Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = copper doped titanium oxynitride

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3018 KiB  
Article
Cu-Doped TiNxOy Thin Film Resistors DC/RF Performance and Reliability
by Lev V. Shanidze, Anton S. Tarasov, Mikhail V. Rautskiy, Fyodor V. Zelenov, Stepan O. Konovalov, Ivan V. Nemtsev, Alexander S. Voloshin, Ivan A. Tarasov, Filipp A. Baron and Nikita V. Volkov
Appl. Sci. 2021, 11(16), 7498; https://doi.org/10.3390/app11167498 - 16 Aug 2021
Cited by 2 | Viewed by 2861
Abstract
We fabricated Cu-doped TiNxOy thin film resistors by using atomic layer deposition, optical lithography, dry etching, Ti/Cu/Ti/Au e-beam evaporation and lift-off processes. The results of the measurements of the resistance temperature dependence, non-linearity, S-parameters at 0.01–26 GHz and details of [...] Read more.
We fabricated Cu-doped TiNxOy thin film resistors by using atomic layer deposition, optical lithography, dry etching, Ti/Cu/Ti/Au e-beam evaporation and lift-off processes. The results of the measurements of the resistance temperature dependence, non-linearity, S-parameters at 0.01–26 GHz and details of the breakdown mechanism under high-voltage stress are reported. The devices’ sheet resistance is 220 ± 8 Ω/□ (480 ± 20 µΩ*cm); intrinsic resistance temperature coefficient (TCR) is ~400 ppm/°C in the T-range of 10–300 K; and S-parameters versus frequency are flat up to 2 GHz with maximum variation of 10% at 26 GHz. The resistors can sustain power and current densities up to ~5 kW*cm−2 and ~2 MA*cm−2, above which they switch to high-resistance state with the sheet resistance equal to ~200 kΩ/□ (~0.4 Ω*cm) caused by nitrogen and copper desorption from TiNxOy film. The Cu/Ti/TiNxOy contact is prone to ageing due to gradual titanium oxidation while the TiNxOy resistor body is stable. The resistors have strong potential for applications in high-frequency integrated and hybrid circuits that require small-footprint, medium-range resistors of 0.05–10 kΩ, with small TCR and high-power handling capability. Full article
(This article belongs to the Special Issue Recent Advances in Application of Coatings and Films)
Show Figures

Figure 1

Back to TopTop