Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,239)

Search Parameters:
Keywords = commercial-scale

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2209 KiB  
Article
Effect of Different Deodorants on SBS-Modified Asphalt Fume Emissions, Asphalt Road Performance, and Mixture Performance
by Zhaoyan Sheng, Ning Yan and Xianpeng Zhao
Processes 2025, 13(8), 2485; https://doi.org/10.3390/pr13082485 - 6 Aug 2025
Abstract
During large-scale pavement construction, the preparation of SBS-modified asphalt typically produces large amounts of harmful fumes. The emergence of deodorants can effectively alleviate the problem of smoke emissions during the asphalt manufacturing process. On the basis of ensuring the original road performance, exploring [...] Read more.
During large-scale pavement construction, the preparation of SBS-modified asphalt typically produces large amounts of harmful fumes. The emergence of deodorants can effectively alleviate the problem of smoke emissions during the asphalt manufacturing process. On the basis of ensuring the original road performance, exploring more suitable dosages and types of deodorant is urgently needed. Five commercial deodorants were evaluated using an asphalt smoke collection system, and UV-visible spectrophotometry (UV) was employed to screen the deodorants based on smoke concentration. Gas chromatography–mass spectrometry (GC-MS) was used to quantitatively analyze changes in harmful smoke components before and after adding two deodorants. Subsequently, the mechanisms of action of the two different types of deodorants were analyzed microscopically using fluorescence microscopy. Finally, the performance of bitumen and asphalt mixtures after adding deodorants was evaluated. The results showed that deodorant A (reactive type) and D (adsorption type) exhibited the best smoke suppression effects, with optimal addition rates of 0.6% and 0.5%, respectively. Deodorant A reduced benzene homologues by nearly 50% and esters by approximately 40%, while deodorant D reduced benzene homologues by approximately 70% and esters by approximately 60%, without producing new toxic gases. Both deodorants had a minimal impact on the basic properties of bitumen and the road performance of asphalt mixtures, with all indicators meeting technical specifications. This research provides a theoretical basis for the effective application of deodorants in the future, truly enabling a transition from laboratory research to large-scale engineering applications in the construction of environmentally friendly roads. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

18 pages, 4884 KiB  
Article
Multiplication of Axillary Shoots of Adult Quercus robur L. Trees in RITA® Bioreactors
by Paweł Chmielarz, Conchi Sánchez, João Paulo Rodrigues Martins, Juan Manuel Ley-López, Purificación Covelo, María José Cernadas, Anxela Aldrey, Saleta Rico, Jesús María Vielba, Bruce Christie and Nieves Vidal
Forests 2025, 16(8), 1285; https://doi.org/10.3390/f16081285 - 6 Aug 2025
Abstract
Adult trees of pedunculate oak (Quercus robur L.) are recalcitrant to vegetative propagation. In this study, we investigated the micropropagation of five oak genotypes corresponding to trees aged 60–800 years in a liquid medium. We used commercial RITA bioreactors to study the [...] Read more.
Adult trees of pedunculate oak (Quercus robur L.) are recalcitrant to vegetative propagation. In this study, we investigated the micropropagation of five oak genotypes corresponding to trees aged 60–800 years in a liquid medium. We used commercial RITA bioreactors to study the influence of the explant type, the culture medium, shoot support and number of immersions. Variables evaluated included the number of normal and hyperhydric shoots, shoot length, multiplication coefficient and number of rootable shoots per explant. All genotypes could be cultured in temporary immersion. Basal stem sections attached to callus grew better than apical sections and developed less hyperhydricity. For long-term cultivation, Gresshoff and Doy medium was the best of the three media evaluated. All genotypes produced vigorous shoots suitable for rooting and acclimation. This is the first protocol to proliferate adult oak trees in bioreactors, representing significant progress towards large-scale propagation of this and other related species. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

18 pages, 8682 KiB  
Article
Urban Carbon Metabolism Optimization Based on a Source–Sink–Flow Framework at the Functional Zone Scale
by Cui Wang, Liuchang Xu, Xingyu Xue and Xinyu Zheng
Land 2025, 14(8), 1600; https://doi.org/10.3390/land14081600 - 6 Aug 2025
Abstract
Carbon flow tracking and spatial pattern optimization at the scale of urban functional zones are key scientific challenges in achieving carbon neutrality. However, due to the complexity of carbon metabolism processes within urban functional zones, related studies remain limited. To address these scientific [...] Read more.
Carbon flow tracking and spatial pattern optimization at the scale of urban functional zones are key scientific challenges in achieving carbon neutrality. However, due to the complexity of carbon metabolism processes within urban functional zones, related studies remain limited. To address these scientific challenges, this study, based on the “source–sink–flow” ecosystem services framework, develops an integrated analytical approach at the scale of urban functional zones. The carbon balance is quantified using the CASA model in combination with multi-source data. A network model is employed to trace carbon flow pathways, identify critical nodes and interruption points, and optimize the urban spatial pattern through a low-carbon land use structure model. The research results indicate that the overall carbon balance in Hangzhou exhibits a spatial pattern of “deficit in the center and surplus in the periphery.” The main urban area shows a significant carbon deficit and relatively poor connectivity in the carbon flow network. Carbon sequestration services primarily flow from peripheral areas (such as Fuyang and Yuhang) with green spaces and agricultural functional zones toward high-emission residential–commercial and commercial–public functional zones in the central area. However, due to the interruption of multiple carbon flow paths, the overall carbon flow transmission capacity is significantly constrained. Through spatial optimization, some carbon deficit nodes were successfully converted into carbon surplus nodes, and disrupted carbon flow edges were repaired, particularly in the main urban area, where 369 carbon flow edges were restored, resulting in a significant improvement in the overall transmission efficiency of the carbon flow network. The carbon flow visualization and spatial optimization methods proposed in this paper provide a new perspective for urban carbon metabolism analysis and offer theoretical support for low-carbon city planning practices. Full article
(This article belongs to the Special Issue The Second Edition: Urban Planning Pathways to Carbon Neutrality)
Show Figures

Figure 1

20 pages, 1316 KiB  
Article
Immunocapture RT-qPCR Method for DWV-A Surveillance: Eliminating Hazardous Extraction for Screening Applications
by Krisztina Christmon, Eugene V. Ryabov, James Tauber and Jay D. Evans
Appl. Biosci. 2025, 4(3), 40; https://doi.org/10.3390/applbiosci4030040 - 6 Aug 2025
Abstract
Deformed wing virus (DWV) is a major contributor to honey bee colony losses, making effective monitoring essential for apiary management. Traditional DWV detection relies on hazardous RNA extraction followed by RT-qPCR, creating barriers for widespread surveillance. We developed an immunocapture RT-qPCR (IC-RT-PCR) method [...] Read more.
Deformed wing virus (DWV) is a major contributor to honey bee colony losses, making effective monitoring essential for apiary management. Traditional DWV detection relies on hazardous RNA extraction followed by RT-qPCR, creating barriers for widespread surveillance. We developed an immunocapture RT-qPCR (IC-RT-PCR) method for screening DWV-A infections by capturing intact virus particles from bee homogenates using immobilized antibodies. Validation demonstrated strong correlation with TRIzol®-based extraction (r = 0.821), with approximately 6 Ct reduced sensitivity, consistent with other published immunocapture methods. Performance was adequate for moderate–high viral loads, while TRIzol® showed superior detection for low-dose infections. Laboratory-produced reverse transcriptase showed equivalent performance to commercial enzymes, providing cost savings. IC-RT-PCR eliminates hazardous chemicals and offers a streamlined workflow for surveillance screening where the safety and cost benefits outweigh the sensitivity reduction. This method provides a practical alternative for large-scale DWV-A surveillance programs, while TRIzol® remains preferable for low-level detection and diagnostic confirmation. Full article
Show Figures

Figure 1

38 pages, 4692 KiB  
Review
Progress and Challenges in the Process of Using Solid Waste as a Catalyst for Biodiesel Synthesis
by Zhaolin Dong, Kaili Dong, Haotian Li, Liangyi Zhang and Yitong Wang
Molecules 2025, 30(15), 3243; https://doi.org/10.3390/molecules30153243 - 1 Aug 2025
Viewed by 174
Abstract
Biodiesel, as one of the alternatives to fossil fuels, faces significant challenges in large-scale industrial production due to its high production costs. In addition to raw material costs, catalyst costs are also a critical factor that cannot be overlooked. This review summarizes various [...] Read more.
Biodiesel, as one of the alternatives to fossil fuels, faces significant challenges in large-scale industrial production due to its high production costs. In addition to raw material costs, catalyst costs are also a critical factor that cannot be overlooked. This review summarizes various methods for preparing biodiesel catalysts from solid waste. These methods not only enhance the utilization rate of waste but also reduce the production costs and environmental impact of biodiesel. Finally, the limitations of waste-based catalysts and future research directions are discussed. Research indicates that solid waste can serve as a catalyst carrier or active material for biodiesel production. Methods such as high-temperature calcination, impregnation, and coprecipitation facilitate structural modifications to the catalyst and the formation of active sites. The doping of metal ions not only alters the catalyst’s acid-base properties but also forms stable metal bonds with functional groups on the carrier, thereby maintaining catalyst stability. The application of microwave-assisted and ultrasound-assisted methods reduces reaction parameters, making biodiesel production more economical and sustainable. Overall, this study provides a scientific basis for the reuse of solid waste and ecological protection, emphasizes the development potential of waste-based catalysts in biodiesel production, and offers unique insights for innovation in this field, thereby accelerating the commercialization of biodiesel. Full article
Show Figures

Graphical abstract

21 pages, 5734 KiB  
Article
Analytical Inertia Identification of Doubly Fed Wind Farm with Limited Control Information Based on Symbolic Regression
by Mengxuan Shi, Yang Li, Xingyu Shi, Dejun Shao, Mujie Zhang, Duange Guo and Yijia Cao
Appl. Sci. 2025, 15(15), 8578; https://doi.org/10.3390/app15158578 (registering DOI) - 1 Aug 2025
Viewed by 109
Abstract
The integration of large-scale wind power clusters significantly reduces the inertia level of the power system, increasing the risk of frequency instability. Accurately assessing the equivalent virtual inertia of wind farms is critical for grid stability. Addressing the dual bottlenecks in existing inertia [...] Read more.
The integration of large-scale wind power clusters significantly reduces the inertia level of the power system, increasing the risk of frequency instability. Accurately assessing the equivalent virtual inertia of wind farms is critical for grid stability. Addressing the dual bottlenecks in existing inertia assessment methods, where physics-based modeling requires full control transparency and data-driven approaches lack interpretability for inertia response analysis, thus failing to reconcile commercial confidentiality constraints with analytical needs, this paper proposes a symbolic regression framework for inertia evaluation in doubly fed wind farms with limited control information constraints. First, a dynamic model for the inertia response of DFIG wind farms is established, and a mathematical expression for the equivalent virtual inertia time constant under different control strategies is derived. Based on this, a nonlinear function library reflecting frequency-active power dynamic is constructed, and a symbolic regression model representing the system’s inertia response characteristics is established by correlating operational data. Then, sparse relaxation optimization is applied to identify unknown parameters, allowing for the quantification of the wind farm’s equivalent virtual inertia. Finally, the effectiveness of the proposed method is validated in an IEEE three-machine nine-bus system containing a doubly fed wind power cluster. Case studies show that the proposed method can fully utilize prior model knowledge and operational data to accurately assess the system’s inertia level with low computational complexity. Full article
Show Figures

Figure 1

16 pages, 301 KiB  
Article
Human Capital and Bank Performance: Does Size Matter?
by Quynh Nguyen Thi Nhu
J. Risk Financial Manag. 2025, 18(8), 429; https://doi.org/10.3390/jrfm18080429 - 1 Aug 2025
Viewed by 145
Abstract
This study was conducted to examine the moderating effect of size on the impact of human capital on bank performance, using data from 26 commercial banks in Vietnam from 2008 to 2023 through panel data regression methods. The results indicate that bank size [...] Read more.
This study was conducted to examine the moderating effect of size on the impact of human capital on bank performance, using data from 26 commercial banks in Vietnam from 2008 to 2023 through panel data regression methods. The results indicate that bank size and human capital are important resources for commercial banks to increase their performance, which is consistent with the resource-based view and economies of scale theory. However, bank size fails to exhibit a significant moderating effect on the impact of human capital on the bank performance in Vietnam. This phenomenon can be explained by the relatively limited influence of size effects on human capital, coupled with the fact that the majority of Vietnamese commercial banks place significant strategic emphasis on human capital development within their operational frameworks. In addition, this study highlights the impact of some internal factors and the macroeconomic conditions on bank performance. From these empirical findings, this paper recommends several critical policies. Full article
(This article belongs to the Special Issue Accounting, Finance and Banking in Emerging Economies)
15 pages, 6769 KiB  
Article
Pine Cones in Plantations as Refuge and Substrate of Lichens and Bryophytes in the Tropical Andes
by Ángel Benítez
Diversity 2025, 17(8), 548; https://doi.org/10.3390/d17080548 - 1 Aug 2025
Viewed by 176
Abstract
Deforestation driven by plantations, such as Pinus patula Schiede ex Schltdl. et Cham., is a major cause of biodiversity and functional loss in tropical ecosystems. We assessed the diversity and composition of lichens and bryophytes in four size categories of pine cones, small [...] Read more.
Deforestation driven by plantations, such as Pinus patula Schiede ex Schltdl. et Cham., is a major cause of biodiversity and functional loss in tropical ecosystems. We assessed the diversity and composition of lichens and bryophytes in four size categories of pine cones, small (3–5 cm), medium (5.1–8 cm), large (8.1–10 cm), and very large (10.1–13 cm), with a total of 150 pine cones examined, where the occurrence and cover of lichen and bryophyte species were recorded. Identification keys based on morpho-anatomical features were used to identify lichens and bryophytes. In addition, for lichens, secondary metabolites were tested using spot reactions with potassium hydroxide, commercial bleach, and Lugol’s solution, and by examining the specimens under ultraviolet light. To evaluate the effect of pine cone size on species richness, the Kruskal–Wallis test was conducted, and species composition among cones sizes was compared using multivariate analysis. A total of 48 taxa were recorded on cones, including 41 lichens and 7 bryophytes. A total of 39 species were found on very large cones, 37 species on large cones, 35 species on medium cones, and 24 species on small cones. This is comparable to the diversity found in epiphytic communities of pine plantations. Species composition was influenced by pine cone size, differing from small in comparison with very large ones. The PERMANOVA analyses revealed that lichen and bryophyte composition varied significantly among the pine cone categories, explaining 21% of the variance. Very large cones with specific characteristics harbored different communities than those on small pine cones. The presence of lichen and bryophyte species on the pine cones from managed Ecuadorian P. patula plantations may serve as refugia for the conservation of biodiversity. Pine cones and their scales (which range from 102 to 210 per cone) may facilitate colonization of new areas by dispersal agents such as birds and rodents. The scales often harbor lichen and bryophyte propagules as well as intact thalli, which can be effectively dispersed, when the cones are moved. The prolonged presence of pine cones in the environment further enhances their role as possible dispersal substrates over extended periods. To our knowledge, this is the first study worldwide to examine pine cones as substrates for lichens and bryophytes, providing novel insights into their potential role as microhabitats within P. patula plantations and forest landscapes across both temperate and tropical zones. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Figure 1

32 pages, 9914 KiB  
Review
Technology Advancements and the Needs of Farmers: Mapping Gaps and Opportunities in Row Crop Farming
by Rana Umair Hameed, Conor Meade and Gerard Lacey
Agriculture 2025, 15(15), 1664; https://doi.org/10.3390/agriculture15151664 - 1 Aug 2025
Viewed by 279
Abstract
Increased food production demands, labor shortages, and environmental concerns are driving the need for innovative agricultural technologies. However, effective adoption depends critically on aligning robot innovations with the needs of farmers. This paper examines the alignment between the needs of farmers and the [...] Read more.
Increased food production demands, labor shortages, and environmental concerns are driving the need for innovative agricultural technologies. However, effective adoption depends critically on aligning robot innovations with the needs of farmers. This paper examines the alignment between the needs of farmers and the robotic systems used in row crop farming. We review current commercial agricultural robots and research, and map these to the needs of farmers, as expressed in the literature, to identify the key issues holding back large-scale adoption. From initial pool of 184 research articles, 19 survey articles, and 82 commercial robotic solutions, we selected 38 peer-reviewed academic studies, 12 survey articles, and 18 commercially available robots for in-depth review and analysis for this study. We identify the key challenges faced by farmers and map them directly to the current and emerging capabilities of agricultural robots. We supplement the data gathered from the literature review of surveys and case studies with in-depth interviews with nine farmers to obtain deeper insights into the needs and day-to-day operations. Farmers reported mixed reactions to current technologies, acknowledging efficiency improvements but highlighting barriers such as capital costs, technical complexity, and inadequate support systems. There is a notable demand for technologies for improved plant health monitoring, soil condition assessment, and enhanced climate resilience. We then review state-of-the-art robotic solutions for row crop farming and map these technological capabilities to the farmers’ needs. Only technologies with field validation or operational deployment are included, to ensure practical relevance. These mappings generate insights that underscore the need for lightweight and modular robot technologies that can be adapted to diverse farming practices, as well as the need for farmers’ education and simpler interfaces to robotic operations and data analysis that are actionable for farmers. We conclude with recommendations for future research, emphasizing the importance of co-creation with the farming community to ensure the adoption and sustained use of agricultural robotic solutions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

14 pages, 3007 KiB  
Article
Bone-like Carbonated Apatite Titanium Anodization Coatings Produced in Citrus sinensis-Based Electrolytes
by Amisha Parekh, Amol V. Janorkar and Michael D. Roach
Appl. Sci. 2025, 15(15), 8548; https://doi.org/10.3390/app15158548 (registering DOI) - 31 Jul 2025
Viewed by 173
Abstract
Enhancing osseointegration is a common goal for many titanium implant coatings, since the naturally forming oxides are often bioinert and exhibit less than ideal bone-to-implant contact. Oxide coating surface topographies, chemistries, and crystallinities are known to play key roles in enhancing bone–implant interactions. [...] Read more.
Enhancing osseointegration is a common goal for many titanium implant coatings, since the naturally forming oxides are often bioinert and exhibit less than ideal bone-to-implant contact. Oxide coating surface topographies, chemistries, and crystallinities are known to play key roles in enhancing bone–implant interactions. In the present study, two novel anodization processes were developed in electrolytes based on juiced navel oranges to create bioactive oxide coatings on commercially pure titanium (CPTi) surfaces. Both oxide groups revealed multi-scaled micro and nano surface topographies, significant Ca and P-dopant incorporation exhibiting Ca/P ratios similar to human bone (1.7 and 1.8), and physiologically relevant Mg uptake levels of <0.1% and 1.4 at%. XRD and FTIR analyses of each oxide revealed a combination of tricalcium phosphate and hydroxyapatite phases that showed carbonate substitutions indicative of bone-like apatite formation. Finally, VDI indentation testing revealed good adhesion strengths, minimal cracking, and no visible delamination for both oxides. In summary, the anodization processes in the present study were shown to produce carbonated tricalcium phosphate and apatite containing oxides with contrasting levels of Mg uptake that show much promise to improve future implant clinical outcomes. Full article
Show Figures

Figure 1

24 pages, 9147 KiB  
Article
Experimental and Numerical Study on the Seismic Performance of Base-Suspended Pendulum Isolation Structure
by Liang Lu, Lei Wang, Wanqiu Xia and Minghao Yin
Buildings 2025, 15(15), 2711; https://doi.org/10.3390/buildings15152711 - 31 Jul 2025
Viewed by 110
Abstract
This paper proposes a novel suspended seismic structure system called Base-suspended Pendulum Isolation (BSPI) structure. The BSPI structure can isolate seismic action and reduce structural seismic response by hanging the structure with hanger rods set at the base. The viscous dampers are installed [...] Read more.
This paper proposes a novel suspended seismic structure system called Base-suspended Pendulum Isolation (BSPI) structure. The BSPI structure can isolate seismic action and reduce structural seismic response by hanging the structure with hanger rods set at the base. The viscous dampers are installed in the isolation layer to dissipate earthquake energy and control the displacement. Firstly, the configuration of suspension isolation layer and mechanical model of the BSPI structure are described. Then, an equivalent scaled BSPI structure physical model was tested on the shaking table. The test results demonstrate that the BSPI structure has a good isolation effect under earthquakes, and the viscous dampers had an obvious control effect on the structure’s displacement and acceleration response. Finally, numerical simulation of the tests was carried out. The accuracy of the numerical models are confirmed by the good agreement between the simulation and test results. The numerical models for the BSPI structure and conventional reinforced concrete (RC) frame structure are built and analyzed using the commercial software ABAQUS. Research results indicate that the lateral stiffness of the BSPI structure is reduced greatly by installing the suspension layer, and the acceleration response of BSPI structure is significantly reduced under rare earthquakes, which is only 1/2 of that of the RC frame. The inter-story displacement of the BSPI structure is less than 1/100, which meets the seismic fortification goal and is reduced to 50% of that of the BSPI structure without damper under rare earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 1804 KiB  
Article
The Penetration of Digital Currency for Sustainable and Inclusive Urban Development: Evidence from China’s e-CNY Pilot Using SDID-SCM
by Ying Chen and Ke Zhang
Sustainability 2025, 17(15), 6981; https://doi.org/10.3390/su17156981 - 31 Jul 2025
Viewed by 263
Abstract
Against the backdrop of China’s fast-growing digital economy and its financial inclusion agenda, there is still little city-level evidence on whether the e-CNY pilot accelerates financial deepening at the grassroots. Using a balanced panel of 271 prefecture-and-above cities for 2016–2022, this study employs [...] Read more.
Against the backdrop of China’s fast-growing digital economy and its financial inclusion agenda, there is still little city-level evidence on whether the e-CNY pilot accelerates financial deepening at the grassroots. Using a balanced panel of 271 prefecture-and-above cities for 2016–2022, this study employs a staggered difference-in-differences (SDID) design augmented by the synthetic control method (SCM) to rigorously identify the policy effect of the e-CNY pilot. The results show that the pilot program significantly improves urban financial inclusion, contributing to more equitable access to financial services and supporting inclusive socio-economic development. Mechanism analysis suggests that the effect operates mainly through two channels, a merchant-coverage channel and a transaction-scale channel, with the former contributing the majority of the overall effect. Incorporating a migration-based mobility index shows that most studies’ focus on the merchant-coverage effect is amplified in cities under tight mobility restrictions but wanes where commercial networks are already saturated, whereas the transaction-scale channel is largely insensitive to mobility shocks. Heterogeneity tests further indicate stronger gains in non-provincial capital cities and in the eastern and central regions. Overall, the study uncovers a “penetration-inclusion” network logic and provides policy insights for advancing sustainable financial inclusion through optimized terminal deployment, merchant incentives, and diversified scenario design. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

32 pages, 1285 KiB  
Review
Metabolic Engineering Strategies for Enhanced Polyhydroxyalkanoate (PHA) Production in Cupriavidus necator
by Wim Hectors, Tom Delmulle and Wim K. Soetaert
Polymers 2025, 17(15), 2104; https://doi.org/10.3390/polym17152104 - 31 Jul 2025
Viewed by 359
Abstract
The environmental burden of conventional plastics has sparked interest in sustainable alternatives such as polyhydroxyalkanoates (PHAs). However, despite ample research in bioprocess development and the use of inexpensive waste streams, production costs remain a barrier to widespread commercialization. Complementary to this, genetic engineering [...] Read more.
The environmental burden of conventional plastics has sparked interest in sustainable alternatives such as polyhydroxyalkanoates (PHAs). However, despite ample research in bioprocess development and the use of inexpensive waste streams, production costs remain a barrier to widespread commercialization. Complementary to this, genetic engineering offers another avenue for improved productivity. Cupriavidus necator stands out as a model host for PHA production due to its substrate flexibility, high intracellular polymer accumulation, and tractability to genetic modification. This review delves into metabolic engineering strategies that have been developed to enhance the production of poly(3-hydroxybutyrate) (PHB) and related copolymers in C. necator. Strategies include the optimization of central carbon flux, redox and cofactor balancing, adaptation to oxygen-limiting conditions, and fine-tuning of granule-associated protein expression and the regulatory network. This is followed by outlining engineered pathways improving the synthesis of PHB copolymers, PHBV, PHBHHx, and other emerging variants, emphasizing genetic modifications enabling biosynthesis based on unrelated single-carbon sources. Among these, enzyme engineering strategies and the establishment of novel artificial pathways are widely discussed. In particular, this review offers a comprehensive overview of promising engineering strategies, serving as a resource for future strain development and positioning C. necator as a valuable microbial chassis for biopolymer production at an industrial scale. Full article
Show Figures

Figure 1

16 pages, 3482 KiB  
Article
Reliability of Automated Amyloid PET Quantification: Real-World Validation of Commercial Tools Against Centiloid Project Method
by Yeon-koo Kang, Jae Won Min, Soo Jin Kwon and Seunggyun Ha
Tomography 2025, 11(8), 86; https://doi.org/10.3390/tomography11080086 - 30 Jul 2025
Viewed by 280
Abstract
Background: Despite the growing demand for amyloid PET quantification, practical challenges remain. As automated software platforms are increasingly adopted to address these limitations, we evaluated the reliability of commercial tools for Centiloid quantification against the original Centiloid Project method. Methods: This retrospective study [...] Read more.
Background: Despite the growing demand for amyloid PET quantification, practical challenges remain. As automated software platforms are increasingly adopted to address these limitations, we evaluated the reliability of commercial tools for Centiloid quantification against the original Centiloid Project method. Methods: This retrospective study included 332 amyloid PET scans (165 [18F]Florbetaben; 167 [18F]Flutemetamol) performed for suspected mild cognitive impairments or dementia, paired with T1-weighted MRI within one year. Centiloid values were calculated using three automated software platforms, BTXBrain, MIMneuro, and SCALE PET, and compared with the original Centiloid method. The agreement was assessed using Pearson’s correlation coefficient, the intraclass correlation coefficient (ICC), a Passing–Bablok regression, and Bland–Altman plots. The concordance with the visual interpretation was evaluated using receiver operating characteristic (ROC) curves. Results: BTXBrain (R = 0.993; ICC = 0.986) and SCALE PET (R = 0.992; ICC = 0.991) demonstrated an excellent correlation with the reference, while MIMneuro showed a slightly lower agreement (R = 0.974; ICC = 0.966). BTXBrain exhibited a proportional underestimation (slope = 0.872 [0.860–0.885]), MIMneuro showed a significant overestimation (slope = 1.053 [1.026–1.081]), and SCALE PET demonstrated a minimal bias (slope = 1.014 [0.999–1.029]). The bias pattern was particularly noted for FMM. All platforms maintained their trends for correlations and biases when focusing on subthreshold-to-low-positive ranges (0–50 Centiloid units). However, all platforms showed an excellent agreement with the visual interpretation (areas under ROC curves > 0.996 for all). Conclusions: Three automated platforms demonstrated an acceptable reliability for Centiloid quantification, although software-specific biases were observed. These differences did not impair their feasibility in aiding the image interpretation, as supported by the concordance with visual readings. Nevertheless, users should recognize the platform-specific characteristics when applying diagnostic thresholds or interpreting longitudinal changes. Full article
(This article belongs to the Section Brain Imaging)
Show Figures

Figure 1

14 pages, 3346 KiB  
Article
DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction
by Bingxian Zhu, Yachao Liu, Yue Yan, Hui Wang, Yu Zhang, Ying Xin, Weijuan Xu and Qingshan Zhao
Catalysts 2025, 15(8), 725; https://doi.org/10.3390/catal15080725 - 30 Jul 2025
Viewed by 207
Abstract
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of [...] Read more.
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of precious metal catalysts impede large-scale commercialization. In this study, we develop a FeCo-based bimetallic deep eutectic solvent (FeCo-DES) as a multifunctional reaction medium for engineering a three-dimensional (3D) coral-like FeOOH-Co2(OH)3Cl/NF composite via a mild one-step impregnation approach (70 °C, ambient pressure). The FeCo-DES simultaneously serves as the solvent, metal source, and redox agent, driving the controlled in situ assembly of FeOOH-Co2(OH)3Cl hybrids on Ni(OH)2/NiOOH-coated nickel foam (NF). This hierarchical architecture induces synergistic enhancement through geometric structural effects combined with multi-component electronic interactions. Consequently, the FeOOH-Co2(OH)3Cl/NF catalyst achieves a remarkably low overpotential of 197 mV at 100 mA cm−2 and a Tafel slope of 65.9 mV dec−1, along with 98% current retention over 24 h chronopotentiometry. This study pioneers a DES-mediated strategy for designing robust composite catalysts, establishing a scalable blueprint for high-performance and low-cost OER systems. Full article
Show Figures

Graphical abstract

Back to TopTop