Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = crystal threshold energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4562 KB  
Article
Step-Graded III–V Metamorphic Buffers on Ge for High-Efficiency Photovoltaics: Investigation of Strain Relaxation and Morphology Evolution
by Elisabetta Achilli, Nicola Armani, Jacopo Pedrini, Erminio Greco, Salvatore Digrandi, Andrea Fratta, Fabio Pezzoli, Roberta Campesato and Gianluca Timò
Crystals 2025, 15(10), 900; https://doi.org/10.3390/cryst15100900 - 17 Oct 2025
Viewed by 290
Abstract
This work is motivated by the need to enhance efficiency and radiation resistance and reduce weight in high-performance photovoltaic devices, with applications spanning both terrestrial and space environments. Metamorphic buffers are key enablers for reducing defect formation in lattice-mismatched structures, which are among [...] Read more.
This work is motivated by the need to enhance efficiency and radiation resistance and reduce weight in high-performance photovoltaic devices, with applications spanning both terrestrial and space environments. Metamorphic buffers are key enablers for reducing defect formation in lattice-mismatched structures, which are among the most widespread technologies for high-efficiency photovoltaic energy conversion. Although many systems have been created, absolute certainty about the effective relaxation mechanism remains unattained. In this work, MOVPE-grown step-graded buffers with variable In content were obtained on Ge substrates and investigated to identify the critical thresholds that govern strain relaxation and defect formation. The results show that the buffers are fully strained when the In top-layer content is <6.0%, while a degree of relaxation in the entire structure appears when the In top-layer content is >6.0%. In addition, the relaxation phenomenon is paralleled by the formation of a tilt angle between the layers and the substrate. We also found evidence that the appearance of relaxation is not limited to the upper layer but is presented by the structure as a whole. The effects of Te doping inside the InGaAs layers were also investigated: Te does not influence the structure of the crystal, but it introduces a Burstein–Moss blue shift in the photoluminescence energy of about 20 meV. Eventually, to reduce defect formation with the goal of achieving high-efficiency photovoltaic devices, a thick layer with a lower In content was grown onto the overshoot material (In0.12Ga0.88As). The results obtained confirm the high quality of the buffers and unveil the critical points, which are responsible for the most important changes in the buffer architecture and should be considered in future material engineering. The results provide valuable insights for the design of high-performance, sustainable photovoltaic devices and contribute to the advancement of III–V semiconductor integration on Ge substrates. Full article
(This article belongs to the Special Issue Crystal Growth of III–V Semiconductors)
Show Figures

Figure 1

16 pages, 5624 KB  
Article
Low Threshold Voltage and Programmable Patterned Polymer-Dispersed Liquid Crystal Smart Windows
by Zhichao Ji, Zhenyuan Wang, Hongxu Jin, Xinying Cui, Meijun Liu, Tianzhen Chen, Lei Wang, Haibin Sun, Taoufik Soltani and Xinzheng Zhang
Polymers 2025, 17(18), 2531; https://doi.org/10.3390/polym17182531 - 19 Sep 2025
Viewed by 802
Abstract
Polymer-dispersed liquid crystal (PDLC) smart windows hold significant potential for energy-efficient buildings and vehicles, offering a promising pathway toward carbon neutrality. However, their widespread applications are hindered by critical limitations, including high driving voltages and the inability to achieve programmable patterning or multi-region [...] Read more.
Polymer-dispersed liquid crystal (PDLC) smart windows hold significant potential for energy-efficient buildings and vehicles, offering a promising pathway toward carbon neutrality. However, their widespread applications are hindered by critical limitations, including high driving voltages and the inability to achieve programmable patterning or multi-region addressable control. To address these challenges, we propose a pre-orientation strategy via low-voltage electric field (5 V, 1 kHz), which optimizes liquid crystal molecular alignment during the phase separation process. Vertically aligned liquid crystal molecules in the polymer network with enlarged pore structures reduce anchoring energy barriers for LC molecular reorientation, causing a 61.2% reduction in threshold voltage (Vth) from 20.6 V to 8.0 V. Crucially, a programmable patterned PDLC film is successfully fabricated by utilizing cost-effective photomasks. Due to the different Vth of the corresponding regions, the patterned PDLC film exhibits stepwise control modes of light transmission: patterned scattering state, patterned transparent state and total transparent state, driven by incremental voltages. Our method can achieve not only energy-efficient tunable patterns for esthetic designs (e.g., logos or images) but also a scalable platform for multi-level optical modulation, which will advance PDLC technology toward low-voltage adaptive smart windows and open avenues for intelligent architectures and broadening their application scenarios. Full article
(This article belongs to the Special Issue Advances in Luminescent Polymers)
Show Figures

Graphical abstract

20 pages, 2145 KB  
Article
Structural Design of High-Coercivity Nd-Ce-Fe-B Magnets with Easy Axis Perpendicular Orientation and High-Abundance Ce Content Based on Micromagnetic Simulations
by Qian Zhao, Ying Yu, Chenlin Tang, Qingkang Hu, Suo Bai, Puyu Wang, Zhubai Li and Guoping Zhao
Nanomaterials 2025, 15(17), 1358; https://doi.org/10.3390/nano15171358 - 3 Sep 2025
Cited by 1 | Viewed by 816
Abstract
In recent years, replacing the scarce and expensive rare earth element Nd with the more abundant and lower cost Ce in the production of Nd-Ce-Fe-B permanent magnets has become a focus of both industrial and academic research. A critical challenge is how to [...] Read more.
In recent years, replacing the scarce and expensive rare earth element Nd with the more abundant and lower cost Ce in the production of Nd-Ce-Fe-B permanent magnets has become a focus of both industrial and academic research. A critical challenge is how to design the crystal structure of Nd-Ce-Fe-B magnets to compensate for the decline in magnetic performance caused by the Ce substitution. In this study, based on micromagnetic theory, Nd-Ce-Fe-B magnets with perpendicularly oriented easy axes—in which the two main phases, Nd2Fe14B and Ce2Fe14B, have a volume ratio of 1:1 but different spatial arrangements—are modeled and simulated using the MuMax3.11 software. The model is either cubic or spherical. The results from the demagnetization curve analysis indicate that the coercivity mechanism of all magnets is pinning. When the magnet volume is constant but the phase distribution differs, the Nd2Fe14B/Ce2Fe14B structure exhibits a higher coercivity and maximum energy product than the Ce2Fe14B/Nd2Fe14B structure. Furthermore, for both structural models with the same phase distribution, the coercivity and the maximum energy product decrease with the increasing volume of the main phase. Notably, the coercivity is similar when the magnet volume is very small and stabilizes after reaching a certain threshold. This qualitative conclusion was also observed in Nd-Dy-Fe-B magnets with the same structure and equal volume ratio of the two main phases. This general finding indicates that, in biphasic magnets with equal phase volumes, the phase with the larger anisotropy field located at the grain periphery can achieve a higher coercivity and maximum magnetic energy product. The analysis of the angular distribution reveals that the number of magnetic domains remains fixed at six in the Nd2Fe14B/Ce2Fe14B structure and two in the Ce2Fe14B/Nd2Fe14B structure. The in-plane magnetic moment analysis of the Ce2Fe14B/Nd2Fe14B magnet shows that the magnetic moments at the edges of the Ce2Fe14B begin to deflect first. Even at the pinning stage, the magnetic moments within the Nd2Fe14B remain unrotated. Nevertheless, the surface magnetic moments of Ce2Fe14B, through exchange coupling, drive the deflection of the interfacial and interior moments, completing the entire demagnetization process. These computational results provide theoretical guidance for related experimental studies and industrial applications. Full article
(This article belongs to the Special Issue Study on Magnetic Properties of Nanostructured Materials)
Show Figures

Figure 1

14 pages, 287 KB  
Review
NET Formation Drives Tophaceous Gout
by Yuqi Wang, Jinshuo Han, Jasmin Knopf, Lingjiang Zhu, Yi Zhao, Lei Liu and Martin Herrmann
Gout Urate Cryst. Depos. Dis. 2025, 3(3), 16; https://doi.org/10.3390/gucdd3030016 - 29 Aug 2025
Viewed by 863
Abstract
Gout is a chronic inflammatory disease characterized by the deposition of monosodium urate (MSU) crystals within joints, leading to recurrent acute flares and long-term tissue damage. While various hypotheses have been proposed to explain the self-limiting nature of acute gout attacks, we posit [...] Read more.
Gout is a chronic inflammatory disease characterized by the deposition of monosodium urate (MSU) crystals within joints, leading to recurrent acute flares and long-term tissue damage. While various hypotheses have been proposed to explain the self-limiting nature of acute gout attacks, we posit that aggregated neutrophil extracellular traps (aggNETs) play a central role in this process. This review focuses on the mechanisms underlying MSU crystal-induced formation of neutrophil extracellular traps (NETs) and explores their dual role in the clinical progression of gout. During the initial phase of acute flares, massive NET formation is accompanied by the release of preformed inflammatory mediators, which is a condition that amplifies inflammatory cascades. As neutrophil recruitment reaches a critical threshold, the NETs tend to form high-order aggregates (aggNETs). The latter encapsulate MSU crystals and further pro-inflammatory mediators within their three-dimensional scaffold. High concentrations of neutrophil serine proteases (NSPs) within the aggNETs facilitate the degradation of soluble inflammatory mediators and eventually promote the resolution of inflammation in a kind of negative inflammatory feedback loop. In advanced stages of gout, MSU crystal deposits are often visible via dual-energy computed tomography (DECT), and the formation of palpable tophi is frequently observed. Based on the mechanisms of resolution of inflammation and the clinical course of the disease, building on the traditional static model of “central crystal–peripheral fibrous encapsulation,” we have expanded the NETs component and refined the overall concept, proposing a more dynamic, multilayered, multicentric, and heterogeneous model of tophus maturation. Notably, in patients with late-stage gout, tophi exist in a stable state, referred to as “silent” tophi. However, during clinical tophus removal, the disruption of the structural or functional stability of “silent” tophi often leads to the explosive reactivation of inflammation. Considering these findings, we propose that future therapeutic strategies should focus on the precise modulation of NET dynamics, aiming to maintain immune equilibrium and prevent the recurrence of gout flares. Full article
Show Figures

Graphical abstract

16 pages, 25326 KB  
Article
Influence of Carbon Quantum Dots on the Orientational Order and Rotational Viscosity of 8CB
by Alfredos Schinas, Stefanos Basim Atata, Dimitris Tsiourvas and Ioannis Lelidis
Nanomaterials 2025, 15(16), 1278; https://doi.org/10.3390/nano15161278 - 19 Aug 2025
Viewed by 715
Abstract
Soft nanocomposites were prepared by dispersing lipophilic carbon quantum dots (CQDs) in the liquid crystal compound 8CB. The quality of the dispersion was evaluated using fluorescence microscopy, while the microstructure of the samples was examined via polarized optical microscopy. We investigated the influence [...] Read more.
Soft nanocomposites were prepared by dispersing lipophilic carbon quantum dots (CQDs) in the liquid crystal compound 8CB. The quality of the dispersion was evaluated using fluorescence microscopy, while the microstructure of the samples was examined via polarized optical microscopy. We investigated the influence of CQDs on the orientational order parameter S as a function of temperature and sample composition by measuring birefringence. Additionally, the Fréedericksz transition threshold, along with the characteristic response and relaxation times, was measured for each sample as a function of temperature and applied voltage amplitude. The extracted rotational viscosity γ1 exhibits a pretransitional divergence upon cooling toward the smectic-A phase. Its temperature dependence was analyzed using established models from the literature, and the corresponding activation energy was determined. Notably, our analysis suggests that the presence of CQDs alters the power-law dependence of γ1 on the orientational order parameter S. The influence of CQDs on the elastic constants has been investigated. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

19 pages, 11203 KB  
Article
In Situ TEM Observation of Electric Field-Directed Self-Assembly of PbS and PbSe Nanoparticles
by Iryna Zelenina, Harald Böttner, Marcus Schmidt, Yuri Grin and Paul Simon
Nanomaterials 2025, 15(16), 1275; https://doi.org/10.3390/nano15161275 - 18 Aug 2025
Viewed by 868
Abstract
Nano-sized particles of semiconducting lead sulfide and selenide and their 2D thin layers show high potential in applications, such as field-effect transistors, photodetectors, solar cells, and thermoelectric devices. The generation of PbS and PbSe nanobars and nanocubes is evoked by in situ electron [...] Read more.
Nano-sized particles of semiconducting lead sulfide and selenide and their 2D thin layers show high potential in applications, such as field-effect transistors, photodetectors, solar cells, and thermoelectric devices. The generation of PbS and PbSe nanobars and nanocubes is evoked by in situ electron beam treatment, leading to the formation of thin, extended 2D nanolayers. The initial single crystals are decomposed via sublimation of PbS and PbSe in terms of molecular and atomic fragments, which finally condense on the cold substrate to form nanostructures. The fragments in the gas phase were proven using mass spectrometry. In the case of PbS, Pb+ and PbS+ species could were detected, whereas PbSe disintegrated into Pb+, Se2+, and PbSe+. The threshold current that initiates fragmentation increases from PbTe via PbSe up to PbS, which is in line with the increasing crystal formation energies. The uniform orientation of independently formed nanoparticles on the macroscopic scale can be explained by an external electric field acting on emerging dipolar nanospecies. The external dipole field originates from the sputtered mother crystal, where the electron flux is initiated; thus, a current arises between the crystal’s hot and cold ends. On the contrary, in small single crystals, due to the lack of sufficient charge carriers, only local material excavation is detected instead of extended depletion and subsequent nanoparticle deposition. This fragmentation process may represent a new preparation route that provides lead chalcogenide nanofilms that are free of contamination or surfactant participation, which are typical drawbacks associated with the application of wet chemical methods. Full article
Show Figures

Figure 1

15 pages, 4371 KB  
Article
Optimization of 4-Cyano-4’-pentylbiphenyl Liquid Crystal Dispersed with Photopolymer: Application Towards Smart Windows and Aerospace Technology
by Govind Pathak, Busayamas Phettong and Nattaporn Chattham
Polymers 2025, 17(16), 2232; https://doi.org/10.3390/polym17162232 - 16 Aug 2025
Viewed by 1029
Abstract
The present reported work deals with the preparation of an energy-efficient smart window based on liquid crystal (LC) using a polymer-dispersed liquid crystal (PDLC) technique. The smart window was prepared using an LC–polymer composite by mixing photopolymer NOA-71 into nematic liquid crystal (NLC) [...] Read more.
The present reported work deals with the preparation of an energy-efficient smart window based on liquid crystal (LC) using a polymer-dispersed liquid crystal (PDLC) technique. The smart window was prepared using an LC–polymer composite by mixing photopolymer NOA-71 into nematic liquid crystal (NLC) 4-cyano-4’-pentylbiphenyl (5CB). The liquid crystal cell was prepared, the LC–polymer composite was filled inside the cell, and voltage was applied after the exposure of ultraviolet (UV) light. Textural analysis was carried out, and microscope images were taken out with the variation in voltage. Optical measurements were also performed for the smart window based on the PDLC system. Threshold voltage and saturation voltages were measured to carry out the operating voltage analysis. Transmittance was measured as a function of wavelength at different voltages. An absorbance study was also performed, varying the voltage and wavelength. The change in the power of the laser beam passing through the prepared smart window as a function of voltage was also investigated. The working of a prepared smart window using liquid crystal and a photopolymer composite is also demonstrated in opaque and transparent states in the absence and presence of voltage. The output of the present investigation into a PDLC-based smart window can be useful in the applications of adaptive or light shutter devices and in aerospace technology, as it shows the dual nature of opaque and transparent states in the absence and presence of electric field. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

22 pages, 4443 KB  
Article
Integrating Multi-Domain Approach for Identification of Neo Anti-DHPS Inhibitors Against Pathogenic Stenotrophomonas maltophilia
by Alhumaidi Alabbas
Biology 2025, 14(8), 1030; https://doi.org/10.3390/biology14081030 - 11 Aug 2025
Viewed by 643
Abstract
Background: The increasing number of resistant bacterial strains is reducing the effectiveness of antimicrobial drugs in preventing infections. It has been shown that resistant strains invade living organisms and cause a wide range of illnesses, leading to a surprisingly high death rate. Objective: [...] Read more.
Background: The increasing number of resistant bacterial strains is reducing the effectiveness of antimicrobial drugs in preventing infections. It has been shown that resistant strains invade living organisms and cause a wide range of illnesses, leading to a surprisingly high death rate. Objective: The present study aimed to identify novel dihydropteroate synthase (DHPS) inhibitors from Stenotrophomonas maltophilia using structure-based computational techniques. Methodology: This in silico study used various bioinformatics and cheminformatics approaches to find new DHPS inhibitors. It began by retrieving the crystal structure via PDB ID: 7L6P, followed by energy minimization. The DHPS enzyme was virtually screened against the CHEMBL library to target S. maltophilia through enzyme inhibition. Then, absorption, distribution, metabolism, and excretion (ADME) analysis was performed to select the top hits. This process identified the top-10 hits. Additionally, imidazole (control) was used for comparative assessment. Furthermore, a 100 ns molecular dynamics simulation and post-simulation analyses were conducted. The docking results were validated through binding free energy calculations and entropy energy estimation approaches. Results: The docking results prioritized 10 compounds based on their binding scores, with a maximum threshold of −7 kcal/mol for selection. The ADME assessment shortlisted 3 out of 10 compounds: CHEMBL2322256, CHEMBL2316475, and CHEMBL2334441. These compounds satisfied Lipinski’s rule of five and were considered drug-like. The identified inhibitors demonstrated greater stability and less deviation compared to the control (imidazole). The average RMSD stayed below 2 Å, indicating overall stability without major deviations in the DHPS–ligand complexes. Post-simulation analysis assessed the stability and interaction profiles of the complexes under physiological conditions. Hydrogen bonding analysis showed the control to be more stable than the three tested complexes. Increased salt bridge interactions suggested stronger electrostatic stabilization, while less alteration of the protein’s secondary structure indicated better structural compatibility. These findings support the potential of these novel ligands as potent DHPS inhibitors. Binding energy estimates showed that CHEMBL2322256 was the most stable, with scores of −126.49 and −124.49 kcal/mol. Entropy calculations corroborated these results, indicating that CHEMBL2322256 had an estimated entropy of 8.63 kcal/mol. Conclusions: The newly identified compounds showed more promising results compared to the control. While these compounds have potential as innovative drugs, further research is needed to confirm their effectiveness as anti-DHPS agents against antibiotic resistance and S. maltophilia infections. Full article
Show Figures

Figure 1

13 pages, 4956 KB  
Article
The Influence of Crystal Anisotropy in Femtosecond Laser Processing of Single-Crystal Diamond
by Guolong Wang, Ji Wang, Kaijie Cheng, Kun Yang, Bojie Xu, Wenbo Wang and Wenwu Zhang
Nanomaterials 2025, 15(15), 1160; https://doi.org/10.3390/nano15151160 - 28 Jul 2025
Viewed by 822
Abstract
The single-crystal diamond (SCD), owing to its extreme physical and chemical properties, serves as an ideal substrate for quantum sensing and high-frequency devices. However, crystal anisotropy imposes significant challenges on fabricating high-quality micro-nano structures, directly impacting device performance. This work investigates the effects [...] Read more.
The single-crystal diamond (SCD), owing to its extreme physical and chemical properties, serves as an ideal substrate for quantum sensing and high-frequency devices. However, crystal anisotropy imposes significant challenges on fabricating high-quality micro-nano structures, directly impacting device performance. This work investigates the effects of femtosecond laser processing on the SCD under two distinct crystallographic orientations via single-pulse ablation. The results reveal that ablation craters along the <100> orientation exhibit an elliptical shape with the major axis parallel to the laser polarization, whereas those along the <110> orientation form near-circular craters with the major axis at a 45° angle to the polarization. The single-pulse ablation threshold of the SCD along <110> is 9.56 J/cm2, representing a 7.8% decrease compared to 10.32 J/cm2 for <100>. The graphitization threshold shows a more pronounced reduction, dropping from 4.79 J/cm2 to 3.31 J/cm2 (31% decrease), accompanied by enhanced sp2 carbon order evidenced by the significantly intensified G-band in the Raman spectra. In addition, a phase transition layer of amorphous carbon at the nanoscale in the surface layer (thickness of ~40 nm) and a narrow lattice spacing of 0.36 nm are observed under TEM, corresponding to the interlayer (002) plane of graphite. These observations are attributed to the orientation-dependent energy deposition efficiency. Based on these findings, an optimized crystallographic orientation selection strategy for femtosecond laser processing is proposed to improve the quality of functional micro-nano structures in the SCD. Full article
(This article belongs to the Special Issue Trends and Prospects in Laser Nanofabrication)
Show Figures

Figure 1

16 pages, 1631 KB  
Article
Pairwise Performance Comparison of Docking Scoring Functions: Computational Approach Using InterCriteria Analysis
by Maria Angelova, Petko Alov, Ivanka Tsakovska, Dessislava Jereva, Iglika Lessigiarska, Krassimir Atanassov, Ilza Pajeva and Tania Pencheva
Molecules 2025, 30(13), 2777; https://doi.org/10.3390/molecules30132777 - 27 Jun 2025
Cited by 1 | Viewed by 1303
Abstract
Scoring functions are key elements in docking protocols as they approximate the binding affinity of a ligand (usually a small bioactive molecule) by calculating its interaction energy with a biomacromolecule (usually a protein). In this study, we present a pairwise comparison of scoring [...] Read more.
Scoring functions are key elements in docking protocols as they approximate the binding affinity of a ligand (usually a small bioactive molecule) by calculating its interaction energy with a biomacromolecule (usually a protein). In this study, we present a pairwise comparison of scoring functions applying a multi-criterion decision-making approach based on InterCriteria analysis (ICrA). As criteria, the five scoring functions implemented in MOE (Molecular Operating Environment) software were selected, and their performance on a set of protein–ligand complexes from the PDBbind database was compared. The following docking outputs were used: the best docking score, the lowest root mean square deviation (RMSD) between the predicted poses and the co-crystallized ligand, the RMSD between the best docking score pose and the co-crystallized ligand, and the docking score of the pose with the lowest RMSD to the co-crystallized ligand. The impact of ICrA thresholds on the relations between the scoring functions was investigated. A correlation analysis was also performed and juxtaposed with the ICrA. Our results reveal the lowest RMSD as the best-performing docking output and two scoring functions (Alpha HB and London dG) as having the highest comparability. The proposed approach can be applied to any other scoring functions and protein–ligand complexes of interest. Full article
(This article belongs to the Special Issue Computational Approaches in Drug Discovery and Design)
Show Figures

Figure 1

16 pages, 3293 KB  
Article
Investigation of PBT-AP Interactions in PBT-Based Solid Propellants: A Combined Density Functional Theory and Molecular Dynamics Study
by Kun Liu and Xinlu Cheng
Polymers 2025, 17(11), 1492; https://doi.org/10.3390/polym17111492 - 27 May 2025
Viewed by 501
Abstract
Poly(3,3-bis(azidomethyl)oxetane(BAMO)-tetrahydrofuran(THF)) copolymer (PBT) and ammonium perchlorate (AP) are critical components of solid rocket propellants, where their interfacial bonding mechanisms and temperature-dependent mechanical properties are pivotal to propellant reliability. In this study, density functional theory (DFT) calculations were employed to evaluate the adsorption energies [...] Read more.
Poly(3,3-bis(azidomethyl)oxetane(BAMO)-tetrahydrofuran(THF)) copolymer (PBT) and ammonium perchlorate (AP) are critical components of solid rocket propellants, where their interfacial bonding mechanisms and temperature-dependent mechanical properties are pivotal to propellant reliability. In this study, density functional theory (DFT) calculations were employed to evaluate the adsorption energies between common AP crystal surfaces and PBT units, identifying the most energetically favorable adsorption configurations. The atomic configurations and charge transfer characteristics at the PBT-AP interface were systematically analyzed. Molecular dynamics (MD) simulations were further conducted to determine the thermally stable operating range of the PBT-AP system. The results reveal a strong temperature dependence of mechanical performance, with viscous failure mechanisms and damage thresholds during static tensile processes investigated across varying temperatures. Notably, mechanical properties remain stable below 60 °C but deteriorate significantly above this temperature. This study elucidates the influence of a PBT-AP interfacial microstructure and temperature on mechanical performance and tensile fracture damage boundaries, providing crucial insights for the design, formulation, and safe application of PBT-based solid rocket propellants. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

18 pages, 6285 KB  
Article
A Unified Equation for Predicting Crack Growth in Rubber Composites Across All Crack Growth Rates
by Aaron M. Duncan, Keizo Akutagawa, Dimitrios G. Papageorgiou, Julien L. Ramier and James J. C. Busfield
Polymers 2025, 17(10), 1357; https://doi.org/10.3390/polym17101357 - 15 May 2025
Viewed by 671
Abstract
The relationship between tearing energy and crack growth rates in elastomers is typically divided into three regions—slow crack growth, fast crack growth, and a transitional region—each described by separate power law relationships, requiring six variables to fully characterize the behavior. This study introduces [...] Read more.
The relationship between tearing energy and crack growth rates in elastomers is typically divided into three regions—slow crack growth, fast crack growth, and a transitional region—each described by separate power law relationships, requiring six variables to fully characterize the behavior. This study introduces a novel, unified equation that simplifies this relationship by combining two coexisting energy dissipation mechanisms into a single model with only four variables. The model consists of two terms, one for each energy dissipation mechanism: one term is dominant at slow crack growth rates and limited by a threshold energy, and the other is dominant at fast speeds. The transition region emerges naturally as the dominant mechanism shifts. The model’s simplicity enables new advances, such as predicting fast crack growth tearing and transition energies using only slow crack growth data. This capability is demonstrated across a wide range of non-strain crystallizing rubbers, including filled and unfilled compounds, tested at room temperature and elevated temperatures and in both swollen and unswollen states. This model offers a practical tool for material design, failure prediction, and reducing experimental effort in characterizing elastomer performance. Notably, this is the first model to unify slow, transition, and fast crack growth regimes into a single continuous equation requiring only four variables, enabling the prediction of high-speed behavior using only low-speed experimental data—a major advantage over existing six-parameter models. Full article
(This article belongs to the Special Issue Failure of Polymer Composites)
Show Figures

Graphical abstract

13 pages, 5817 KB  
Article
Enhanced Electro-Optical Properties and Peel Strength of Epoxy-Based Polymer-Stabilized Liquid Crystal Films Enabled by Rapid Cationic Polymerization and Polymer-Network Morphology Regulation
by Zhexu Song, Guangyang Shang, Yingjie Shi, Meiqi Yang, Tianfu Zhou, Meina Yu, Yanzi Gao and Cheng Zou
Materials 2025, 18(7), 1505; https://doi.org/10.3390/ma18071505 - 27 Mar 2025
Viewed by 738
Abstract
Polymer-stabilized liquid crystal (PSLC) dimming film has attracted widespread attention due to its normally transparent state, energy-saving capability, and excellent electro-optical performance, which has promising applications in smart cars and building windows. However, achieving good electro-optical performance and high peel strength simultaneously still [...] Read more.
Polymer-stabilized liquid crystal (PSLC) dimming film has attracted widespread attention due to its normally transparent state, energy-saving capability, and excellent electro-optical performance, which has promising applications in smart cars and building windows. However, achieving good electro-optical performance and high peel strength simultaneously still remains challenging. In this study, a PSLC film based on monoepoxy and diepoxy monomers was prepared through rapid cationic polymerization, showing low driving voltages and high peel strength simultaneously. The influence of the content and composition of two epoxy monomers on the microstructures, mechanical properties, and electro-optical performance of the PSLC films were systematically studied. The polymer morphology of PSLC could be effectively modulated by doping monoepoxy monomers. The PSLC film with total monomer content of ≤15 wt% showed enhanced electro-optical properties and peel strength when doping monoepoxy monomers due to the lateral polymer in the networks and denser polymer on the substrate. When the ratio of E6M to E6PM was 12:3, compared with pure E6M, the threshold voltage decreased from 18.2 V to 12.6 V, and the peel strength increased from 62.53 kPa to 136.37 kPa. These PSLC films can adapt to the requirements of different application scenarios by changing the content and proportion of two epoxy monomers, and the strategy has good prospects in the actual production and application of PSLC films. Full article
Show Figures

Figure 1

19 pages, 8269 KB  
Article
Investigation on the Bending Mechanism of Single-Crystal Copper Under High Bending Rates via Molecular Dynamics
by Peng Wu, Pengyue Zhao, Zhengkun Li, Jianwei Wu and Jiubin Tan
Micromachines 2025, 16(3), 314; https://doi.org/10.3390/mi16030314 - 7 Mar 2025
Viewed by 967
Abstract
Leaf spring-type flexible hinges serve as critical transmission components in kilogram quantization energy balance systems. Investigating their bending behavior is crucial for enhancing measurement accuracy and ensuring structural reliability. This work employs molecular dynamics simulations to analyze the mechanical properties and deformation characteristics [...] Read more.
Leaf spring-type flexible hinges serve as critical transmission components in kilogram quantization energy balance systems. Investigating their bending behavior is crucial for enhancing measurement accuracy and ensuring structural reliability. This work employs molecular dynamics simulations to analyze the mechanical properties and deformation characteristics of such hinges under varying bending rates. The findings reveal a significant correlation between the bending rate and the hinges’ plastic deformation and microstructural evolution, indicating the presence of a critical bending rate. When the bending rate is below the critical threshold, the hinges exhibit excellent structural stability, characterized by low dislocation density, reduced von Mises stress, and limited temperature rise, making them suitable for long-term use. Conversely, when the bending rate exceeds the critical threshold, the hinges undergo significant plastic deformation, including notable increases in stress and temperature concentration, as well as microstructural alterations. Specifically, the initially stable crystal structure is disrupted, leading to the formation of numerous defect structures. These changes result in localized instability and elevate the risk of fatigue damage. This work comprehensively elucidates the mechanical responses and failure mechanisms of flexible hinges, providing valuable data and guidance for their optimized design and application. Full article
Show Figures

Figure 1

12 pages, 2664 KB  
Article
Elastic Characterization of Acrylate-Based Liquid Crystal Elastomers
by Gevorg S. Gevorgyan, Maksim L. Sargsyan, Mariam R. Hakobyan, Matthew Reynolds, Helen F. Gleeson and Rafik S. Hakobyan
Polymers 2025, 17(5), 614; https://doi.org/10.3390/polym17050614 - 25 Feb 2025
Viewed by 1507
Abstract
Liquid crystal elastomers (LCEs) are innovative materials best known for their reversible shape and optical property changes in response to external stimuli such as heat, light, and mechanical forces. These unique features position them as promising candidates for applications in emerging technologies. The [...] Read more.
Liquid crystal elastomers (LCEs) are innovative materials best known for their reversible shape and optical property changes in response to external stimuli such as heat, light, and mechanical forces. These unique features position them as promising candidates for applications in emerging technologies. The determination of the mechanical properties of these materials is important for the study of the interaction between orientational and mechanical deformations of LCEs. Importantly, thoroughly characterizing the mechanical and elastic properties of LCEs is essential for their efficient design and integration into various devices. In this study, a full elastic characterization of promising acrylate-based LCE materials that are auxetic above a material-dependent strain threshold (~0.4 for the material studied here) was carried out. Highly aligned macroscopic samples were fabricated, allowing us to determine, for the first time, the five elasticity coefficients that enter into the elastic-free energy density of acrylate-based LCE materials, as well as the Young’s moduli and Poisson ratios. Our approach involves connecting measured strains with elasticity coefficients and using data obtained from three tensile experiments. Specifically, the measured Young’s moduli are on the order of MPa, with an anisotropy ratio (E‖/E⊥) of ~4.5. Moreover, the longitudinal Poisson ratios are both close to 0.5, confirming a uniaxial elastic response at low strains in these LCE samples. These findings align with theoretical predictions, indicating a good correspondence between experimental results and established theories. Full article
Show Figures

Figure 1

Back to TopTop