conversion efficiencies as a function of load have been measured with high accuracy and ranked according to Euro and CEC weightings; the latest rankings from 2024 are included in this paper. In the outdoor lab, energy yields have been measured using identical and calibrated crystalline silicon PV modules; until 2020, measurements were carried out using 215 Wp modules. Because of increasing PV module power ratings, 360 Wp modules were used from 2020 until 2024. In 2024, the test modules were upgraded to 410 Wp modules, taking into account the increase from 600 W to 800 W of inverter power limits, which is suitable for simplified operation permission (“plug-in”) in many European countries within a homogenised legislation area for such mini-photovoltaic energy systems or “balcony power plants”. This legislation for simplified operation also covers overpowered mini-plants, although the maximum AC output remains limited to 800 W. Presently, yield assessments are being carried out in the outdoor lab, which will take at least a year to be valid and comparable. Kits consisting of PV modules, inverters, and mounting systems are also being evaluated. Yield rankings sometimes differ from efficiency rankings due to the use of different MPPT algorithms with different MPP approach speeds and accuracies. To accelerate yield assessment, we developed a novel, simple formula to determine energy yield for any module and inverter configuration, including overpowered systems. This is a linear approach, determined by just two coefficients, a and b, which are given for several inverters. To reduce costs, inverters will be integrated into the module frame or the module terminal box in the future. Full article
(This article belongs to the Special Issue Experimental and Numerical Analysis of Photovoltaic Inverters)
Show Figures

Figure 1

10 pages, 2482 KB  
Article
Effect of Sulfurization Temperature on Properties of Cu2ZnSnS4 Thin Films and Diffusion of Ti Substrate Elements
by Meihong Huang, Junhui Lin, Zhiyong Liang, Shaowei Chen, Yuling Zhong, Feng Wang, Bixian Chen and Dongxia Zhang
Crystals 2024, 14(10), 910; https://doi.org/10.3390/cryst14100910 - 20 Oct 2024
Cited by 1 | Viewed by 1849
Abstract
The addition of flexible Cu2ZnSnS4 (CZTS) thin film solar cells to titanium (Ti) substrates is an attractive way to achieve the low-cost manufacturing of photovoltaics. Prior research has indicated that the appropriate diffusion of Ti elements can enhance the crystalline growth of CZTS [...] Read more.
The addition of flexible Cu2ZnSnS4 (CZTS) thin film solar cells to titanium (Ti) substrates is an attractive way to achieve the low-cost manufacturing of photovoltaics. Prior research has indicated that the appropriate diffusion of Ti elements can enhance the crystalline growth of CZTS films. However, the excessive diffusion of Ti has been shown to adversely affect the photovoltaic performance of CZTS photovoltaic devices. Therefore, it is essential to regulate the diffusion of Ti elements within CZTS thin films to optimize their photovoltaic properties. The tendency for Ti substrate elements to diffuse into CZTS films is also influenced by the activation energy associated with these Ti elements. The sulfurization temperature is posited to be a critical factor in modulating the diffusion and activation energy of Ti elements within CZTS thin films. Consequently, this research investigates the alteration of the sulfurization temperature of CZTS thin films in order to enhance the properties of these thin films and to examine the diffusion behavior of titanium elements. The results reveal that as the sulfurization temperature increases, the diffusion of Ti elements within the CZTS thin films initially increases, then decreases, and subsequently increases again. This pattern suggests that the diffusion of Ti elements is affected not only by the activation energy of the Ti elements but also by the defect hopping distance within the CZTS thin films. Notably, at a sulfurization temperature of 550 °C, the grains at the base of the CZTS thin film demonstrate an increased density, which is associated with a reduced defect hopping distance, thereby hindering the diffusion of Ti elements within the CZTS thin films. Furthermore, at this specific sulfurization temperature, the slope of the current–voltage (I–V) curve for the CZTS/Ti structure reaches its maximum, indicating optimal ohmic contact characteristics. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

12 pages, 2997 KB  
Article
Improved Performance of Bifacial Photovoltaic Modules with Low-Temperature Processed Textured Rear Reflector
by Hyung-Jun Song, Deukgwang Lee, Chungil Kim and Jun-Hee Na
Appl. Sci. 2024, 14(19), 8718; https://doi.org/10.3390/app14198718 - 27 Sep 2024
Cited by 3 | Viewed by 2874
Abstract
Bifacial photovoltaic (PV) modules can capture both front and rear incident light simultaneously, thereby enhancing their power output. Achieving uniformity in rear incident light is crucial for an efficient and a stable operation. In this study, we present a simple, yet effective textured [...] Read more.
Bifacial photovoltaic (PV) modules can capture both front and rear incident light simultaneously, thereby enhancing their power output. Achieving uniformity in rear incident light is crucial for an efficient and a stable operation. In this study, we present a simple, yet effective textured rear reflector, designed to optimize the performance and stability of bifacial PV modules. The three-dimensional textured surface was created using an ethylene vinyl acetate sheet (EVA) through a hot-press method at 150 °C. Subsequently, the textured EVA surface was coated with solution-processed silver ink, increasing the reflectance of the textured reflector through a low-temperature process. The integration of the developed textured rear reflector into bifacial crystalline silicon (c-Si) PV modules resulted in an additional 6.9% improvement in power conversion efficiency compared to bifacial PV modules without a rear reflector, particularly when the rear reflector is close to the PV module. Furthermore, the textured rear reflector may mitigate current mismatch among cells by randomizing incident light and uniformly redistributing the reflected light to the PV cells. Consequently, the proposed textured reflector contributes to the enhanced performance and stability of bifacial PV modules. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

22 pages, 2695 KB  
Article
Eco-Innovation Method for Sustainable Development of Energy-Producing Products Considering Quality and Life Cycle Assessment (QLCA)
by Dominika Siwiec and Andrzej Pacana
Energies 2024, 17(15), 3841; https://doi.org/10.3390/en17153841 - 4 Aug 2024
Cited by 5 | Viewed by 1971
Abstract
The sustainability of products remains a challenge, mainly due to the lack of consistent approaches for simultaneously taking into account the key criteria of the concept in the process. This research aims to develop an eco-innovative QLCA method to create new product solutions [...] Read more.
The sustainability of products remains a challenge, mainly due to the lack of consistent approaches for simultaneously taking into account the key criteria of the concept in the process. This research aims to develop an eco-innovative QLCA method to create new product solutions that integrate quality (customer satisfaction) and environmental impact assessment throughout the product life cycle. The QLCA method includes: (i) product prototyping according to quality and environmental criteria; (ii) prospective assessment of the quality of prototypes, taking into account customer requirements; (iii) prospective life cycle assessment of product prototypes using a cradle-to-grave approach in accordance with ISO 14040; and (iv) setting the direction of product development while taking into account the fulfilment of customer expectations and the need to care for the environment throughout the product life cycle. Owing to the lack of previous research in this area, as well as the popularity of photovoltaic (PV) panels in reducing greenhouse gases, an illustration was obtained and test of the method was carried out on the example of silicon photovoltaic panel modules (Crystalline Si PV Module). In accordance with the adopted assumptions, the results of the QLCA method test showed that the modelled PV prototypes will, in most cases, be satisfactory for customers, but they still require improvement actions to reduce carbon dioxide (CO2) emissions throughout their life cycle. These activities should be consistent so as to achieve quality that satisfies customers. The QLCA method can be used by designers, managers, and decision-makers at the early stages of design, but also during the product maturity phase for its sustainable development. Full article
Show Figures

Figure 1

Back to TopTop