Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = composite hydrogel–elastomer materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2073 KB  
Review
Printable Conductive Hydrogels and Elastomers for Biomedical Application
by Zhangkang Li, Chenyu Shen, Hangyu Chen, Jaemyung Shin, Kartikeya Dixit and Hyun Jae Lee
Gels 2025, 11(9), 707; https://doi.org/10.3390/gels11090707 - 3 Sep 2025
Viewed by 909
Abstract
Printed flexible materials have garnered considerable attention as next-generation materials for bioelectronic applications, particularly hydrogels and elastomers, owing to their intrinsic softness, tissue-like mechanical compliance, and electrical conductivity. In contrast to conventional fabrication approaches, printing technologies enable precise spatial control, design versatility, and [...] Read more.
Printed flexible materials have garnered considerable attention as next-generation materials for bioelectronic applications, particularly hydrogels and elastomers, owing to their intrinsic softness, tissue-like mechanical compliance, and electrical conductivity. In contrast to conventional fabrication approaches, printing technologies enable precise spatial control, design versatility, and seamless integration with complex biological interfaces. This review provides a comprehensive overview of the progress in printable soft conductive materials, with a particular emphasis on the composition, processing, and functional roles of conductive hydrogels and elastomers. This review first introduces traditional fabrication methods for conductive materials and explains the motivation for using printing techniques. We then introduce two major classes of soft conductive materials, hydrogels and elastomers, and describe their applications in both in vitro systems, such as biosensors and soft stimulators, and in vivo settings, including neural interfaces and implantable devices. Finally, we discuss current challenges and propose future directions for advancing printed soft bioelectronics toward clinical translation. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Biomedical Application (2nd Edition))
Show Figures

Figure 1

12 pages, 4701 KB  
Article
Response Properties of Electrorheological Composite Hydrophilic Elastomers Based on Different Morphologies of Magnesium-Doped Strontium Titanate
by Shu-Juan Gao, Lin-Zhi Li, Peng-Fei Han, Ling Wang, Feng Li, Tan-Lai Yu and Yan-Fang Li
Molecules 2024, 29(15), 3462; https://doi.org/10.3390/molecules29153462 - 24 Jul 2024
Viewed by 1610
Abstract
As smart materials, electrorheological elastomers (EREs) formed by pre-treating active electrorheological particles are attracting more and more attention. In this work, four Mg-doped strontium titanate (Mg-STO) particles with spherical, dendritic, flake-like, and pinecone-like morphologies were obtained via hydrothermal and low-temperature co-precipitation. XRD, SEM, [...] Read more.
As smart materials, electrorheological elastomers (EREs) formed by pre-treating active electrorheological particles are attracting more and more attention. In this work, four Mg-doped strontium titanate (Mg-STO) particles with spherical, dendritic, flake-like, and pinecone-like morphologies were obtained via hydrothermal and low-temperature co-precipitation. XRD, SEM, Raman, and FT-IR were used to characterize these products. The results showed that Mg-STOs are about 1.5–2.0 μm in size, and their phase structures are dominated by cubic crystals. These Mg-STOs were dispersed in a hydrogel composite elastic medium. Then, Mg-STO/glycerol/gelatin electrorheological composite hydrophilic elastomers were obtained with or without an electric field. The electric field response properties of Mg-doped strontium titanate composite elastomers were investigated. We concluded that dendritic Mg-STO composite elastomers are high-performance EREs, and the maximum value of their energy storage was 8.70 MPa. The significant electrorheological performance of these products is helpful for their applications in vibration control, force transducers, smart structures, dampers, and other fields. Full article
Show Figures

Graphical abstract

18 pages, 3719 KB  
Article
Flexible Actuator Based on Conductive PAM Hydrogel Electrodes with Enhanced Water Retention Capacity and Conductivity
by Yang Hong, Zening Lin, Yun Yang, Tao Jiang, Jianzhong Shang and Zirong Luo
Micromachines 2022, 13(11), 1951; https://doi.org/10.3390/mi13111951 - 11 Nov 2022
Cited by 13 | Viewed by 3398
Abstract
Conductive polyacrylamide (PAM) hydrogels with salts that act as electrolytes have been used as transparent electrodes with high elasticity in flexible electronic devices. Different types and contents of raw materials will affect their performance in all aspects. We tried to introduce highly hydratable [...] Read more.
Conductive polyacrylamide (PAM) hydrogels with salts that act as electrolytes have been used as transparent electrodes with high elasticity in flexible electronic devices. Different types and contents of raw materials will affect their performance in all aspects. We tried to introduce highly hydratable salts into PAM hydrogels to improve their water retention capacity. Different salts can improve the water retention capacity of PAM hydrogels to a certain extent. In particular, PAM hydrogels containing higher concentrations of lithium chloride (LiCl) and calcium chloride (CaCl2) showed an extremely strong water retention capacity and could retain about 90% and more than 98% of the initial water in the experimental environment at a temperature of 25 °C and a relative humidity of 60% RH, respectively. In addition, we conducted electrical conductivity tests on these PAM hydrogels with different salts. The PAM hydrogels containing LiCl also show outstanding conductivity, and the highest conductivity value can reach up to about 8 S/m. However, the PAM hydrogels containing CaCl2, which also performed well in terms of their water retention capacity, were relatively common in terms of their electrical conductivity. On this basis, we attempted to introduce single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), and graphene (GO) electronic conductors to enhance the electrical conductivity of the PAM hydrogels containing LiCl. The conductivity of the PAM hydrogels containing LiCl was improved to a certain extent after the addition of these electronic conductors. The highest electrical conductivity was about 10 S/m after we added the SWCNTs. This experimental result indicates that these electronic conductors can indeed enhance the electrical conductivity of PAM hydrogels to a certain extent. After a maximum of 5000 repeated tensile tests, the conductive hydrogel samples could still maintain their original morphological characteristics and conductivity. This means that these conductive hydrogel samples have a certain degree of system reliability. We made the PAM conductive hydrogels with high water retention and good conductivity properties into thin electrodes and applied them to an electric response flexible actuator with dielectric elastomer as the functional material. This flexible actuator can achieve a maximum area strain of 18% under an external voltage of 10 kV. This new composite hydrogels with high water retention and excellent conductivity properties will enable more possibilities for the application of hydrogels. Full article
Show Figures

Figure 1

16 pages, 3437 KB  
Article
Flexible Composites with Variable Conductivity and Memory of Deformation Obtained by Polymerization of Polyaniline in PVA Hydrogel
by Andrei Honciuc, Ana-Maria Solonaru and Mirela Teodorescu
Polymers 2022, 14(21), 4638; https://doi.org/10.3390/polym14214638 - 31 Oct 2022
Cited by 12 | Viewed by 3123
Abstract
Flexible materials that provide an electric, magnetic, or optic response upon deformation or tactile pressure could be important for the development of smart monitors, intelligent textiles, or in the development of robotic skins. In this work we demonstrate the capabilities of a flexible [...] Read more.
Flexible materials that provide an electric, magnetic, or optic response upon deformation or tactile pressure could be important for the development of smart monitors, intelligent textiles, or in the development of robotic skins. In this work we demonstrate the capabilities of a flexible and electrically conductive polymer material that produces an electrical response with any deformation, namely the electrical resistance of the material changes proportionally with the deformation pressure. Furthermore, the material exhibits a memory effect. When compressed beyond the elastic regime, it retains the memory of the plastic deformation by increasing its resistance. The material was obtained by in situ polymerization of semiconducting polyaniline (PANi) in a polyvinyl alcohol/glycerol (PVA/Gly) hydrogel matrix at −17 °C. Upon drying of the hydrogel, an elastomer composite is obtained, with rubber-like characteristics. When compressed/decompressed, the electrical resistance of the material exhibits an unusually long equilibration/relaxation time, proportional with the load applied. These phenomena indicate a complex relaxation and reconfiguration process of the PANi/PVA elastomer matrix, with the shape change of the material due to mechanical stress. Full article
(This article belongs to the Special Issue Smart and Functional Polymer Composites)
Show Figures

Graphical abstract

12 pages, 3519 KB  
Article
Soft Stretchable Conductive Carboxymethylcellulose Hydrogels for Wearable Sensors
by Kyuha Park, Heewon Choi, Kyumin Kang, Mikyung Shin and Donghee Son
Gels 2022, 8(2), 92; https://doi.org/10.3390/gels8020092 - 4 Feb 2022
Cited by 22 | Viewed by 5333
Abstract
Hydrogels that have a capability to provide mechanical modulus matching between time-dynamic curvilinear tissues and bioelectronic devices have been considered tissue-interfacing ionic materials for stably sensing physiological signals and delivering feedback actuation in skin-inspired healthcare systems. These functionalities are totally different from those [...] Read more.
Hydrogels that have a capability to provide mechanical modulus matching between time-dynamic curvilinear tissues and bioelectronic devices have been considered tissue-interfacing ionic materials for stably sensing physiological signals and delivering feedback actuation in skin-inspired healthcare systems. These functionalities are totally different from those of elastomers with low ionic conductivity and higher stiffness. Despite such remarkable progress, their low conductivity remains limited in transporting electrical charges to internal or external terminals without undesired information loss, potentially leading to an unstable biotic–abiotic interfaces in the wearable electronics. Here, we report a soft stretchable conductive hydrogel composite consisting of alginate, carboxymethyl cellulose, polyacrylamide, and silver flakes. This composite was fabricated via sol–gel transition. In particular, the phase stability and low dynamic modulus rates of the conductive hydrogel were confirmed through an oscillatory rheological characterization. In addition, our conductive hydrogel showed maximal tensile strain (≈400%), a low deformations of cyclic loading (over 100 times), low resistance (≈8.4 Ω), and a high gauge factor (≈241). These stable electrical and mechanical properties allowed our composite hydrogel to fully support the operation of a light-emitting diode demonstration under mechanical deformation. Based on such durable performance, we successfully measured the electromyogram signals without electrical malfunction even in various motions. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Hydrogels)
Show Figures

Figure 1

11 pages, 3450 KB  
Article
Arrayed Force Sensors Made of Paper, Elastomer, and Hydrogel Particles
by Xiyue Zou, Tongfen Liang, Nastassja Lopez, Moustafa Ahmed, Akshitha Ajayan and Aaron D. Mazzeo
Micromachines 2017, 8(12), 356; https://doi.org/10.3390/mi8120356 - 8 Dec 2017
Cited by 10 | Viewed by 6050
Abstract
This article presents a sensor for detecting the distribution of forces on a surface. The device with nine buttons consisted of an elastomer-based layer as a touch interface resting on a substrate of patterned metallized paper. The elastomer-based layer included a three-by-three array [...] Read more.
This article presents a sensor for detecting the distribution of forces on a surface. The device with nine buttons consisted of an elastomer-based layer as a touch interface resting on a substrate of patterned metallized paper. The elastomer-based layer included a three-by-three array of deformable, hemispherical elements/reliefs, facing down toward an array of interdigitated capacitive sensing units on patterned metallized paper. Each hemispherical element is 20 mm in diameter and 8 mm in height. When a user applied pressure to the elastomer-based layer, the contact area between the hemispherical elements and the interdigitated capacitive sensing units increased with the deformation of the hemispherical elements. To enhance the sensitivity of the sensors, embedded particles of hydrogel in the elastomer-based layer increased the measured electrical responses. The measured capacitance increased because the effective dielectric permittivity of the hydrogel was greater than that of air. Electromechanical characterization verified that the hydrogel-filled elastomer was more sensitive to force at a low range of loads (23.4 pF/N) than elastomer alone without embedded hydrogel (3.4 pF/N), as the hydrogel reduced the effective elastic modulus of the composite material by a factor of seven. A simple demonstration suggests that the force-sensing array has the potential to contribute to wearable and soft robotic devices. Full article
(This article belongs to the Special Issue Paper-Based Transducers and Electronics)
Show Figures

Figure 1

13 pages, 7319 KB  
Article
Pattern Switching in Soft Cellular Structures and Hydrogel-Elastomer Composite Materials under Compression
by Jianying Hu, Yu Zhou, Zishun Liu and Teng Yong Ng
Polymers 2017, 9(6), 229; https://doi.org/10.3390/polym9060229 - 16 Jun 2017
Cited by 16 | Viewed by 8310
Abstract
It is well known that elastic instabilities induce pattern transformations when a soft cellular structure is compressed beyond critical limits. The nonlinear phenomena of pattern transformations make them a prime candidate for controlling macroscopic or microscopic deformation and auxetic properties of the material. [...] Read more.
It is well known that elastic instabilities induce pattern transformations when a soft cellular structure is compressed beyond critical limits. The nonlinear phenomena of pattern transformations make them a prime candidate for controlling macroscopic or microscopic deformation and auxetic properties of the material. In this present work, the novel mechanical properties of soft cellular structures and related hydrogel–elastomer composites are examined through experimental investigation and numerical simulations. We provide two reliable approaches for fabricating hydrogel–elastomer composites with rationally designed properties and transformed patterns, and demonstrate that different geometries of the repeat unit voids of the periodic pattern can be used to influence the global characteristics of the soft composite material. The experimental and numerical results indicate that the transformation event is dependent on the boundary conditions and material properties of matrix material for soft cellular structures; meanwhile, the deformation-triggered pattern of matrix material affects the pattern switching and mechanical properties of the hydrogel–elastomer material, thus providing future perspectives for optimal design, or serving as a fabrication suggestion of the new hydrogel–elastomer composite material. Full article
(This article belongs to the Special Issue Functionally Responsive Polymeric Materials)
Show Figures

Graphical abstract

Back to TopTop