Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = cromoglicic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7711 KiB  
Article
Degranulation of Murine Resident Cochlear Mast Cells: A Possible Factor Contributing to Cisplatin-Induced Ototoxicity and Neurotoxicity
by Betül Karayay, Heidi Olze and Agnieszka J. Szczepek
Int. J. Mol. Sci. 2023, 24(5), 4620; https://doi.org/10.3390/ijms24054620 - 27 Feb 2023
Cited by 3 | Viewed by 4481
Abstract
Permanent hearing loss is one of cisplatin’s adverse effects, affecting 30–60% of cancer patients treated with that drug. Our research group recently identified resident mast cells in rodents’ cochleae and observed that the number of mast cells changed upon adding cisplatin to cochlear [...] Read more.
Permanent hearing loss is one of cisplatin’s adverse effects, affecting 30–60% of cancer patients treated with that drug. Our research group recently identified resident mast cells in rodents’ cochleae and observed that the number of mast cells changed upon adding cisplatin to cochlear explants. Here, we followed that observation and found that the murine cochlear mast cells degranulate in response to cisplatin and that the mast cell stabilizer cromoglicic acid (cromolyn) inhibits this process. Additionally, cromolyn significantly prevented cisplatin-induced loss of auditory hair cells and spiral ganglion neurons. Our study provides the first evidence for the possible mast cell participation in cisplatin-induced damage to the inner ear. Full article
(This article belongs to the Special Issue Mast Cells in Human Health and Diseases 2.0)
Show Figures

Graphical abstract

14 pages, 3419 KiB  
Article
Scaffold Hopping of α-Rubromycin Enables Direct Access to FDA-Approved Cromoglicic Acid as a SARS-CoV-2 MPro Inhibitor
by Hani A. Alhadrami, Ahmed M. Sayed, Heba Al-Khatabi, Nabil A. Alhakamy and Mostafa E. Rateb
Pharmaceuticals 2021, 14(6), 541; https://doi.org/10.3390/ph14060541 - 5 Jun 2021
Cited by 20 | Viewed by 5160
Abstract
The COVID-19 pandemic is still active around the globe despite the newly introduced vaccines. Hence, finding effective medications or repurposing available ones could offer great help during this serious situation. During our anti-COVID-19 investigation of microbial natural products (MNPs), we came across α-rubromycin, [...] Read more.
The COVID-19 pandemic is still active around the globe despite the newly introduced vaccines. Hence, finding effective medications or repurposing available ones could offer great help during this serious situation. During our anti-COVID-19 investigation of microbial natural products (MNPs), we came across α-rubromycin, an antibiotic derived from Streptomyces collinus ATCC19743, which was able to suppress the catalytic activity (IC50 = 5.4 µM and Ki = 3.22 µM) of one of the viral key enzymes (i.e., MPro). However, it showed high cytotoxicity toward normal human fibroblasts (CC50 = 16.7 µM). To reduce the cytotoxicity of this microbial metabolite, we utilized a number of in silico tools (ensemble docking, molecular dynamics simulation, binding free energy calculation) to propose a novel scaffold having the main pharmacophoric features to inhibit MPro with better drug-like properties and reduced/minimal toxicity. Nevertheless, reaching this novel scaffold synthetically is a time-consuming process, particularly at this critical time. Instead, this scaffold was used as a template to explore similar molecules among the FDA-approved medications that share its main pharmacophoric features with the aid of pharmacophore-based virtual screening software. As a result, cromoglicic acid (aka cromolyn) was found to be the best hit, which, upon in vitro MPro testing, was 4.5 times more potent (IC50 = 1.1 µM and Ki = 0.68 µM) than α-rubromycin, with minimal cytotoxicity toward normal human fibroblasts (CC50 > 100 µM). This report highlights the potential of MNPs in providing unprecedented scaffolds with a wide range of therapeutic efficacy. It also revealed the importance of cheminformatics tools in speeding up the drug discovery process, which is extremely important in such a critical situation. Full article
(This article belongs to the Special Issue COVID-19 in Pharmaceuticals)
Show Figures

Figure 1

Back to TopTop