Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,937)

Search Parameters:
Keywords = composite solutions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2388 KB  
Article
MAF-GAN: A Multi-Attention Fusion Generative Adversarial Network for Remote Sensing Image Super-Resolution
by Zhaohe Wang, Hai Tan, Zhongwu Wang, Jinlong Ci and Haoran Zhai
Remote Sens. 2025, 17(24), 3959; https://doi.org/10.3390/rs17243959 (registering DOI) - 7 Dec 2025
Abstract
Existing Generative Adversarial Networks (GANs) frequently yield remote sensing images with blurred fine details, distorted textures, and compromised spatial structures when applied to super-resolution (SR) tasks, so this study proposes a Multi-Attention Fusion Generative Adversarial Network (MAF-GAN) to address these limitations: the generator [...] Read more.
Existing Generative Adversarial Networks (GANs) frequently yield remote sensing images with blurred fine details, distorted textures, and compromised spatial structures when applied to super-resolution (SR) tasks, so this study proposes a Multi-Attention Fusion Generative Adversarial Network (MAF-GAN) to address these limitations: the generator of MAF-GAN is built on a U-Net backbone, which incorporates Oriented Convolutions (OrientedConv) to enhance the extraction of directional features and textures, while a novel co-calibration mechanism—incorporating channel, spatial, gating, and spectral attention—is embedded in the encoding path and skip connections, supplemented by an adaptive weighting strategy to enable effective multi-scale feature fusion, and a composite loss function is further designed to integrate adversarial loss, perceptual loss, hybrid pixel loss, total variation loss, and feature consistency loss for optimizing model performance; extensive experiments on the GF7-SR4×-MSD dataset demonstrate that MAF-GAN achieves state-of-the-art performance, delivering a Peak Signal-to-Noise Ratio (PSNR) of 27.14 dB, Structural Similarity Index (SSIM) of 0.7206, Learned Perceptual Image Patch Similarity (LPIPS) of 0.1017, and Spectral Angle Mapper (SAM) of 1.0871, which significantly outperforms mainstream models including SRGAN, ESRGAN, SwinIR, HAT, and ESatSR as well as exceeds traditional interpolation methods (e.g., Bicubic) by a substantial margin, and notably, MAF-GAN maintains an excellent balance between reconstruction quality and inference efficiency to further reinforce its advantages over competing methods; additionally, ablation studies validate the individual contribution of each proposed component to the model’s overall performance, and this method generates super-resolution remote sensing images with more natural visual perception, clearer spatial structures, and superior spectral fidelity, thus offering a reliable technical solution for high-precision remote sensing applications. Full article
(This article belongs to the Section Environmental Remote Sensing)
23 pages, 1668 KB  
Article
Pressure Transient Analysis for Vertical Well Drilled in Filled-Cave in Fractured Reservoirs
by Wenyang Shi, Gerui Wang, Shaokai Rong, Jiazheng Qin, Juan Chen, Lei Tao, Jiajia Bai, Zhengxiao Xu and Qingjie Zhu
Fluids 2025, 10(12), 324; https://doi.org/10.3390/fluids10120324 - 5 Dec 2025
Abstract
For capturing dynamic information about a filled-cave in the fractured reservoir, a novel Pressure Transient Analysis (PTA) analytical model for a well located at the filled-cave is established. In this new model, we consider the stress-sensitivity of the filled-cave and the inter-porosity flow [...] Read more.
For capturing dynamic information about a filled-cave in the fractured reservoir, a novel Pressure Transient Analysis (PTA) analytical model for a well located at the filled-cave is established. In this new model, we consider the stress-sensitivity of the filled-cave and the inter-porosity flow of fracture. First, Perturbation transformation was used to obtain the pressure distribution in the filled-cave zone. Then, the Warren–Root model was applied to establish the pressure solution in the fractured reservoir. Next, the pressure and its derivative are obtained by the Laplace transformation and Steftest inversion. Lastly, the Bottomhole Pressure (BHP) and Bottomhole Pressure Derivative (BHPD) combined curve reveals the flow regimes of this novel model. The results show the composite model can be used to characterize the fractured reservoir with the filled-caves, and its flow follows the composite flow regimes. The spherical flow has an obvious slope of 0.5 on the BHPD curve, which can identify the size of the filled-caves. The boundary flow can be used to identify stress-sensitivity. Affected by the stress-sensitivity of the filled-cave, the BHPD’s slope of the boundary flow will be greater than 1. This research work provides technical support for capturing cave and fracture parameters in the fractured reservoir. Full article
14 pages, 9461 KB  
Article
C15-Structured Zr-Ti-Fe-Ni-V Alloys for High-Pressure Hydrogen Compression
by Jie Xu, Changsheng Qin and Hui Wang
Materials 2025, 18(24), 5482; https://doi.org/10.3390/ma18245482 - 5 Dec 2025
Abstract
Metal hydride hydrogen compressors (MHHC) offer unique advantages over conventional mechanical compressors in high-pressure hydrogen refueling. In this study, we developed C15-structured Zr-Ti-Fe-Ni-V single-phase alloys for high-pressure hydrogen compression. By designing the alloy compositions—high Ni and low V—and employing a quenching process, the [...] Read more.
Metal hydride hydrogen compressors (MHHC) offer unique advantages over conventional mechanical compressors in high-pressure hydrogen refueling. In this study, we developed C15-structured Zr-Ti-Fe-Ni-V single-phase alloys for high-pressure hydrogen compression. By designing the alloy compositions—high Ni and low V—and employing a quenching process, the resulting ZrFe2-based alloys exhibit reduced hydriding/dehydriding plateau hysteresis and slope, along with a narrow hydrogen solid solution zone. Notably, the Zr0.8Ti0.2Fe1.2Ni0.7V0.1 alloy elevates the hydrogen pressure from 128.3 atm to 334.5 atm within 283–353 K, delivering an effective hydrogen capacity of 1.02 wt.%. Similarly, the Zr0.9Ti0.1Fe1.2Ni0.7V0.1 alloy increases the hydrogen pressure from 60.4 atm to 221.8 atm across 283–363 K, with a capacity of 0.81 wt.%. This work provides a rational strategy for designing ZrFe2-based alloys for efficient hydrogen compression and storage applications. Full article
(This article belongs to the Special Issue Hydrides for Energy Storage: Materials, Technologies and Applications)
Show Figures

Figure 1

15 pages, 2233 KB  
Article
Thermal Decomposition, Ignition, Combustion and Gasification of Coal and Biomass Composite
by Aizhan Baidildina, Assel Nurgaliyeva, Evgeniy Kopyev, Artem Kuznetsov, Evgeniy Butakov, Evgeniy Shadrin, Pavel Domarov, Sergey Alekseenko and Igor Lomovsky
Energies 2025, 18(24), 6379; https://doi.org/10.3390/en18246379 - 5 Dec 2025
Abstract
This study investigates the thermal decomposition, ignition, combustion, and gasification processes of composite fuels derived from anthracite coal and pine sawdust. The research highlights the non-additive behavior of composite fuels, demonstrating enhanced reactivity and combustion efficiency compared to simple mixtures. Thermogravimetric analysis (TGA) [...] Read more.
This study investigates the thermal decomposition, ignition, combustion, and gasification processes of composite fuels derived from anthracite coal and pine sawdust. The research highlights the non-additive behavior of composite fuels, demonstrating enhanced reactivity and combustion efficiency compared to simple mixtures. Thermogravimetric analysis (TGA) revealed distinct stages of thermal decomposition, with composite fuels exhibiting combined processes of volatile release and coke residue decomposition, unlike mixtures. Ignition experiments in a vertical tubular furnace showed reduced flash delay times for composites, attributed to the formation of active surface centers during mechanical activation. Flare combustion studies confirmed more stable and complete combustion of composites, achieving higher temperatures and improved flame stability. Plasma gasification experiments indicated that composite fuels provide more uniform gas evolution, with higher yields of hydrogen (H2) and carbon monoxide (CO), while reducing nitrogen oxide (NO) emissions. The findings underscore the potential of composite fuels for optimizing energy efficiency and reducing environmental impact in coal-fired power plants, supporting the transition to sustainable energy solutions. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

15 pages, 3193 KB  
Article
Mechanical and Self-Healing Performance of Cement Composites Containing Bacteria Extracted from Waste Concrete
by Se-Jin Choi, Jeong-Yeon Park, Jung-Mi Kim, Ha-Yeon Song and Jae-In Lee
Materials 2025, 18(24), 5483; https://doi.org/10.3390/ma18245483 - 5 Dec 2025
Abstract
Cracks can reduce the durability of concrete structures. To mitigate the damage caused, self-healing technologies using bacteria and cement-based materials can be utilized. For self-healing, bacteria contained within the matrix are advantageous because they can heal cracks upon introducing oxygen and water under [...] Read more.
Cracks can reduce the durability of concrete structures. To mitigate the damage caused, self-healing technologies using bacteria and cement-based materials can be utilized. For self-healing, bacteria contained within the matrix are advantageous because they can heal cracks upon introducing oxygen and water under favorable conditions. To our knowledge, this is the first study showing that Lysinibacillus fusiformis isolated from waste concrete induces calcite precipitation in a cement-based material. Replacing 5–20% of the mixing water with the bacterial solution increased mortar flow, and the initial compressive strength increased with the bacterial content. After long-term aging, the compressive strength of the sample with 20% bacterial solution was ~45.6 MPa, the highest among all samples. In terms of durability, the bacterial solution reduced the carbonation depth compared with that of a control sample without added bacteria, and the 20% sample showed 53% higher carbonation resistance than the control. In terms of the self-healing performance, the bacteria-loaded samples showed higher compressive strength recovery rates than the control sample, with the 20% sample showing the highest rate of approximately 131%. Therefore, L. fusiformis derived from waste concrete is a promising candidate bacterium for enhancing the durability and self-healing efficiency of cement composites. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

17 pages, 1338 KB  
Article
Quasi-Static Axial Crushing Behaviour of Rectangular Foam-Filled CFRP-Aluminium Hybrid Composite Tubes
by Tabrej Khan, Harri Junaedi and Tamer A. Sebaey
J. Compos. Sci. 2025, 9(12), 676; https://doi.org/10.3390/jcs9120676 - 5 Dec 2025
Viewed by 28
Abstract
This study investigates the quasi-static axial crushing behaviour of carbon fibre-reinforced polymer (CFRP) tubes with variations incorporating polyurethane foam (PU) and aluminium tubes. Six different composite configurations were fabricated, including a baseline hollow CFRP tube and hybrid structures with foam and aluminium reinforcements. [...] Read more.
This study investigates the quasi-static axial crushing behaviour of carbon fibre-reinforced polymer (CFRP) tubes with variations incorporating polyurethane foam (PU) and aluminium tubes. Six different composite configurations were fabricated, including a baseline hollow CFRP tube and hybrid structures with foam and aluminium reinforcements. The mechanical response was evaluated through load–displacement behaviour and energy absorption. Visual inspection of the failure modes revealed distinct fracture mechanisms influenced by the type of reinforcement. The results indicate that incorporating aluminium significantly enhances load-bearing capacity, energy absorption, and crushing efficiency, with the sample containing four aluminium secondary tubes exhibiting the highest specific energy absorption. Meanwhile, foam-filled samples improved load-bearing capacity while mitigating brittle failure. These findings suggest that CFRP hybrid structures with aluminium and foam reinforcements offer promising solutions for lightweight Crashworthiness applications in the automotive and aerospace industries. Full article
(This article belongs to the Section Carbon Composites)
Show Figures

Figure 1

16 pages, 981 KB  
Article
The Natural Disinfectant Role of Essential Oils in Improving Radical Scavenging Activity and Total Phenolic Compounds in Fresh Vegetables
by Ben Allal Hafsa, Quesada-Granados José Javier, Agil Ahmad and Villalón-Mir Marina
Antioxidants 2025, 14(12), 1458; https://doi.org/10.3390/antiox14121458 - 5 Dec 2025
Viewed by 35
Abstract
The objective of this study was to evaluate the radical scavenging activity (RSA) and total polyphenolic content (TPC) in petiolate vegetables (baby spinach) and sessile vegetables (Romaine lettuce) disinfected with essential oils of thyme and peppermint compared with bleach solutions, a [...] Read more.
The objective of this study was to evaluate the radical scavenging activity (RSA) and total polyphenolic content (TPC) in petiolate vegetables (baby spinach) and sessile vegetables (Romaine lettuce) disinfected with essential oils of thyme and peppermint compared with bleach solutions, a chemical disinfectant widely used in food preparation. The vegetables, obtained from local markets in Granada (Spain), were treated with varying concentrations of essential oils and bleach solutions. Antiradical activity was evaluated using the DPPH radical scavenging method, while total polyphenols were determined using the Folin–Ciocalteu reagent. The results showed that essential oils significantly reduced microbial load, with inverse correlations between radical scavenging activity and microbial load and total phenolic compounds. Bleach solutions, on the other hand, show a strong direct correlation, significantly reducing the microbial load as well as the antiradical activity and total phenolic content. However, this antimicrobial and antioxidant effect depends on the morphological characteristics of the vegetable (stemmed or sessile) and the chemical composition of the essential oil. These results suggest that essential oils may be effective natural alternatives for disinfecting vegetables, as they increase their antiradical activity and polyphenolic content, in contrast to sodium hypochlorite, which affects the functional properties of the product by reducing the RSA and TPC. Full article
Show Figures

Figure 1

22 pages, 603 KB  
Article
Generation of Natural-Language Explanations for Static-Analysis Warnings Using Single- and Multi-Objective Optimization
by Ivan Malashin
Computers 2025, 14(12), 534; https://doi.org/10.3390/computers14120534 - 5 Dec 2025
Viewed by 139
Abstract
Explanations for static-analysis warnings assist developers in understanding potential code issues. An end-to-end pipeline was implemented to generate natural-language explanations, evaluated on 5183 warning–explanation pairs from Java repositories, including a manually validated gold subset of 1176 examples for faithfulness assessment. Explanations were produced [...] Read more.
Explanations for static-analysis warnings assist developers in understanding potential code issues. An end-to-end pipeline was implemented to generate natural-language explanations, evaluated on 5183 warning–explanation pairs from Java repositories, including a manually validated gold subset of 1176 examples for faithfulness assessment. Explanations were produced by a transformer-based encoder–decoder model (CodeT5) conditioned on warning types, contextual code snippets, and static-analysis evidence. Initial experiments employed single-objective optimization for hyperparameters (using a genetic algorithm with dynamic search-space correction, which adaptively adjusted search bounds based on the evolving distribution of candidate solutions, clustering promising regions, and pruning unproductive ones), but this approach enforced a fixed faithfulness–fluency trade-off; therefore, a multi-objective evolutionary algorithm (NSGA-II) was adopted to jointly optimize both criteria. Pareto-optimal configurations improved normalized faithfulness by up to 12% and textual quality by 5–8% compared to baseline CodeT5 settings, with batch sizes of 10–21, learning rates 2.3×105 to 5×104, maximum token lengths of 36–65, beam width 5, length penalty 1.15, and nucleus sampling p=0.88. Candidate explanations were reranked using a composite score of likelihood, faithfulness, and code-usefulness, producing final outputs in under 0.001 s per example. The results indicate that structured conditioning, evolutionary hyperparameter search, and reranking yield explanations that are both aligned with static-analysis evidence and linguistically coherent. Full article
(This article belongs to the Special Issue Machine Learning and Statistical Learning with Applications 2025)
Show Figures

Figure 1

17 pages, 10712 KB  
Article
An Euler Graph-Based Path Planning Method for Additive Manufacturing Thin-Walled Cellular Structures of Continuous Fiber-Reinforced Thermoplastic Composites
by Guocheng Liu, Fei Wang, Qiyong Tu, Ning Hu, Zhen Ouyang, Wenting Wei, Lei Yang and Chunze Yan
Polymers 2025, 17(23), 3236; https://doi.org/10.3390/polym17233236 - 4 Dec 2025
Viewed by 167
Abstract
Thin-walled cellular structures of continuous fiber-reinforced thermoplastic composites (CFRTPCs) have received much attention from both academics and industry due to their superior properties. Additive manufacturing provides an efficient solution for fabricating these thin-walled cellular structures of CFRTPCs. However, the process often requires cutting [...] Read more.
Thin-walled cellular structures of continuous fiber-reinforced thermoplastic composites (CFRTPCs) have received much attention from both academics and industry due to their superior properties. Additive manufacturing provides an efficient solution for fabricating these thin-walled cellular structures of CFRTPCs. However, the process often requires cutting fiber filaments at jumping points during printing. Furthermore, the filament may twist, fold, and break due to sharp turns in the printing path. These issues adversely affect the mechanical properties of the additive manufactured part. In this paper, a Euler graph-based path planning method for additive manufacturing of CFRTPCs is proposed to avoid jumping and sharp turns. Euler graphs are constructed from non-Eulerian graphs using the method of doubled edges. An optimized Hierholzer’s algorithm with pseudo-intersections is proposed to generate printing paths that satisfy the continuity, non-crossing, and avoid most of the sharp turns. The average turning angle was reduced by up to 20.88% and the number of turning angles less than or equal to 120° increased by up to 26.67% using optimized Hierholzer’s algorithm. In addition, the generated paths were verified by house-made robot-assisted additive manufacturing equipment. Full article
Show Figures

Graphical abstract

16 pages, 5350 KB  
Article
Mechanism of Interfacial Slippage in the Micro-Triangle and Composite Fiber Membrane Characteristics in Rotary-Force Spinning
by Jianwei Ma, Meng Zhang, Shuo Zhao, Zhiming Zhang, Zhen Chen and Qiaoling Ji
Polymers 2025, 17(23), 3235; https://doi.org/10.3390/polym17233235 - 4 Dec 2025
Viewed by 99
Abstract
Composite fiber membranes fabricated via rotational-force spinning have become widely applied in biomedicine, energy, and environmental fields owing to their excellent properties. Improving their functional performance and fabrication quality has therefore become a key research focus. Rotational-force spinning is a simple and efficient [...] Read more.
Composite fiber membranes fabricated via rotational-force spinning have become widely applied in biomedicine, energy, and environmental fields owing to their excellent properties. Improving their functional performance and fabrication quality has therefore become a key research focus. Rotational-force spinning is a simple and efficient technique in which high-speed motor rotation ejects polymer solutions from a nozzle to form fibers. However, the influence of polymer flow behavior within the nozzle on fiber formation remains insufficiently understood. In this study, the flow characteristics within the micro-triangle and the liquid–liquid slip phenomenon were investigated using a core–shell spinning device. Numerical simulations were conducted to analyze velocity differences between two polymer solutions under varying motor speeds and polyoxyethylene (PEO) concentrations. The results demonstrate that increasing PEO concentration and motor speed decreases slip velocity, thereby stabilizing the flow. Complementary experiments were performed using PEO and hydroxyethyl cellulose (HEC) solutions under controlled conditions. Mechanical testing, scanning electron microscopy (SEM), and thermogravimetric analysis (TG) were employed to assess the mechanical performance, thermal stability, morphology, and fiber diameter distribution of the composite membranes. Overall, the findings highlight the critical role of liquid–liquid slip in fiber formation and provide valuable insights for the controlled fabrication of high-quality composite fibers, offering a foundation for future research. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

25 pages, 5911 KB  
Article
A Numerical Study of Vertically Graded Gyroid Structures for Enhanced Heat Transfer in Sodium Acetate Trihydrate
by Martin Beer and Radim Rybár
Energies 2025, 18(23), 6373; https://doi.org/10.3390/en18236373 (registering DOI) - 4 Dec 2025
Viewed by 66
Abstract
Thermal energy storage using latent heat storage materials represents a promising solution for stabilizing low-temperature energy systems; however, its effectiveness is limited by the low thermal conductivity of phase change materials (PCM), particularly salt hydrates such as sodium acetate trihydrate (SAT). The objective [...] Read more.
Thermal energy storage using latent heat storage materials represents a promising solution for stabilizing low-temperature energy systems; however, its effectiveness is limited by the low thermal conductivity of phase change materials (PCM), particularly salt hydrates such as sodium acetate trihydrate (SAT). The objective of this work is to analyze to what extent vertical gradation of a metallic gyroid structure can enhance heat transfer and temperature homogeneity in the PCM during charging. Time-dependent numerical simulations of conjugate heat transfer were performed for three gyroid variants differing in the orientation of pore gradation, modeling heat transfer between the flowing water, the aluminum gyroid structure, and the solid phase of SAT until the PCM reached a temperature of 58 °C. The results showed that the orientation of the gradation significantly affects both the heating dynamics and the quality of the temperature field. The variant with enlarged pores in the region of contact with the fluid and gradually decreasing pores toward the PCM achieved the shortest time to complete heating, the lowest temperature amplitude, and the highest degree of temperature homogeneity. This variant also exhibited the highest energetic efficiency, expressed as the ratio of transferred heat to pressure drop. The study demonstrates that deliberately designed gyroid gradation can substantially improve the performance of PCM composites without increasing the amount of material and represents a promising pathway for the development of advanced thermal storage systems. Full article
Show Figures

Figure 1

24 pages, 5466 KB  
Article
Magnesium Dross and Ground Granulated Blast Furnace Slag Utilisation for Phosphate Elimination from Water
by Reham Alwash, Manolia Andredaki, Iacopo Carnacina, Monower Sadique and Joseph Amoako-Attah
Appl. Sci. 2025, 15(23), 12844; https://doi.org/10.3390/app152312844 - 4 Dec 2025
Viewed by 152
Abstract
It is well known that elevated phosphate concentrations in water bodies trigger the eutrophication process, posing adverse environmental, health, and economic consequences that necessitate effective removal solutions. Phosphate removal has therefore been widely studied using various methods, including chemical precipitation, membrane filtration, and [...] Read more.
It is well known that elevated phosphate concentrations in water bodies trigger the eutrophication process, posing adverse environmental, health, and economic consequences that necessitate effective removal solutions. Phosphate removal has therefore been widely studied using various methods, including chemical precipitation, membrane filtration, and crystallisation. However, most of these methods are often expensive or inefficient for low phosphate concentrations. Therefore, in this study, an eco-friendly, sustainable and biodegradable adsorbent was manufactured by extracting calcium ions from an industrial by-product, ground granulated blast furnace slag (GGBS) and magnesium ions from magnesium dross (MgD), then immobilising them on sodium alginate to form Ca-Mg-SA beads. The new adsorbent was applied to remove phosphate from water under different flow patterns (batch and continuous flow), initial pH levels, contact times, agitation speeds and adsorbent doses. Additionally, the degradation time of the new adsorbent, recycling potential, its morphology, formation of functional groups and chemical composition were investigated. The results obtained from batch experiments demonstrated that the new adsorbent achieved 90.2% phosphate removal efficiency from a 10 mg/L initial concentration, with a maximum adsorption capacity of 1.75 mg P/g at an initial pH of 7, a contact time of 120 min, an agitation speed of 200 rpm and an adsorbent dose of 1.25 g/50 mL. The column experiments demonstrated a 0.82 mg P/g removal capacity under the same optimal conditions as the batch experiments. The findings also showed that the adsorption process fitted well to the Freundlich and Langmuir isotherm models and followed a pseudo-second-order kinetic model. Characterisation of Ca-Mg-SA beads using EDX, SEM and FTIR confirmed successful ion immobilisation and phosphate adsorption. Furthermore, the beads fully biodegraded in soil within 75 days and demonstrated potential recycling as a fertiliser. Full article
(This article belongs to the Special Issue New Technologies for Water Quality: Treatment and Monitoring)
Show Figures

Figure 1

13 pages, 3264 KB  
Article
CFD-Based Evaluation of Stirred Tank Designs for High-Viscosity Copolymer Aramid Dope Mixing
by Dong-Hyun Yeo, Hyun-Sung Yoon, Seong-Hun Yu and Jee-Hyun Sim
Polymers 2025, 17(23), 3233; https://doi.org/10.3390/polym17233233 - 4 Dec 2025
Viewed by 107
Abstract
High-viscosity aramid copolymer solutions are widely used in fiber manufacturing and advanced composite applications, but their elevated viscosity poses significant challenges for mixing and agitation processes. This study employs computational fluid dynamics (CFD) simulations to enhance the mixing performance of such systems. Flow [...] Read more.
High-viscosity aramid copolymer solutions are widely used in fiber manufacturing and advanced composite applications, but their elevated viscosity poses significant challenges for mixing and agitation processes. This study employs computational fluid dynamics (CFD) simulations to enhance the mixing performance of such systems. Flow behavior around the impeller was analyzed within a cylindrical stirred tank while varying the number of baffles (0, 2, 4, and 6) and comparing two different impeller designs (A and B). Simulation results showed that installing a sufficient number of baffles—particularly four—effectively suppressed swirling flows commonly observed in high-viscosity fluids, thereby significantly improving mixing efficiency. Additionally, impeller geometry played a critical role in performance: the axial-flow impeller promoted faster homogenization and broader circulation compared with the radial-flow design. Through this CFD-based analysis, this study elucidates the key mechanisms governing mixing in high-viscosity fluids and provides practical design and operational guidelines for industrial stirred tank systems. These findings complement existing empirical guidelines focused on low-viscosity fluids and contribute to improving the efficiency and reliability of high-viscosity polymer processing. Full article
Show Figures

Figure 1

12 pages, 1750 KB  
Article
Laser-Fabricated GO/ZIF-67 Hybrid Nanocomposites for High-Performance 3D-Printed Supercapacitors
by Mahshid Mokhtarnejad, Erick L. Ribeiro, Karen Y. Patino Jaimes, Mariana Milano-Benitez and Bamin Khomami
Nanoenergy Adv. 2025, 5(4), 20; https://doi.org/10.3390/nanoenergyadv5040020 - 4 Dec 2025
Viewed by 102
Abstract
This study introduces a modified Laser Ablation Synthesis in Solution (LASiS), a surfactant-free and rapid synthesis approach that enables uniform MOF nucleation on graphene oxide (GO) and precise control over crystallinity, for fabricating graphene oxide (GO)-integrated cobalt-based ZIF-67 hybrid nanocomposites tailored for supercapacitor [...] Read more.
This study introduces a modified Laser Ablation Synthesis in Solution (LASiS), a surfactant-free and rapid synthesis approach that enables uniform MOF nucleation on graphene oxide (GO) and precise control over crystallinity, for fabricating graphene oxide (GO)-integrated cobalt-based ZIF-67 hybrid nanocomposites tailored for supercapacitor applications. By tuning LASiS parameters, we precisely controlled framework size, morphology, and crystallinity, enabling sustainable and scalable production. The incorporation of GO during synthesis markedly enhances the uniform dispersion of ZIF-67 frameworks, minimizing aggregation and establishing interconnected conductive pathways via strong π-π stacking interactions. Following thermal reduction at 250 °C, the Co/ZIF-67–rGO composites exhibit outstanding electrochemical performance, achieving a specific capacitance of 1152 Fg−1 at 1 Ag−1 in a three-electrode configuration, driven by the synergistic combination of pseudocapacitive cobalt centers and double-layer capacitance from rGO. Structural analyses confirm the preservation of ZIF crystallinity and robust interfacial integration with the graphene sheets. Embedding these nanocomposites into fully 3D-printed supercapacitors yields a specific capacitance of 875 Fg−1, demonstrating their suitability for additive manufacturing despite minor increases in interfacial resistance. The 3D-printed supercapacitor devices delivered an energy density of 77.7 Wh/kg at a power density of 399.6 W/kg. Collectively, these results highlight the potential of LASiS-engineered MOF-based nanocomposites as scalable, high-performance materials for next-generation energy storage devices. Full article
(This article belongs to the Special Issue Hybrid Energy Storage Systems Based on Nanostructured Materials)
Show Figures

Graphical abstract

34 pages, 1255 KB  
Review
Harnessing the Synergy Between Edible Coatings and Non-Thermal Technologies for Improved Food Quality and Sustainable Preservation
by Xiaoyu Tian, Hui Dong, Qin Fang, Xiaorui Zhang, Chunxia Dai and Joshua Harrington Aheto
Horticulturae 2025, 11(12), 1466; https://doi.org/10.3390/horticulturae11121466 - 4 Dec 2025
Viewed by 108
Abstract
This review explores the synergistic integration of edible coatings and non-thermal preservation technologies as a multifaceted approach to maintaining food quality, safety, and sustainability. Edible coatings—composed of polysaccharides, proteins, lipids, or composite biopolymers—serve as biodegradable barriers that control moisture, gas, and solute transfer [...] Read more.
This review explores the synergistic integration of edible coatings and non-thermal preservation technologies as a multifaceted approach to maintaining food quality, safety, and sustainability. Edible coatings—composed of polysaccharides, proteins, lipids, or composite biopolymers—serve as biodegradable barriers that control moisture, gas, and solute transfer while acting as carriers for bioactive compounds such as antimicrobials and antioxidants. Meanwhile, non-thermal techniques, including high-pressure processing, cold plasma, ultrasound, photodynamic inactivation, modified atmosphere packaging, and irradiation, offer microbial inactivation and enzymatic control without compromising nutritional and sensory attributes. When combined, these technologies exhibit complementary effects: coatings enhance the stability of bioactives and protect surface quality, while non-thermal treatments boost antimicrobial efficacy and promote active compound penetration. The review highlights their comparative advantages over individual treatments—improved microbial inhibition, nutrient retention, and sensory quality. It further discusses the possible mechanisms through which edible coatings and selected hurdles induced microbial decontamination. Finally, the study identified major drawbacks and provided strategic recommendations to overcome these limitations, including optimizing coating formulations for specific food matrices, tailoring process parameters to minimize adverse physicochemical changes, and conducting pilot-scale validations to bridge the gap between laboratory success and industrial application. Full article
Show Figures

Figure 1

Back to TopTop