Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = controlling of MERS-COV infection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2743 KiB  
Article
Evidence Generation for a Host-Response Biosignature of Respiratory Disease
by Kelly E. Dooley, Michael Morimoto, Piotr Kaszuba, Margaret Krasne, Gigi Liu, Edward Fuchs, Peter Rexelius, Jerry Swan, Krzysztof Krawiec, Kevin Hammond, Stuart C. Ray, Ryan Hafen, Andreas Schuh and Nelson L. Shasha Jumbe
Viruses 2025, 17(7), 943; https://doi.org/10.3390/v17070943 - 2 Jul 2025
Viewed by 528
Abstract
Background: In just twenty years, three dangerous human coronaviruses—SARS-CoV, MERS-CoV, and SARS-CoV-2 have exposed critical gaps in early detection of emerging viral threats. Current diagnostics remain pathogen-focused, often missing the earliest phase of infection. A virus-agnostic, host-based diagnostic capable of detecting responses to [...] Read more.
Background: In just twenty years, three dangerous human coronaviruses—SARS-CoV, MERS-CoV, and SARS-CoV-2 have exposed critical gaps in early detection of emerging viral threats. Current diagnostics remain pathogen-focused, often missing the earliest phase of infection. A virus-agnostic, host-based diagnostic capable of detecting responses to viral intrusion is urgently needed. Methods: We hypothesized that the lungs act as biomechanical instruments, with infection altering tissue tension, wave propagation, and flow dynamics in ways detectable through subaudible vibroacoustic signals. In a matched case–control study, we enrolled 19 RT-PCR-confirmed COVID-19 inpatients and 16 matched controls across two Johns Hopkins hospitals. Multimodal data were collected, including passive vibroacoustic auscultation, lung ultrasound, peak expiratory flow, and laboratory markers. Machine learning models were trained to identify host-response biosignatures from anterior chest recordings. Results: 19 COVID-19 inpatients and 16 matched controls (mean BMI 32.4 kg/m2, mean age 48.6 years) were successfully enrolled to the study. The top-performing, unoptimized, vibroacoustic-only model achieved an AUC of 0.84 (95% CI: 0.67–0.92). The host-covariate optimized model achieved an AUC of 1.0 (95% CI: 0.94–1.0), with 100% sensitivity (95% CI: 82–100%) and 99.6% specificity (95% CI: 85–100%). Vibroacoustic data from the anterior chest alone reliably distinguished COVID-19 cases from controls. Conclusions: This proof-of-concept study demonstrates that passive, noninvasive vibroacoustic biosignatures can detect host response to viral infection in a hospitalized population and supports further testing of this modality in broader populations. These findings support the development of scalable, host-based diagnostics to enable early, agnostic detection of future pandemic threats (ClinicalTrials.gov number: NCT04556149). Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

36 pages, 1200 KiB  
Review
Common and Potential Emerging Foodborne Viruses: A Comprehensive Review
by Amin N. Olaimat, Asma’ O. Taybeh, Anas Al-Nabulsi, Murad Al-Holy, Ma’mon M. Hatmal, Jihad Alzyoud, Iman Aolymat, Mahmoud H. Abughoush, Hafiz Shahbaz, Anas Alzyoud, Tareq Osaili, Mutamed Ayyash, Kevin M. Coombs and Richard Holley
Life 2024, 14(2), 190; https://doi.org/10.3390/life14020190 - 28 Jan 2024
Cited by 22 | Viewed by 11457
Abstract
Human viruses and viruses from animals can cause illnesses in humans after the consumption of contaminated food or water. Contamination may occur during preparation by infected food handlers, during food production because of unsuitably controlled working conditions, or following the consumption of animal-based [...] Read more.
Human viruses and viruses from animals can cause illnesses in humans after the consumption of contaminated food or water. Contamination may occur during preparation by infected food handlers, during food production because of unsuitably controlled working conditions, or following the consumption of animal-based foods contaminated by a zoonotic virus. This review discussed the recent information available on the general and clinical characteristics of viruses, viral foodborne outbreaks and control strategies to prevent the viral contamination of food products and water. Viruses are responsible for the greatest number of illnesses from outbreaks caused by food, and risk assessment experts regard them as a high food safety priority. This concern is well founded, since a significant increase in viral foodborne outbreaks has occurred over the past 20 years. Norovirus, hepatitis A and E viruses, rotavirus, astrovirus, adenovirus, and sapovirus are the major common viruses associated with water or foodborne illness outbreaks. It is also suspected that many human viruses including Aichi virus, Nipah virus, tick-borne encephalitis virus, H5N1 avian influenza viruses, and coronaviruses (SARS-CoV-1, SARS-CoV-2 and MERS-CoV) also have the potential to be transmitted via food products. It is evident that the adoption of strict hygienic food processing measures from farm to table is required to prevent viruses from contaminating our food. Full article
(This article belongs to the Special Issue Food Microbiological Contamination)
Show Figures

Figure 1

17 pages, 4027 KiB  
Article
Epidemiology and Scenario Simulations of the Middle East Respiratory Syndrome Corona Virus (MERS-CoV) Disease Spread and Control for Dromedary Camels in United Arab Emirates (UAE)
by Magdi Mohamed Ali, Eihab Fathelrahman, Adil I. El Awad, Yassir M. Eltahir, Raeda Osman, Youssef El-Khatib, Rami H. AlRifai, Mohamed El Sadig, Abdelmalik Ibrahim Khalafalla and Aaron Reeves
Animals 2024, 14(3), 362; https://doi.org/10.3390/ani14030362 - 23 Jan 2024
Cited by 1 | Viewed by 3017
Abstract
Middle East Respiratory Syndrome (MERS-CoV) is a coronavirus-caused viral respiratory infection initially detected in Saudi Arabia in 2012. In UAE, high seroprevalence (97.1) of MERS-CoV in camels was reported in several Emirate of Abu Dhabi studies, including camels in zoos, public escorts, and [...] Read more.
Middle East Respiratory Syndrome (MERS-CoV) is a coronavirus-caused viral respiratory infection initially detected in Saudi Arabia in 2012. In UAE, high seroprevalence (97.1) of MERS-CoV in camels was reported in several Emirate of Abu Dhabi studies, including camels in zoos, public escorts, and slaughterhouses. The objectives of this research include simulation of MERS-CoV spread using a customized animal disease spread model (i.e., customized stochastic model for the UAE; analyzing the MERS-CoV spread and prevalence based on camels age groups and identifying the optimum control MERS-CoV strategy. This study found that controlling animal mobility is the best management technique for minimizing epidemic length and the number of affected farms. This study also found that disease dissemination differs amongst camels of three ages: camel kids under the age of one, young camels aged one to four, and adult camels aged four and up; because of their immunological state, kids, as well as adults, had greater infection rates. To save immunization costs, it is advised that certain age groups be targeted and that intense ad hoc unexpected vaccinations be avoided. According to the study, choosing the best technique must consider both efficacy and cost. Full article
Show Figures

Figure 1

13 pages, 836 KiB  
Article
Association of KIR Genes with Middle East Respiratory Syndrome Coronavirus Infection in South Koreans
by In-Cheol Baek, Eun-Jeong Choi, Hyoung-Jae Kim, Haeyoun Choi, Hyoung-Shik Shin, Dong-Gyun Lim and Tai-Gyu Kim
J. Clin. Med. 2024, 13(1), 258; https://doi.org/10.3390/jcm13010258 - 2 Jan 2024
Viewed by 1764
Abstract
Background: Middle East respiratory syndrome (MERS) is a lower respiratory tract disease caused by a beta coronavirus (CoV) called MERS-CoV, characterized by a high mortality rate. We aimed to evaluate the association between genetic variation in killer cell immunoglobulin-like receptors (KIRs) and the [...] Read more.
Background: Middle East respiratory syndrome (MERS) is a lower respiratory tract disease caused by a beta coronavirus (CoV) called MERS-CoV, characterized by a high mortality rate. We aimed to evaluate the association between genetic variation in killer cell immunoglobulin-like receptors (KIRs) and the risk of MERS in South Koreans. Methods: KIR genes were genotyped by multiplex polymerase chain reaction with sequence-specific primers (PCR-SSP). A case-control study was performed to identify the odds ratios (OR) of KIR genes for MERS and the association of KIR genes and their ligands, human leukocyte antigens (HLA) genes. Results: KIR2DS4D and KIR3DP1F showed higher frequencies in the group of all patients infected with MERS-CoV than in the control group (p = 0.023, OR = 2.4; p = 0.039, OR = 2.7). KIR2DL1, KIR2DP1, and KIR3DP1D were significantly associated with moderate/mild (Mo/Mi) cases. KIR2DL2, KIR2DS1, and KIR3DP1F were affected in severe cases. When we investigated the association between KIR genes and their ligands in MERS patient and control groups, KIR3DL1+/Bw4(80I)+, KIR3DL1+/Bw6+, KIR3DL1+/Bw6−, KIR2DS1+/C2+, and KIR3DS+/Bw4(80I)+ were associated with MERS. KIR3DL1+/Bw6− was found in Mo/Mi cases. KIR2DS1+/C2+ and KIR2DS2+/C1+ were found in severe cases. Conclusion: Further investigations are needed to prove the various immune responses of MERS-CoV-infected cells according to variations in the KIR gene and ligand gene. A treatment strategy based on current research on the KIR gene and MERS-CoV will suggest potential treatment targets. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

23 pages, 18615 KiB  
Article
Potent Antiviral Activity of Vitamin B12 against Severe Acute Respiratory Syndrome Coronavirus 2, Middle East Respiratory Syndrome Coronavirus, and Human Coronavirus 229E
by Yassmin Moatasim, Omnia Kutkat, Ahmed M. Osman, Mokhtar R. Gomaa, Faten Okda, Mohamed El Sayes, Mina Nabil Kamel, Mohamed Gaballah, Ahmed Mostafa, Rabeh El-Shesheny, Ghazi Kayali, Mohamed A. Ali and Ahmed Kandeil
Microorganisms 2023, 11(11), 2777; https://doi.org/10.3390/microorganisms11112777 - 15 Nov 2023
Cited by 6 | Viewed by 5685
Abstract
Repurposing vitamins as antiviral supporting agents is a rapid approach used to control emerging viral infections. Although there is considerable evidence supporting the use of vitamin supplementation in viral infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the specific role of each [...] Read more.
Repurposing vitamins as antiviral supporting agents is a rapid approach used to control emerging viral infections. Although there is considerable evidence supporting the use of vitamin supplementation in viral infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the specific role of each vitamin in defending against coronaviruses remains unclear. Antiviral activities of available vitamins on the infectivity and replication of human coronaviruses, namely, SARS-CoV-2, Middle East respiratory syndrome coronavirus (MERS-CoV), and human coronavirus 229E (HCoV-229E), were investigated using in silico and in vitro studies. We identified potential broad-spectrum inhibitor effects of Hydroxocobalamin and Methylcobalamin against the three tested CoVs. Cyanocobalamin could selectively affect SARS-CoV-2 but not MERS-CoV and HCoV-229E. Methylcobalamin showed significantly higher inhibition values on SARS-CoV-2 compared with Hydroxocobalamin and Cyanocobalamin, while Hydroxocobalamin showed the highest potent antiviral activity against MERS-CoV and Cyanocobalamin against HCoV-229E. Furthermore, in silico studies were performed for these promising vitamins to investigate their interaction with SARS-CoV-2, MERS-CoV, and HCoV-229E viral-specific cell receptors (ACE2, DPP4, and hAPN protein, respectively) and viral proteins (S-RBD, 3CL pro, RdRp), suggesting that Hydroxocobalamin, Methylcobalamin, and Cyanocobalamin may have significant binding affinity to these proteins. These results show that Methylcobalamin may have potential benefits for coronavirus-infected patients. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

19 pages, 2887 KiB  
Article
Predictive Modeling and Control Strategies for the Transmission of Middle East Respiratory Syndrome Coronavirus
by Bibi Fatima, Mehmet Yavuz, Mati ur Rahman, Ali Althobaiti and Saad Althobaiti
Math. Comput. Appl. 2023, 28(5), 98; https://doi.org/10.3390/mca28050098 - 30 Sep 2023
Cited by 24 | Viewed by 2370
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly infectious respiratory illness that poses a significant threat to public health. Understanding the transmission dynamics of MERS-CoV is crucial for effective control and prevention strategies. In this study, we develop a precise mathematical [...] Read more.
The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly infectious respiratory illness that poses a significant threat to public health. Understanding the transmission dynamics of MERS-CoV is crucial for effective control and prevention strategies. In this study, we develop a precise mathematical model to capture the transmission dynamics of MERS-CoV. We incorporate some novel parameters related to birth and mortality rates, which are essential factors influencing the spread of the virus. We obtain epidemiological data from reliable sources to estimate the model parameters. We compute its basic reproduction number (R0). Stability theory is employed to analyze the local and global properties of the model, providing insights into the system’s equilibrium states and their stability. Sensitivity analysis is conducted to identify the most critical parameter affecting the transmission dynamics. Our findings revealed important insights into the transmission dynamics of MERS-CoV. The stability analysis demonstrated the existence of stable equilibrium points, indicating the long-term behavior of the epidemic. Through the evaluation of optimal control strategies, we identify effective intervention measures to mitigate the spread of MERS-CoV. Our simulations demonstrate the impact of time-dependent control variables, such as supportive care and treatment, in reducing the number of infected individuals and controlling the epidemic. The model can serve as a valuable tool for public health authorities in designing effective control and prevention strategies, ultimately reducing the burden of MERS-CoV on global health. Full article
Show Figures

Figure 1

13 pages, 2074 KiB  
Article
Chemokine Levels among Patients with Middle East Respiratory Syndrome Coronavirus Infection
by Abdulkarim Alhetheel, Ahmed Albarrag, Zahid Shakoor, Ali Somily, Mazin Barry, Haifa Altalhi, Muhammed Bakhrebah, Majed Nassar, Mohamed Alfageeh, Ayed Assiri, Sarah Alfaraj and Ziad Memish
Vaccines 2023, 11(6), 1048; https://doi.org/10.3390/vaccines11061048 - 31 May 2023
Cited by 4 | Viewed by 1870
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is associated with significant morbidity and mortality due to intense pulmonary inflammation. Enhanced chemokine-mediated leukocyte infiltration in lungs has been linked with unfavorable outcomes with respect to the disease. This cross-sectional study assessed the levels of chemokines [...] Read more.
Middle East respiratory syndrome coronavirus (MERS-CoV) is associated with significant morbidity and mortality due to intense pulmonary inflammation. Enhanced chemokine-mediated leukocyte infiltration in lungs has been linked with unfavorable outcomes with respect to the disease. This cross-sectional study assessed the levels of chemokines among 46 MERS-CoV-infected patients (19 asymptomatic and 27 symptomatic) and 52 healthy controls using a customized Luminex human chemokine magnetic multiplex panel. The plasma levels of interferon-inducible protein (IP)-10 (568.5 ± 114.7 vs. 55.19 ± 5.85 pg/mL; p < 0.0001), macrophage inflammatory protein (MIP)-1 alpha (MIP-1A) (30.78 ± 2.81 vs. 18.16 ± 0.91 pg/mL; p < 0.0001), MIP-1B (36.63 ± 4.25 vs. 25.26 ± 1.51 pg/mL; p < 0.003), monocyte chemoattractant protein (MCP)-1 (1267 ± 309.5 vs. 390.0 ± 35.51 pg/mL; p < 0.0002), and monokine-induced gamma interferon (MIG) (28.96 ± 3.93 vs. 16.29 ± 1.69 pg/mL; p < 0.001), interleukin (IL)-8 (147.9 ± 21.57 vs. 84.63 ± 10.62 pg/mL; p < 0.004) were significantly higher in symptomatic patients than healthy controls. Likewise, the levels of IP-10 (247.6 ± 80.09 vs. 55.19 ± 5.85 pg/mL; p < 0.0002) and MCP-1 (650.7 ± 149 pg/mL vs. 390 ± 35.51 pg/mL; p < 0.02) were also significantly higher in asymptomatic patients compared to healthy controls. However, no differences were observed in the plasma levels of MIP-1A, MIP-1B, MIG, and IL-8 between asymptomatic patients and uninfected controls. Conversely, the mean plasma levels of regulated on activation normal T cell expressed and secreted (RANTES) (3039 ± 301.0 vs. 4390 ± 223 pg/mL; p < 0.001) and eotaxin (176.9 ± 30.20 vs. 296.2 ± 28.11 pg/mL; p < 0.01) were significantly lower in symptomatic MERS-CoV-infected patients compared to healthy controls. Likewise, the levels of eotaxin (162.7 ± 21.60 vs. 296.2 ± 28.11 pg/mL; p < 0.01) were also significantly lower in asymptomatic patients. Interestingly, the level of MCP-1 (2139 ± 548.2 vs. 776.5 ± 165.3 pg/mL; p < 0.004) was significantly higher in deceased symptomatic patients compared to recovered symptomatic patients. MCP-1 was the only chemokine associated with a higher risk of mortality. Symptomatic MERS-CoV-infected patients had a significant elevation of plasma chemokines and elevated MCP-1 levels were found to be associated with fatal outcomes. Full article
(This article belongs to the Special Issue Neutrophils and Host Immunity)
Show Figures

Figure 1

12 pages, 558 KiB  
Article
Impact of MERS-CoV and SARS-CoV-2 Viral Infection on Immunoglobulin-IgG Cross-Reactivity
by Joud Mohammed AlKhalifah, Waleed Seddiq, Mohammed Abdullah Alshehri, Abdulkarim Alhetheel, Ahmed Albarrag, Sultan Ayoub Meo, Jaffar A. Al-Tawfiq and Mazin Barry
Vaccines 2023, 11(3), 552; https://doi.org/10.3390/vaccines11030552 - 26 Feb 2023
Cited by 13 | Viewed by 4103
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has posed a considerable threat to public health and global economies. SARS-CoV-2 has largely affected a vast world population and was declared a COVID-19 pandemic outbreak, with a substantial surge of SARS-CoV-2 infection affecting all aspects [...] Read more.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has posed a considerable threat to public health and global economies. SARS-CoV-2 has largely affected a vast world population and was declared a COVID-19 pandemic outbreak, with a substantial surge of SARS-CoV-2 infection affecting all aspects of the virus’ natural course of infection and immunity. The cross-reactivity between the different coronaviruses is still a knowledge gap in the understanding of the SARS-CoV-2 virus. This study aimed to investigate the impact of MERS-CoV and SARS-CoV-2 viral infections on immunoglobulin-IgG cross-reactivity. Our retrospective cohort study hypothesized the possible reactivation of immunity in individuals with a history of infection to Middle East Respiratory Syndrome coronavirus (MERS-CoV) when infected with SARS-CoV-2. The total number of participants included was 34; among them, 22 (64.7%) were males, and 12 (35.29%) were females. The mean age of the participants was 40.3 ± 12.9 years. This study compared immunoglobulin (IgG) levels against SARS-CoV-2 and MERS-CoV across various groups with various histories of infection. The results showed that a reactive borderline IgG against both MERS-CoV and SARS-CoV-2 in participants with past infection to both viruses was 40% compared with 37.5% among those with past infection with MERS-CoV alone. Our study results establish that individuals infected with both SARS-CoV-2 and MERS-CoV showed higher MERS-CoV IgG levels compared with those of individuals infected previously with MERS-CoV alone and compared with those of individuals in the control. The results further highlight cross-adaptive immunity between MERS-CoV and SARS-CoV. Our study concludes that individuals with previous infections with both MERS-CoV and SARS-CoV-2 showed significantly higher MERS-CoV IgG levels compared with those of individuals infected only with MERS-CoV and compared with those of individuals in the control, suggesting cross-adaptive immunity between MERS-CoV and SARS-CoV. Full article
(This article belongs to the Special Issue Immune Response and Vaccines for SARS-CoV-2 Infection)
Show Figures

Figure 1

25 pages, 3427 KiB  
Review
Aspects of Nanotechnology for COVID-19 Vaccine Development and Its Delivery Applications
by Pranav Kumar Prabhakar, Navneet Khurana, Manish Vyas, Vikas Sharma, Gaber El-Saber Batiha, Harpreet Kaur, Jashanpreet Singh, Deepak Kumar, Neha Sharma, Ajeet Kaushik and Raj Kumar
Pharmaceutics 2023, 15(2), 451; https://doi.org/10.3390/pharmaceutics15020451 - 30 Jan 2023
Cited by 18 | Viewed by 5234
Abstract
Coronavirus, a causative agent of the common cold to a much more complicated disease such as “severe acute respiratory syndrome (SARS-CoV-2), Middle East Respiratory Syndrome (MERS-CoV-2), and Coronavirus Disease 2019 (COVID-19)”, is a member of the coronaviridae family and contains a positive-sense single-stranded [...] Read more.
Coronavirus, a causative agent of the common cold to a much more complicated disease such as “severe acute respiratory syndrome (SARS-CoV-2), Middle East Respiratory Syndrome (MERS-CoV-2), and Coronavirus Disease 2019 (COVID-19)”, is a member of the coronaviridae family and contains a positive-sense single-stranded RNA of 26–32 kilobase pairs. COVID-19 has shown very high mortality and morbidity and imparted a significantly impacted socioeconomic status. There are many variants of SARS-CoV-2 that have originated from the mutation of the genetic material of the original coronavirus. This has raised the demand for efficient treatment/therapy to manage newly emerged SARS-CoV-2 infections successfully. However, different types of vaccines have been developed and administered to patients but need more attention because COVID-19 is not under complete control. In this article, currently developed nanotechnology-based vaccines are explored, such as inactivated virus vaccines, mRNA-based vaccines, DNA-based vaccines, S-protein-based vaccines, virus-vectored vaccines, etc. One of the important aspects of vaccines is their administration inside the host body wherein nanotechnology can play a very crucial role. Currently, more than 26 nanotechnology-based COVID-19 vaccine candidates are in various phases of clinical trials. Nanotechnology is one of the growing fields in drug discovery and drug delivery that can also be used for the tackling of coronavirus. Nanotechnology can be used in various ways to design and develop tools and strategies for detection, diagnosis, and therapeutic and vaccine development to protect against COVID-19. The design of instruments for speedy, precise, and sensitive diagnosis, the fabrication of potent sanitizers, the delivery of extracellular antigenic components or mRNA-based vaccines into human tissues, and the administration of antiretroviral medicines into the organism are nanotechnology-based strategies for COVID-19 management. Herein, we discuss the application of nanotechnology in COVID-19 vaccine development and the challenges and opportunities in this approach. Full article
Show Figures

Figure 1

19 pages, 2877 KiB  
Review
Electrostatic Surface Potential as a Key Parameter in Virus Transmission and Evolution: How to Manage Future Virus Pandemics in the Post-COVID-19 Era
by Jacques Fantini, Fodil Azzaz, Henri Chahinian and Nouara Yahi
Viruses 2023, 15(2), 284; https://doi.org/10.3390/v15020284 - 19 Jan 2023
Cited by 20 | Viewed by 5777
Abstract
Virus-cell interactions involve fundamental parameters that need to be considered in strategies implemented to control viral outbreaks. Among these, the surface electrostatic potential can give valuable information to deal with new epidemics. In this article, we describe the role of this key parameter [...] Read more.
Virus-cell interactions involve fundamental parameters that need to be considered in strategies implemented to control viral outbreaks. Among these, the surface electrostatic potential can give valuable information to deal with new epidemics. In this article, we describe the role of this key parameter in the hemagglutination of red blood cells and in the co-evolution of synaptic receptors and neurotransmitters. We then establish the functional link between lipid rafts and the electrostatic potential of viruses, with special emphasis on gangliosides, which are sialic-acid-containing, electronegatively charged plasma membrane components. We describe the common features of ganglioside binding domains, which include a wide variety of structures with little sequence homology but that possess key amino acids controlling ganglioside recognition. We analyze the role of the electrostatic potential in the transmission and intra-individual evolution of HIV-1 infections, including gatekeeper and co-receptor switch mechanisms. We show how to organize the epidemic surveillance of influenza viruses by focusing on mutations affecting the hemagglutinin surface potential. We demonstrate that the electrostatic surface potential, by modulating spike-ganglioside interactions, controls the hemagglutination properties of coronaviruses (SARS-CoV-1, MERS-CoV, and SARS-CoV-2) as well as the structural dynamics of SARS-CoV-2 evolution. We relate the broad-spectrum antiviral activity of repositioned molecules to their ability to disrupt virus-raft interactions, challenging the old concept that an antibiotic or anti-parasitic cannot also be an antiviral. We propose a new concept based on the analysis of the electrostatic surface potential to develop, in real time, therapeutic and vaccine strategies adapted to each new viral epidemic. Full article
Show Figures

Figure 1

14 pages, 2374 KiB  
Article
A Label-Free Electrochemical Impedimetric Immunosensor with Biotinylated-Antibody for SARS-CoV-2 Nucleoprotein Detection in Saliva
by Ching-Chou Wu, Yu-Huan Chiang and Hsin-Yu Chiang
Biosensors 2022, 12(5), 265; https://doi.org/10.3390/bios12050265 - 22 Apr 2022
Cited by 39 | Viewed by 4549
Abstract
The timely detecting of SARS-CoV-2 coronavirus antigens for infection validation is an urgent request for COVID-19 pandemic control. This study constructed label-free electrochemical impedance spectroscopy (EIS)-based immunosensors based on gold nanostructured screen-printed carbon electrodes (AuNS/SPCEs) to detect the SARS-CoV-2 nucleocapsid protein (N-protein) in [...] Read more.
The timely detecting of SARS-CoV-2 coronavirus antigens for infection validation is an urgent request for COVID-19 pandemic control. This study constructed label-free electrochemical impedance spectroscopy (EIS)-based immunosensors based on gold nanostructured screen-printed carbon electrodes (AuNS/SPCEs) to detect the SARS-CoV-2 nucleocapsid protein (N-protein) in saliva. Using short-chain 3-mercaptopropionic acid (MPA) as a linker to covalently bond streptavidin (SA) and bovine serum albumin (BSA) for controlling the oriented immobilization of the biotinylated anti-N-protein antibody (BioAb) can offer a greater sensitivity, a lower limit of detection (LOD), and better reproducibility of immunosensors (defined as BioAb/SA-BSA/MPA/AuNS/SPCEs) than the antibody randomly immobilized immunosensors and the long-chain 11-mercaptoundecanoic acid (MUA)-modified immunosensors (BioAb/SA-BSA/MUA/AuNS/SPCEs). The BioAb/SA-BSA/MPA/AuNS/SPCE-based immunosensors presented good linearity from 0.01 ng/mL to 100 ng/mL and a low LOD of 6 pg/mL in a phosphate buffer solution (PBS) and PBS-diluted saliva. Moreover, the immunosensor exhibited little cross-activity with other viral antigens such as MERS-CoV N-protein, influenza A N-protein, influenza B N-protein, and SARS-CoV-2 spike protein, indicating the high specificity of the immunosensors. The disposable label-free EIS-based immunosensors have promising potential in facilitating the rapid and sensitive tests of saliva-based COVID-19 diagnostics. Full article
(This article belongs to the Special Issue Immunosensors - Trends and Perspective)
Show Figures

Figure 1

12 pages, 1512 KiB  
Article
Liposome-Mediated Delivery of MERS Antigen Induces Potent Humoral and Cell-Mediated Immune Response in Mice
by Masood Alam Khan, Ajamaluddin Malik, Mohammad A. Alzohairy, Abdulmohsen M. Alruwetei, Bader Y. Alhatlani, Osamah Al Rugaie and Arif Khan
Molecules 2022, 27(2), 403; https://doi.org/10.3390/molecules27020403 - 9 Jan 2022
Cited by 7 | Viewed by 2881
Abstract
The advancements in the field of nanotechnology have provided a great platform for the development of effective antiviral vaccines. Liposome-mediated delivery of antigens has been shown to induce the antigen-specific stimulation of the humoral and cell-mediated immune responses. Here, we prepared dried, reconstituted [...] Read more.
The advancements in the field of nanotechnology have provided a great platform for the development of effective antiviral vaccines. Liposome-mediated delivery of antigens has been shown to induce the antigen-specific stimulation of the humoral and cell-mediated immune responses. Here, we prepared dried, reconstituted vesicles (DRVs) from DPPC liposomes and used them as the vaccine carrier system for the Middle East respiratory syndrome coronavirus papain-like protease (DRVs-MERS-CoV PLpro). MERS-CoV PLpro emulsified in the Incomplete Freund’s Adjuvant (IFA-MERS-CoV PLpro) was used as a control. Immunization of mice with DRVs-MERS-CoV PLpro did not induce any notable toxicity, as revealed by the levels of the serum alanine transaminase (ALT), aspartate transaminase (AST), blood urea nitrogen (BUN) and lactate dehydrogenase (LDH) in the blood of immunized mice. Immunization with DRVs-MERS-CoV PLpro induced greater antigen-specific antibody titer and switching of IgG1 isotyping to IgG2a as compared to immunization with IFA-MERS-CoV PLpro. Moreover, splenocytes from mice immunized with DRVs-MERS-CoV PLpro exhibited greater proliferation in response to antigen stimulation. Moreover, splenocytes from DRVs-MERS-CoV PLpro-immunized mice secreted significantly higher IFN-γ as compared to splenocytes from IFA-MERS-CoV PLpro mice. In summary, DRVs-MERS-CoV PLpro may prove to be an effective prophylactic formulation to prevent MERS-CoV infection. Full article
(This article belongs to the Special Issue Recent Advances in Nano-Based Drug Delivery System)
Show Figures

Figure 1

13 pages, 699 KiB  
Review
Infection Control in the Era of COVID-19: A Narrative Review
by Nour Shbaklo, Tommaso Lupia, Francesco G. De Rosa and Silvia Corcione
Antibiotics 2021, 10(10), 1244; https://doi.org/10.3390/antibiotics10101244 - 14 Oct 2021
Cited by 20 | Viewed by 7854
Abstract
COVID-19 quickly became a pandemic causing millions of infections and mortalities. It required real-time adjustments to healthcare systems and infection prevention and control (IPC) measures to limit the spread and protect healthcare providers and hospitalized patients. IPC guidelines were adopted and developed based [...] Read more.
COVID-19 quickly became a pandemic causing millions of infections and mortalities. It required real-time adjustments to healthcare systems and infection prevention and control (IPC) measures to limit the spread and protect healthcare providers and hospitalized patients. IPC guidelines were adopted and developed based on experience gained during the MERS-CoV and SARS-CoV outbreaks. The aim of this narrative review is to summarize current evidence on IPC in healthcare settings and patients with COVID-19 to prevent nosocomial infections during the actual pandemic. A search was run on PubMed using the terms (‘COVID-19’ [Mesh]) AND (‘Infection Control’ [Mesh]) between 2019 and 2021. We identified 86 studies that were in accordance with our aim and summarized them under certain themes as they related to COVID-19 infection control measures. All the guidelines recommend early diagnosis and rapid isolation of COVID-19 patients. The necessary precautions should be taken comprising the whole process, starting with an infectious disease plan, administrative and engineering controls, triage, and PPE training. Guidelines should target modes of transmission, droplet, aerosol, and oral–fecal, while recommending control precautions. Healthcare facilities must promptly implement a multidisciplinary defense system to combat the outbreak. Full article
Show Figures

Figure 1

36 pages, 19886 KiB  
Review
Man-Specific Lectins from Plants, Fungi, Algae and Cyanobacteria, as Potential Blockers for SARS-CoV, MERS-CoV and SARS-CoV-2 (COVID-19) Coronaviruses: Biomedical Perspectives
by Annick Barre, Els J. M. Van Damme, Mathias Simplicien, Sophie Le Poder, Bernard Klonjkowski, Hervé Benoist, David Peyrade and Pierre Rougé
Cells 2021, 10(7), 1619; https://doi.org/10.3390/cells10071619 - 28 Jun 2021
Cited by 33 | Viewed by 8449
Abstract
Betacoronaviruses, responsible for the “Severe Acute Respiratory Syndrome” (SARS) and the “Middle East Respiratory Syndrome” (MERS), use the spikes protruding from the virion envelope to attach and subsequently infect the host cells. The coronavirus spike (S) proteins contain receptor binding domains (RBD), allowing [...] Read more.
Betacoronaviruses, responsible for the “Severe Acute Respiratory Syndrome” (SARS) and the “Middle East Respiratory Syndrome” (MERS), use the spikes protruding from the virion envelope to attach and subsequently infect the host cells. The coronavirus spike (S) proteins contain receptor binding domains (RBD), allowing the specific recognition of either the dipeptidyl peptidase CD23 (MERS-CoV) or the angiotensin-converting enzyme ACE2 (SARS-Cov, SARS-CoV-2) host cell receptors. The heavily glycosylated S protein includes both complex and high-mannose type N-glycans that are well exposed at the surface of the spikes. A detailed analysis of the carbohydrate-binding specificity of mannose-binding lectins from plants, algae, fungi, and bacteria, revealed that, depending on their origin, they preferentially recognize either complex type N-glycans, or high-mannose type N-glycans. Since both complex and high-mannose glycans substantially decorate the S proteins, mannose-specific lectins are potentially useful glycan probes for targeting the SARS-CoV, MERS-CoV, and SARS-CoV-2 virions. Mannose-binding legume lectins, like pea lectin, and monocot mannose-binding lectins, like snowdrop lectin or the algal lectin griffithsin, which specifically recognize complex N-glycans and high-mannose glycans, respectively, are particularly adapted for targeting coronaviruses. The biomedical prospects of targeting coronaviruses with mannose-specific lectins are wide-ranging including detection, immobilization, prevention, and control of coronavirus infection. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Figure 1

15 pages, 2683 KiB  
Article
Broad Impact of Exchange Protein Directly Activated by cAMP 2 (EPAC2) on Respiratory Viral Infections
by Eun-Jin Choi, Wenzhe Wu, Xiaoyan Cong, Ke Zhang, Jiaqi Luo, Sha Ye, Pingyuan Wang, Adarsh Suresh, Uneeb Mohammad Ullah, Jia Zhou and Xiaoyong Bao
Viruses 2021, 13(6), 1179; https://doi.org/10.3390/v13061179 - 21 Jun 2021
Cited by 6 | Viewed by 3114
Abstract
The recently discovered exchange protein directly activated by cAMP (EPAC), compared with protein kinase A (PKA), is a fairly new family of cAMP effectors. Soon after the discovery, EPAC has shown its significance in many diseases including its emerging role in infectious diseases. [...] Read more.
The recently discovered exchange protein directly activated by cAMP (EPAC), compared with protein kinase A (PKA), is a fairly new family of cAMP effectors. Soon after the discovery, EPAC has shown its significance in many diseases including its emerging role in infectious diseases. In a recent study, we demonstrated that EPAC, but not PKA, is a promising therapeutic target to regulate respiratory syncytial virus (RSV) replication and its associated inflammation. In mammals, there are two isoforms of EPAC—EPAC1 and EPAC2. Unlike other viruses, including Middle East respiratory syndrome coronavirus (MERS-CoV) and Ebola virus, which use EPAC1 to regulate viral replication, RSV uses EPAC2 to control its replication and associated cytokine/chemokine responses. To determine whether EPAC2 protein has a broad impact on other respiratory viral infections, we used an EPAC2-specific inhibitor, MAY0132, to examine the functions of EPAC2 in human metapneumovirus (HMPV) and adenovirus (AdV) infections. HMPV is a negative-sense single-stranded RNA virus belonging to the family Pneumoviridae, which also includes RSV, while AdV is a double-stranded DNA virus. Treatment with an EPAC1-specific inhibitor was also included to investigate the impact of EPAC1 on these two viruses. We found that the replication of HMPV, AdV, and RSV and the viral-induced immune mediators are significantly impaired by MAY0132, while an EPAC1-specific inhibitor, CE3F4, does not impact or slightly impacts, demonstrating that EPAC2 could serve as a novel common therapeutic target to control these viruses, all of which do not have effective treatment and prevention strategies. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

Back to TopTop