Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (507)

Search Parameters:
Keywords = controlled atmosphere treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1215 KiB  
Article
Gas Atmosphere Innovation Applied to Prolong the Shelf Life of ‘Regina’ Sweet Cherries
by Rodrigo Neira-Ojeda, Sebastián Rodriguez, Cristian Hernández-Adasme, Violeta Muñoz, Dakary Delgadillo, Bo Sun, Xiao Yang and Victor Hugo Escalona
Plants 2025, 14(15), 2440; https://doi.org/10.3390/plants14152440 - 6 Aug 2025
Abstract
In this study, the impact of moderate and high CO2 and O2 levels was compared to low and moderate gas combinations during prolonged storage on the quality of Regina sweet cherries harvested in different maturity stages, particularly in terms of decreasing [...] Read more.
In this study, the impact of moderate and high CO2 and O2 levels was compared to low and moderate gas combinations during prolonged storage on the quality of Regina sweet cherries harvested in different maturity stages, particularly in terms of decreasing internal browning. Fruits were harvested in two different maturity stages (Light and Dark Mahogany skin color) and stored in CA of 15% CO2 + 10% O2; 10% CO2 + 10% O2; 10% CO2 + 5% O2; 5% CO2 + 5% O2 and MA of 4 to 5% CO2 + 16 to 17% O2 for 30 and 40 days at 0 °C and 90% RH, followed by a marketing period. After the storage, both maturity stages significantly reduced internal browning, decay, and visual quality losses in CA with 10–15% CO2 and 10% O2. In addition, it preserved luminosity, total soluble solids (TSSs), titratable acidity (TA), and bioactive compounds such as anthocyanins and phenols. This treatment also maintained the visual appearance of the sweet cherries, favoring their market acceptance. At the same time, the light red fruits showed a better general quality compared to darker color after the storage. In conclusion, a controlled atmosphere with optimized CO2 and O2 concentrations, together with harvesting with a Light Mahogany external color, represents an effective strategy to extend the shelf life of Regina sweet cherries up to 40 days plus the marketing period, maintaining their physical and sensory quality for export markets. Full article
(This article belongs to the Special Issue Postharvest Quality and Physiology of Vegetables and Fruits)
Show Figures

Figure 1

24 pages, 2455 KiB  
Article
Impact of Glycerol and Heating Rate on the Thermal Decomposition of PVA Films
by Ganna Kovtun and Teresa Cuberes
Polymers 2025, 17(15), 2095; https://doi.org/10.3390/polym17152095 - 30 Jul 2025
Viewed by 192
Abstract
This study analyzes the thermal degradation of PVA and PVA/glycerol films in air under varying heating rates. Thermogravimetric analysis (TGA) of pure PVA in both air and inert atmospheres confirmed that oxidative conditions significantly influence degradation, particularly at lower heating rates. For PVA/glycerol [...] Read more.
This study analyzes the thermal degradation of PVA and PVA/glycerol films in air under varying heating rates. Thermogravimetric analysis (TGA) of pure PVA in both air and inert atmospheres confirmed that oxidative conditions significantly influence degradation, particularly at lower heating rates. For PVA/glycerol films in air, deconvolution of the differential thermogravimetry (DTG) curves during the main degradation stage revealed distinct peaks attributable to the degradation of glycerol, PVA/glycerol complexes, and PVA itself. Isoconversional methods showed that, for pure PVA in air, the apparent activation energy (Ea) increased with conversion, suggesting the simultaneous occurrence of multiple degradation mechanisms, including oxidative reactions, whose contribution changes over the course of the degradation process. In contrast, under an inert atmosphere, Ea remained nearly constant, consistent with degradation proceeding through a single dominant mechanism, or through multiple steps with similar kinetic parameters. For glycerol-plasticized films in air, Ea exhibited reduced dependence on conversion compared with that of pure PVA in air, with values similar to those of pure PVA under inert conditions. These results indicate that glycerol influences the oxidative degradation pathways in PVA films. These findings are relevant to high-temperature processing of PVA-based materials and to the design of thermal treatments—such as sterilization or pyrolysis—where control over degradation mechanisms is essential. Full article
Show Figures

Figure 1

9 pages, 2757 KiB  
Article
Externally Triggered Activation of Nanostructure-Masked Cell-Penetrating Peptides
by Gayong Shim
Molecules 2025, 30(15), 3205; https://doi.org/10.3390/molecules30153205 - 30 Jul 2025
Viewed by 294
Abstract
Cell-penetrating peptides offer a promising strategy for intracellular delivery; however, non-specific uptake and off-target cytotoxicity limit their clinical utility. To address these limitations, a cold atmospheric plasma-responsive delivery platform was developed in which the membrane activity of a peptide was transiently suppressed upon [...] Read more.
Cell-penetrating peptides offer a promising strategy for intracellular delivery; however, non-specific uptake and off-target cytotoxicity limit their clinical utility. To address these limitations, a cold atmospheric plasma-responsive delivery platform was developed in which the membrane activity of a peptide was transiently suppressed upon complexation with a DNA-based nanostructure. Upon localized plasma exposure, DNA masking was disrupted, restoring the biological functions of the peptides. Transmission electron microscopy revealed that the synthesized DNA nanoflower structures were approximately 150–250 nm in size. Structural and functional analyses confirmed that the system remained inert under physiological conditions and was rapidly activated by plasma treatment. Fluorescence recovery, cellular uptake assays, and cytotoxicity measurements demonstrated that the peptide activity could be precisely controlled in both monolayer and three-dimensional spheroid models. This externally activatable nanomaterial-based system enables the spatial and temporal regulation of peptide function without requiring biochemical triggers or permanent chemical modifications. This platform provides a modular strategy for the development of potential peptide therapeutics that require precise control of activation in complex biological environments. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Biomedical Applications, 2nd Edition)
Show Figures

Figure 1

16 pages, 1930 KiB  
Article
A Microfluidic System for Real-Time Monitoring and In Situ Metabolite Detection of Plasma-Enhanced Wound Healing
by Zujie Gao, Jinlong Xu, Hengxin Zhao, Xiaobing Zheng, Zijian Lyu, Qiwei Liu, Hao Chen, Yu Zhang, He-Ping Li and Yongjian Li
Biomolecules 2025, 15(8), 1077; https://doi.org/10.3390/biom15081077 - 25 Jul 2025
Viewed by 299
Abstract
Although cold atmospheric plasma (CAP) has shown promise in facilitating wound repair due to its non-thermal and non-invasive properties, its dynamic effects on cellular response and metabolic regulation remain poorly characterized, and the mechanism is still unclear. In this study, we developed a [...] Read more.
Although cold atmospheric plasma (CAP) has shown promise in facilitating wound repair due to its non-thermal and non-invasive properties, its dynamic effects on cellular response and metabolic regulation remain poorly characterized, and the mechanism is still unclear. In this study, we developed a microfluidic experimental system that integrates a CAP treatment module with multiparametric in situ sensing capabilities, along with precise environmental control of temperature, humidity, and CO2 concentration. A stratified microfluidic chip was engineered to co-culture HaCaT keratinocytes and HSF fibroblasts. CAP treatment was applied within this platform, and the dynamic processes of cell migration, proliferation, and multiple metabolic markers were simultaneously monitored. The experimental results show that the system can not only achieve real-time observation in the healing process under plasma intervention, but also find that the healing process is closely related to the concentration of NO2. In addition, the study also found that keratin KRT14, which is thought to be closely related to wound healing, decreased significantly in the process of plasma-induced healing. The platform provides high-resolution experimental tools to elucidate the biological effects of CAP and has the potential for parameter optimization, material evaluation, and personalized therapeutic development to advance plasma research and clinical translational applications. Full article
(This article belongs to the Special Issue Advances in Plasma Bioscience and Medicine: 2nd Edition)
Show Figures

Figure 1

22 pages, 6702 KiB  
Article
Maintaining the Quality and Nutritional Integrity of Chilled Cordyceps sinensis: Comparative Effects and Mechanisms of Modified Atmosphere Packaging and UV-Based Interventions
by Tianzhuo Huang, Huanzhi Lv, Yubo Lin, Xin Xiong, Yuqing Tan, Hui Hong and Yongkang Luo
Foods 2025, 14(15), 2611; https://doi.org/10.3390/foods14152611 - 25 Jul 2025
Viewed by 349
Abstract
Cordyceps sinensis (C. sinensis) is widely recognized for its bioactive compounds and associated health benefits. However, due to its delicate nature, conventional chilled storage often results in the rapid degradation of valuable compounds, leading to loss of nutritional value and overall [...] Read more.
Cordyceps sinensis (C. sinensis) is widely recognized for its bioactive compounds and associated health benefits. However, due to its delicate nature, conventional chilled storage often results in the rapid degradation of valuable compounds, leading to loss of nutritional value and overall quality. This study integrated and evaluated comprehensive strategies: three gas-conditioning and two light-based preservation methods for maintaining both quality and nutritional integrity during 12-day chilled storage at 4 °C. The results revealed that vacuum packaging significantly inhibited weight loss (3.49%) compared to in the control group (10.77%) and preserved sensory quality (p < 0.05). UV-based interventions notably suppressed polyphenol oxidase and tyrosinase activities by 36.4% and 29.7%, respectively (p < 0.05). Modified atmosphere packaging (MAP) with 80% N2 and 20% CO2 (MAP-N2CO2) maintained higher levels of cordycepin (1.77 µg/g) and preserved energy charge above 0.7 throughout storage. The results suggest that MAP-based treatments are superior methods for the chilled storage of C. sinensis, with diverse advantages and their corresponding shelf lives associated with different gas compositions. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

15 pages, 881 KiB  
Article
Effects of Modified Atmosphere Packaging on Postharvest Physiology and Quality of ‘Meizao’ Sweet Cherry (Prunus avium L.)
by Jianchao Cui, Xiaohui Jia, Wenhui Wang, Liying Fan, Wenshi Zhao, Limin He and Haijiao Xu
Agronomy 2025, 15(8), 1774; https://doi.org/10.3390/agronomy15081774 - 24 Jul 2025
Viewed by 407
Abstract
Sweet cherry (Prunus avium L.) is becoming increasingly popular in China, but its postharvest quality deteriorates significantly during harvest storage and transport. Here, we investigated the efficiency of different modified atmosphere packaging (MAP) treatments on the quality and physiology of ‘Meizao’ sweet [...] Read more.
Sweet cherry (Prunus avium L.) is becoming increasingly popular in China, but its postharvest quality deteriorates significantly during harvest storage and transport. Here, we investigated the efficiency of different modified atmosphere packaging (MAP) treatments on the quality and physiology of ‘Meizao’ sweet cherry during 60 days of cold storage (0 ± 0.5 °C). Fruits were sealed in four types of MAP low-density polyethylene (LDPE) liners (PE20, PE30, PE40, and PE50), with unsealed 20 μm LDPE packaging bags used as the control. Our findings demonstrated that PE30 packaging established an optimal gas composition (7.0~7.7% O2 and 3.6~3.9% CO2) that effectively preserved ‘Meizao’ sweet cherry quality. It maintained the fruit color, firmness, soluble solid content (SSC), titratable acidity (TA), and vitamin C (Vc) content while simultaneously delaying deteriorative processes such as weight loss, pedicel browning, and fruit decay. These results indicate that PE30 was the most suitable treatment for preserving the quality of ‘Meizao’ sweet cherries during cold storage. Furthermore, physiological research showed that significant inhibition of respiration rate was achieved by PE30, accompanied by maintained activities of antioxidant enzymes (CAT, POD, and SOD), which consequently led to reduced accumulations of ethanol and malondialdehyde (MDA) during cold storage. To date, no systematic studies have investigated the physiological and biochemical responses of ‘Meizao’ to different thickness-dependent LDPE-MAP conditions. These observations highlight the power of the optimized PE30 packaging as an effective method for extending the fruit storage life, delaying postharvest senescence, and maintaining fruit quality of ‘Meizao’ sweet cherry. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

22 pages, 10488 KiB  
Article
Morphological and Functional Evolution of Amorphous AlN Thin Films Deposited by RF-Magnetron Sputtering
by Maria-Iulia Zai, Ioana Lalau, Marina Manica, Lucia Chiriacescu, Vlad-Andrei Antohe, Cristina C. Gheorghiu, Sorina Iftimie, Ovidiu Toma, Mirela Petruta Suchea and Ștefan Antohe
Surfaces 2025, 8(3), 51; https://doi.org/10.3390/surfaces8030051 - 17 Jul 2025
Viewed by 320
Abstract
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron [...] Read more.
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical profilometry, spectroscopic ellipsometry (SE), and electrical measurements—was performed to explore the physical structure, morphology, and optical and electrical properties of the films. The analysis of the film structure by XRR revealed that increasing sputtering power resulted in thicker, denser AlN layers, while thermal treatment promoted densification by reducing density gradients but also induced surface roughening and the formation of island-like morphologies. Optical studies confirmed excellent transparency (>80% transmittance in the near-infrared region) and demonstrated the tunability of the refractive index with sputtering power, critical for optoelectronic applications. The electrical characterization of Au/AlN/Al sandwich structures revealed a transition from Ohmic to trap-controlled space charge limited current (SCLC) behavior under forward bias—a transport mechanism frequently present in a material with very low mobility, such as AlN—while Schottky conduction dominated under reverse bias. The systematic correlation between deposition parameters, thermal treatment, and the resulting physical properties offers valuable pathways to engineer AlN thin films for next-generation optoelectronic and high-frequency device applications. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

18 pages, 609 KiB  
Protocol
The Potential of Normobaric Oxygen Therapy to Enhance Erythropoiesis, Reduce Oxidative Stress, and Modulate Immune Function in Colorectal Cancer Patients Undergoing Chemotherapy: Study Protocol for a Prospective, Randomized, Double-Blind, Placebo-Controlled Trial (NBO-ONCO)
by Jacek Polański, Beata Jankowska-Polańska, Robert Dymarek, Olga Zajączkowska, Sebastian Makuch, Beata Freier, Dorota Kamińska, Edyta Pawlak, Adam Busławski and Jerzy Zwoździak
J. Clin. Med. 2025, 14(14), 5057; https://doi.org/10.3390/jcm14145057 - 17 Jul 2025
Viewed by 451
Abstract
Background/Objectives: Colorectal cancer (CRC) patients undergoing chemotherapy often experience anemia, oxidative stress, and immune suppression, significantly impacting their quality of life and treatment outcomes. Normobaric oxygen (NBO) therapy, which delivers oxygen at atmospheric pressure with an elevated oxygen concentration, has shown the potential [...] Read more.
Background/Objectives: Colorectal cancer (CRC) patients undergoing chemotherapy often experience anemia, oxidative stress, and immune suppression, significantly impacting their quality of life and treatment outcomes. Normobaric oxygen (NBO) therapy, which delivers oxygen at atmospheric pressure with an elevated oxygen concentration, has shown the potential to enhance erythropoiesis, reduce oxidative stress, and modulate immune function. However, its efficacy in CRC patients remains underexplored. This study aims to evaluate the effects of NBO exposures on (1) supporting erythropoiesis by measuring erythropoietin (EPO) levels and hypoxia-inducible factor 1-alpha (HIF-1α), (2) reducing oxidative stress and improving stress and emotional well-being, and (3) modulating immune function by assessing cytokine profiles. Secondary objectives include assessing the impact of NBO on patient-reported outcome measures (PROMs) such as stress, anxiety, depression, and quality of life. Methods: This is a prospective, randomized, double-blind, placebo-controlled clinical trial. A total of 254 CRC patients undergoing chemotherapy will be randomized 1:1 to receive either active NBO therapy (n = 127, study group) or placebo NBO therapy (n = 127, control group). The intervention will consist of 10 NBO sessions over five weeks. Primary outcomes include biomarkers of erythropoiesis, oxidative stress, and immune response. Secondary outcomes assess quality of life and psychological well-being. Data will be collected at baseline, mid-intervention, post-intervention, and during two follow-up visits (3 and 6 months post-intervention). Results: The study hypothesizes that NBO therapy will improve erythropoiesis, reduce oxidative stress, and enhance immune function in CRC patients, leading to improved quality of life and clinical outcomes. Conclusions: Findings from this trial may establish NBO as a novel supportive therapy for CRC patients undergoing chemotherapy. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

21 pages, 2431 KiB  
Article
Up-Cycling Broccoli Stalks into Fresh-Cut Sticks: Postharvest Strategies for Quality and Shelf-Life Enhancement
by Nieves García-Lorca, José Ángel Salas-Millán and Encarna Aguayo
Foods 2025, 14(14), 2476; https://doi.org/10.3390/foods14142476 - 15 Jul 2025
Viewed by 259
Abstract
Broccoli stalks are considered an agro-industrial by-product that, in the context of fresh consumption, is undervalued, as only broccoli florets are typically marketed. This study evaluated the up-cycling of broccoli stalks into a value-added fresh-cut product through postharvest preservation strategies. Stalks were peeled, [...] Read more.
Broccoli stalks are considered an agro-industrial by-product that, in the context of fresh consumption, is undervalued, as only broccoli florets are typically marketed. This study evaluated the up-cycling of broccoli stalks into a value-added fresh-cut product through postharvest preservation strategies. Stalks were peeled, cut into sticks (8 × 8 mm × 50–100 mm), sanitised, packaged under modified atmosphere conditions, and stored at 5 °C. Treatments included (a) calcium ascorbate (CaAsc, 1% w/v), (b) trehalose (TREH, 5% w/v), (c) hot water treatment (HWT, 55 °C, 1 min), and several combinations of them. HWT alone was highly effective in reducing browning, a key factor for achieving an extended shelf-life, controlling microbial growth and respiration, and obtaining the highest sensory scores (appearance = 7.3 on day 11). However, it was less effective in preserving bioactive compounds. The HWT + CaAsc treatment proved to be the most effective at optimising quality and retaining health-promoting compounds. It increased vitamin C retention by 78%, antioxidant capacity by 68%, and total phenolic content by 65% compared to the control on day 11. This synergistic effect was attributed to the antioxidant action of ascorbic acid in CaAsc. TREH alone showed no preservative effect, inducing browning, elevated respiration, and microbial proliferation. Overall, combining mild thermal and antioxidant treatments offers a promising strategy to valorise broccoli stalks as fresh-cut snacks. An 11-day shelf-life at 5 °C was achieved, with increased content of health-promoting bioactive compounds, while supporting circular economy principles and contributing to food loss mitigation. Full article
Show Figures

Graphical abstract

19 pages, 7589 KiB  
Article
Analysis of PM2.5 Transport Characteristics and Continuous Improvement in High-Emission-Load Areas of the Beijing–Tianjin–Hebei Region in Winter
by Yuyao Qiang, Chuanda Wang, Xiaoqi Wang and Shuiyuan Cheng
Sustainability 2025, 17(14), 6389; https://doi.org/10.3390/su17146389 - 11 Jul 2025
Viewed by 322
Abstract
The air quality in the Beijing–Tianjin–Hebei region of China has markedly improved in recent decades. Characterizing current PM2.5 transmission between cities in light of the continuous reduction in emissions from various sources is of great significance for the formulation of future regional [...] Read more.
The air quality in the Beijing–Tianjin–Hebei region of China has markedly improved in recent decades. Characterizing current PM2.5 transmission between cities in light of the continuous reduction in emissions from various sources is of great significance for the formulation of future regional joint prevention and control strategies. To address these issues, a WRF-CAMx modeling project was implemented to explore the pollution characteristics from the perspectives of transport flux, regional source apportionment, and the comprehensive impact of multiple pollutants from 2013 to 2020. It was found that the net PM2.5 transport flux among cities declined considerably during the study period and was positively affected by the continuous reduction in emission sources. The variations in local emissions and transport contributions in various cities from 2013 to 2020 revealed differences in emission control policies and efforts. It is worth noting that under polluted weather conditions, obvious interannual differences in PM2.5 transport fluxes in the BTH region were observed, emphasizing the need for more scientifically based regional collaborative control strategies. The change in the predominant precursor from SO2 to NOx has posed new challenges for emission reduction. NOx emission reductions will significantly decrease PM2.5 concentrations, while SO2 and NH3 reductions show limited effects. The reduction in NOx emissions might have a fluctuating impact on the generation of SOAs, possibly due to changes in atmospheric oxidation. However, the deep treatment of NOx has a positive effect on the synergistic improvement of multiple air pollutants. This emphasizes the need to enhance the reduction in NOx emissions in the future. The results of this study can serve as a reference for the development of effective PM2.5 precursor control strategies and regional differentiation optimization improvement policies in the BTH region. Full article
Show Figures

Figure 1

16 pages, 3023 KiB  
Article
Application of Atmospheric Non-Thermal Plasmas to Control Rhizopus stolonifer Causing Soft Rot Disease in Strawberry
by Dheerawan Boonyawan, Hans Jørgen Lyngs Jørgensen and Salit Supakitthanakorn
Horticulturae 2025, 11(7), 818; https://doi.org/10.3390/horticulturae11070818 - 9 Jul 2025
Viewed by 327
Abstract
Rhizopus stolonifer causes soft rot disease in strawberry and is considered one of the most destructive pathogens affecting strawberries worldwide. This study investigated the efficacy of three atmospheric non-thermal plasmas (NTPs) consisting of gliding arc (GA), Tesla coil (TC) and dielectric barrier discharge [...] Read more.
Rhizopus stolonifer causes soft rot disease in strawberry and is considered one of the most destructive pathogens affecting strawberries worldwide. This study investigated the efficacy of three atmospheric non-thermal plasmas (NTPs) consisting of gliding arc (GA), Tesla coil (TC) and dielectric barrier discharge (DBD) for controlling R. stolonifer infection. Fungal mycelial discs were exposed to these plasmas for 10, 15 or 20 min, whereas conidial suspensions were treated for 1, 3, 5 or 7 min. Morphological alterations following non-thermal plasma exposure were studied using scanning electron microscopy (SEM). Exposure to GA and DBD plasmas for 20 min completely inhibited mycelial growth. SEM analysis revealed significant structural damage to the mycelium, sporangia and sporangiospores of treated samples compared to untreated controls. Complete inhibition of sporangiospore germination was achieved with treatments for at least 3 min for all NTPs. Pathogenicity assays on strawberry fruit showed that 15 min exposure to any of the tested NTPs completely prevented the development of soft rot disease. Importantly, NTP treatments did not adversely affect the external or internal characteristics of treated strawberries. These findings suggest that atmospheric non-thermal plasmas offer an effective approach for controlling R. stolonifer infection in strawberries, potentially providing a non-chemical alternative for post-harvest disease management. Full article
(This article belongs to the Special Issue Postharvest Diseases in Horticultural Crops and Their Management)
Show Figures

Graphical abstract

14 pages, 1491 KiB  
Article
A Study on Enhanced Lipid Accumulation by Cold Plasma Process in Chlorella sp.
by Mohamed Aadhil Musthak Ahamed, Navaneetha Pandiyaraj Krishnasamy, Karuppusamy Murugavel, Kannappan Arunachalam, Khamis Sulaiman AlDhafri, Arunkumar Jagadeesan, Thajuddin Nooruddin, Sang-Yul Lee and MubarakAli Davoodbasha
Water 2025, 17(13), 2030; https://doi.org/10.3390/w17132030 - 6 Jul 2025
Viewed by 485
Abstract
This study investigated the enhancement in lipid accumulation in Chlorella sp. using non-thermal atmospheric pressure plasma as a pretreatment strategy for the production of value-added products. The plasma treatment was optimized by varying discharge times (0–16 min) using argon gas at a flow [...] Read more.
This study investigated the enhancement in lipid accumulation in Chlorella sp. using non-thermal atmospheric pressure plasma as a pretreatment strategy for the production of value-added products. The plasma treatment was optimized by varying discharge times (0–16 min) using argon gas at a flow rate of 4 L/min. Lipid productivity was assessed through gravimetric analysis and profiling of fatty acid methyl ester using gas chromatography−mass spectrometry (GC-MS). The growth rate and pH of the treated cells were monitored. The findings demonstrated that the 4-min plasma exposure maximized the efficiency of lipid recovery, achieving a 35% of the dry cell weight and a 34.6% increase over untreated control. However, longer plasma treatment times resulted in a comparative decrease in lipid yield, as the decline is possibly due to oxidative degradation. The findings highlight the role of plasma treatment, which significantly boosts lipid yield and gives complementary optimization of downstream processes to improve biodiesel production. The accumulation of lipids in terms of size and volume in the algal cells was assessed by confocal laser scanning microscopy. The GC–MS results of the control revealed that lipids comprised primarily mixed esters such as 2H Pyran 2 carboxylic acid ethyl esters, accounting for 50.97% and 20.52% of the total peak area. In contrast, the 4-min treated sample shifted to saturated triacylglycerols (dodecanoic acid, 2,3 propanetriyl ester), comprising 85% of the total lipid content, which efficiently produced biodiesel. Thus, the non-thermal plasma-based enhancement of lipids in the algal cells has been achieved. Full article
(This article belongs to the Special Issue Aquatic Environment and Ecosystems)
Show Figures

Figure 1

15 pages, 6694 KiB  
Article
Influence of Annealing Atmosphere on the Phosphatability of Ultra-High-Strength Automotive Steels
by Joongchul Park and Joonho Lee
Materials 2025, 18(13), 3170; https://doi.org/10.3390/ma18133170 - 4 Jul 2025
Viewed by 359
Abstract
This study investigates the effect of surface oxide control on the phosphatability of ultra-high-strength steel (UHSS) for automotive applications. Surface oxides were manipulated by adjusting the dew point to −50 °C and 0 °C during the annealing process, and the corresponding changes in [...] Read more.
This study investigates the effect of surface oxide control on the phosphatability of ultra-high-strength steel (UHSS) for automotive applications. Surface oxides were manipulated by adjusting the dew point to −50 °C and 0 °C during the annealing process, and the corresponding changes in phosphating behavior were examined. The surface characteristics of the samples were analyzed using X-ray photoelectron spectroscopy (XPS) and field-emission transmission electron microscopy (FE-TEM), while the phosphatability of the samples was evaluated through electrochemical measurements. The sample annealed at a dew point of −50 °C formed continuous Si and Mn oxide films (~10 nm), which significantly suppressed the phosphatability. In contrast, when annealed at 0 °C, internal oxidation occurred along the grain boundaries to a depth of about 3 μm, resulting in the formation of discontinuous Si and Mn oxides on the surface, which greatly enhanced phosphatability. This difference was also supported by OCP measurements: the −50 °C specimen showed a gradual increase in potential, whereas the 0 °C specimen rapidly reached −0.59 V and then stabilized. The findings of this study demonstrate that optimizing the annealing atmosphere provides an effective approach to enhance the phosphating performance of UHSS without the need for additional surface treatments. Full article
Show Figures

Graphical abstract

19 pages, 863 KiB  
Review
Microplastic Pollution in China’s Aquatic Systems: Spatial Distribution, Transport Pathways, and Controlling Strategies
by Zhancheng Wu, Juzhuang Wang, Shengwang Yu, Qian Sun and Yulai Han
Microplastics 2025, 4(3), 41; https://doi.org/10.3390/microplastics4030041 - 3 Jul 2025
Viewed by 845
Abstract
Microplastics (MPs) have emerged as a critical environmental challenge in China’s aquatic ecosystems, driven by rapid industrialization and population growth. This review synthesizes recent findings on the abundance, morphology, and polymer types of MPs in China’s freshwater systems (rivers, lakes, reservoirs) and coastal [...] Read more.
Microplastics (MPs) have emerged as a critical environmental challenge in China’s aquatic ecosystems, driven by rapid industrialization and population growth. This review synthesizes recent findings on the abundance, morphology, and polymer types of MPs in China’s freshwater systems (rivers, lakes, reservoirs) and coastal marine environments. Spatial analysis reveals significant variability in MP abundance, ranging from 0.1 items/L in Tibet’s Lalu Wetland to 30.8 items/L in Beijing’s Qinghe River, with polypropylene (PP) and polyethylene (PE) dominating polymer profiles. Coastal regions exhibit distinct contamination patterns, with the Yellow Sea (5.3 ± 2.0 items/L) and the South China Sea (180 ± 80 items/m3) showing the highest MP loads, primarily as fibers and fragments. Fluvial transport, atmospheric deposition, and coastal anthropogenic activities (e.g., fisheries, tourism) are identified as major pathways for marine MP influx. Secondary MPs from degraded plastics and primary MPs from industrial/domestic effluents pose synergistic risks through the adsorption of heavy metals and organic pollutants. Human exposure routes—ingestion, inhalation, and dermal contact—are linked to inflammatory, metabolic, and carcinogenic health outcomes. Policy interventions, including bans on microbeads and non-degradable plastics, demonstrate progress in pollution mitigation. This work underscores the urgency of integrated source control, advanced wastewater treatment, and transboundary monitoring to address MP contamination in aquatic ecosystems. Full article
Show Figures

Figure 1

18 pages, 766 KiB  
Article
Effects of Fertilizers and Soil Amendments on Soil Physicochemical Properties and Carbon Sequestration of Oat (Avena sativa L.) Planted in Saline–Alkaline Land
by Jiao Liu, Yiming Zhu, Hao Wu, Guichun Dong, Guisheng Zhou and Donald L. Smith
Agronomy 2025, 15(7), 1582; https://doi.org/10.3390/agronomy15071582 - 28 Jun 2025
Cited by 1 | Viewed by 322
Abstract
The coastal tidal flat area of Jiangsu Province, China, is vast and has great potential for carbon sequestration. Planting oat in saline–alkaline land can increase carbon sequestration from the atmosphere into soil and, thus, improve soil quality. Harvesting oats can act as a [...] Read more.
The coastal tidal flat area of Jiangsu Province, China, is vast and has great potential for carbon sequestration. Planting oat in saline–alkaline land can increase carbon sequestration from the atmosphere into soil and, thus, improve soil quality. Harvesting oats can act as a biological desalination mechanism, and long-term planting may transform saline–alkaline land into high-quality arable land. Our experiment selected two oat varieties, Caesar (V1) and Menglong (V2), and used urea, organic fertilizer, microbial inoculant, and biochar as experimental factors to investigate the effects of fertilizers and soil amendments on soil improvement and carbon sequestration when cultivating oats. The results showed that when planting V1, the carbon sequestration of the farmland ecosystem was the highest with microbial inoculant and organic fertilizer treatments, and the soil salinity decreased the most with biochar treatment. When planting V2, the carbon sequestration of the farmland ecosystem was the highest with the urea + biochar treatment, the soil salinity decreased the most with organic fertilizer + microbial inoculant treatment, and the soil organic carbon content increased the most with organic fertilizer + biochar treatment. We found that the application of organic fertilizer and biochar significantly increased soil organic carbon (SOC) content by 22.03% compared to the control treatment. Additionally, the combined treatment of urea and biochar resulted in the highest agricultural carbon sink, with a 74.62% increase in oat carbon storage compared to conventional fertilization. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

Back to TopTop