Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (24,890)

Search Parameters:
Keywords = colors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3444 KB  
Article
A Cascaded RPA-SDA Amplification Strategy on a Sliding Microfluidic Chip for the Ultrasensitive and Rapid Detection of Shigella
by Nali Zhou, Guorong Fan, Nan Yang, Tao Xu, Yunlong Zhang, Wentao Xu and Ying Shang
Foods 2025, 14(22), 3891; https://doi.org/10.3390/foods14223891 (registering DOI) - 14 Nov 2025
Abstract
In this study, a sliding microfluidic biosensor integrating RPA-SDA cascaded amplification was developed for the rapid, visual detection of Shigella. A novel RPA primer targeting the specific ipaH gene was designed to include a 5′-end G-quadruplex (G4) sequence and the complementary sequence [...] Read more.
In this study, a sliding microfluidic biosensor integrating RPA-SDA cascaded amplification was developed for the rapid, visual detection of Shigella. A novel RPA primer targeting the specific ipaH gene was designed to include a 5′-end G-quadruplex (G4) sequence and the complementary sequence of an Nt.BstNBI endonuclease recognition site. The RPA product templates a subsequent SDA reaction, generating abundant G4 structures that form peroxidase-mimicking DNAzymes with hemin, catalyzing a TMB reaction that produces a distinct blue color for visual readout (on-chip detection at OD370, distinct from conventional tube assays at OD450). The core on-chip detection process was completed within 13 min (10 min for SDA and 3 min for color development), achieving a limit of detection of 3.5 × 10−4 ng/μL for Shigella genomic DNA. This timing explicitly excludes the preceding, off-chip steps of nucleic acid extraction and RPA amplification. Validation using spiked lettuce samples confirmed the platform’s high specificity and sensitivity. This work establishes a proof-of-concept for a portable screening tool, highlighting its potential for on-site food safety applications. However, further validation in diverse food matrices and under real-world field conditions is required to fully establish its practical utility. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

18 pages, 1412 KB  
Article
Synergistic Preservation of Fresh Pork: Coupling Electrostatic Field and Packaging During Controlled Freezing-Point Storage
by Wenxin Wang, Le Liu, Ming Tian, Xiaotong Sun, Ruixin Shi, Jiarui Li, Debao Wang, Qingfeng Yang, Dequan Zhang and Chengli Hou
Foods 2025, 14(22), 3890; https://doi.org/10.3390/foods14223890 (registering DOI) - 14 Nov 2025
Abstract
To address spoilage and quality deterioration, this study evaluated the synergistic effects of the electrostatic field (EF) combined with packaging (polyethylene, PP; vacuum, VP; modified atmosphere, MAP) on the preservation of Yorkshire pork (hind leg) during controlled freezing-point storage (−2.0 ± 0.5 °C) [...] Read more.
To address spoilage and quality deterioration, this study evaluated the synergistic effects of the electrostatic field (EF) combined with packaging (polyethylene, PP; vacuum, VP; modified atmosphere, MAP) on the preservation of Yorkshire pork (hind leg) during controlled freezing-point storage (−2.0 ± 0.5 °C) for 32 days. The results showed that EF treatment significantly enhanced the water-holding capacity of PP-packaged pork, reducing storage loss by approximately 37.89% by day 32 (p < 0.05), and inhibited microbial growth, maintaining total viable counts below 6.00 log10 (CFU/g) (p < 0.05). EF also reduced the relative abundance of spoilage organisms such as Pseudomonas. A synergistic effect between EF and VP/MAP was observed in the optimization of the microbial community structure. Spearman correlation analysis revealed that Pseudomonas abundance was positively correlated with TVB-N and storage loss, linking it mechanistically to quality deterioration. Furthermore, VP and MAP alone were superior in delaying lipid oxidation (TBARS < 0.5 mg MDA/kg) and maintaining color stability. This study provides key process parameters and a theoretical basis for applying EF-coupled packaging in the industrial cold chain. Full article
Show Figures

Graphical abstract

14 pages, 992 KB  
Article
Evaluation of Long Bone Marrow Composition of Roe Deer (Capreolus capreolus)
by Francesca Gaydou, Francesca Marucco, Chiara Bianchi, Luca Rossi, Achille Schiavone and Joana Nery
Wild 2025, 2(4), 45; https://doi.org/10.3390/wild2040045 (registering DOI) - 14 Nov 2025
Abstract
Assessing body condition in mammals is essential to understanding their nutritional status and health. Traditionally, fat content in femur bone marrow has been used as an indicator, but this study aims to improve assessment by expanding analysis to multiple long bones of roe [...] Read more.
Assessing body condition in mammals is essential to understanding their nutritional status and health. Traditionally, fat content in femur bone marrow has been used as an indicator, but this study aims to improve assessment by expanding analysis to multiple long bones of roe deer (Capreolus capreolus) in the Alps. Marrow samples were collected from 14 animals, with 25 femur samples analyzed for dry matter (DM), ether extract (EE), and color, the latter measured objectively using RGB values. The main innovation is the use of objective color quantification of marrow as a non-destructive proxy for fat content, showing strong correlations with DM and EE. Results reveal significant correlations between femur EE and tibia DM, as well as between femur and humerus DM, indicating consistent fat distribution across the analyzed bones. Metacarpus and metatarsus bones showed weaker correlations. This method represents a preliminary validation, especially for wildlife studies where full carcasses are often unavailable. The approach based on objective marrow color analysis improves reproducibility and standardization in body condition assessment, enhancing comparability across ecological and zoological studies worldwide. Full article
Show Figures

Figure 1

16 pages, 1978 KB  
Article
Metabolic Basis of Breast Muscle Flavor in Houdan Chicken Crossbreeds Revealed by GC/LC-MS Metabolomics
by Yanru Lei, Chengpeng Xiao, Chenxi Zhang, Wanying Xie, Junlai Shi, Xintao Jia, Shu Wang, Yulong Ma, Zhao Cai, Donghua Li, Ruirui Jiang, Guirong Sun, Xiangtao Kang and Wenting Li
Agriculture 2025, 15(22), 2360; https://doi.org/10.3390/agriculture15222360 (registering DOI) - 14 Nov 2025
Abstract
The quality and flavor of chicken meat are fundamentally determined by muscle metabolite composition, which reflects the regulatory effects of genetic background on metabolic pathways and muscle development. In this study, we profiled the meat quality of breast muscle across 3 crossbreeding combinations [...] Read more.
The quality and flavor of chicken meat are fundamentally determined by muscle metabolite composition, which reflects the regulatory effects of genetic background on metabolic pathways and muscle development. In this study, we profiled the meat quality of breast muscle across 3 crossbreeding combinations (D×HD, HD×D, and D×LD) between the Yunong D line and Houdan chickens to elucidate the metabolic mechanisms underlying flavor variation. Eighteen representative breast muscle samples were analyzed using common physicochemical indexes, untargeted metabolomics based on Gas Chromatography-Time-of-Flight Mass Spectrometry (GC-TOF-MS) and Ultra-High-Performance Liquid Chromatography coupled with Quadrupole Exactive Mass Spectrometry (UHPLC-QE-MS). Differential metabolites were identified through Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA). Multivariate analysis revealed distinct metabolic signatures among crossbreeding combinations, with HD×D exhibiting the most favorable tenderness, color, and water-holding capacity. A total of nine differential metabolites (5 upregulated and 4 downregulated) were identified between D×HD and HD×D, and thirty-eight metabolites (18 upregulated and 27 downregulated) between D×HD and D×LD. The identified metabolites were predominantly associated with amino acid metabolism, lipid biosynthesis, nucleotide turnover, and energy metabolism. Among these, arachidonic acid, taurine, L-alanine, and citric acid exhibited marked intergroup differences. Enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated significant involvement of pathways such as amino acid biosynthesis, taurine and hypotaurine metabolism, and ABC transporters in flavor formation. Hierarchical clustering and Pearson correlation analyses further delineated synergistic or antagonistic interactions among key metabolites, suggesting the existence of intricate regulatory mechanisms. These findings reveal critical metabolites and metabolic pathways associated with flavor attributes, offering both a theoretical framework and potential molecular targets for enhancing poultry meat quality through breeding strategies. Full article
(This article belongs to the Special Issue Genetic Resource Evaluation and Germplasm Innovation of Poultry)
Show Figures

Figure 1

20 pages, 1685 KB  
Article
Impact of Ultrasonic Time and Marinating Temperature on the Physicochemical Properties of Guinea Pig Meat (Cavia porcellus)
by Esteban Arteaga-Cabrera, Lina Escobar-Escobar, Oswaldo Osorio-Mora and Julián Andrés Gómez-Salazar
Foods 2025, 14(22), 3887; https://doi.org/10.3390/foods14223887 (registering DOI) - 13 Nov 2025
Abstract
Guinea pig (Cavia porcellus) meat is valued for its nutritional quality and ease of production. Marination is a key value-adding process, but it is limited by its long duration. Therefore, technologies that accelerate marination and improve tenderness are needed. The objective [...] Read more.
Guinea pig (Cavia porcellus) meat is valued for its nutritional quality and ease of production. Marination is a key value-adding process, but it is limited by its long duration. Therefore, technologies that accelerate marination and improve tenderness are needed. The objective of this study was to evaluate the effect of ultrasound application time and temperature on the physicochemical parameters and yield of guinea pig meat during marination. The marination solution contained 1.9% NaCl, 1.9% acetic acid, and 0.51% oregano essential oil. Ultrasound treatment (200 W) was applied for 15–120 min, while static treatments were conducted at 20, 30, and 40 °C. Ultrasound-assisted marination of guinea pig meat improved NaCl uptake, reduced acetic acid content, and improved water-holding capacity. Moderate temperatures (40 °C) minimized weight loss, and short ultrasound times preserved color and texture. However, prolonged ultrasound exposure led to myofibrillar disruption and increased weight loss. Correlation analysis revealed that pH, influenced by NaCl and acetic acid, had a significant impact on moisture, texture, and water-holding capacity. Overall, the controlled application of ultrasound and temperature effectively optimized marination efficiency, enhanced functional properties, and preserved the quality of guinea pig meat. Full article
Show Figures

Figure 1

37 pages, 5618 KB  
Article
Energy-Efficient and Adversarially Resilient Underwater Object Detection via Adaptive Vision Transformers
by Leqi Li, Gengpei Zhang and Yongqian Zhou
Sensors 2025, 25(22), 6948; https://doi.org/10.3390/s25226948 (registering DOI) - 13 Nov 2025
Abstract
Underwater object detection is critical for marine resource utilization, ecological monitoring, and maritime security, yet it remains constrained by optical degradation, high energy consumption, and vulnerability to adversarial perturbations. To address these challenges, this study proposes an Adaptive Vision Transformer (A-ViT)-based detection framework. [...] Read more.
Underwater object detection is critical for marine resource utilization, ecological monitoring, and maritime security, yet it remains constrained by optical degradation, high energy consumption, and vulnerability to adversarial perturbations. To address these challenges, this study proposes an Adaptive Vision Transformer (A-ViT)-based detection framework. At the hardware level, a systematic power-modeling and endurance-estimation scheme ensures feasibility across shallow- and deep-water missions. Through the super-resolution reconstruction based on the Hybrid Attention Transformer (HAT) and the staged enhancement with the Deep Initialization and Deep Inception and Channel-wise Attention Module (DICAM), the image quality was significantly improved. Specifically, the Peak Signal-to-Noise Ratio (PSNR) increased by 74.8%, and the Structural Similarity Index (SSIM) improved by 375.8%. Furthermore, the Underwater Image Quality Measure (UIQM) rose from 3.00 to 3.85, while the Underwater Color Image Quality Evaluation (UCIQE) increased from 0.550 to 0.673, demonstrating substantial enhancement in both visual fidelity and color consistency. Detection accuracy is further enhanced by an improved YOLOv11-Coordinate Attention–High-order Spatial Feature Pyramid Network (YOLOv11-CA_HSFPN), which attains a mean Average Precision at Intersection over Union 0.5 (mAP@0.5) of 56.2%, exceeding the baseline YOLOv11 by 1.5 percentage points while maintaining 10.5 ms latency. The proposed A-ViT + ROI reduces inference latency by 27.3% and memory usage by 74.6% when integrated with YOLOv11-CA_HSFPN and achieves up to 48.9% latency reduction and 80.0% VRAM savings in other detectors. An additional Image-stage Attack QuickCheck (IAQ) defense module reduces adversarial-attack-induced latency growth by 33–40%, effectively preventing computational overload. Full article
(This article belongs to the Section Sensing and Imaging)
16 pages, 2178 KB  
Article
Integrated Analysis of Morphological and Physicochemical Traits in “Liuyuehong” Soft-Seed Pomegranate Fruit
by Shubin Zhang, Shuaishuai Sha, Quanlin Cui, Jin Zhang, Fenfen Yang, Wei Lin and Yuansong Xiao
Horticulturae 2025, 11(11), 1369; https://doi.org/10.3390/horticulturae11111369 (registering DOI) - 13 Nov 2025
Abstract
The grain-level heterogeneity of fruit morphological characteristics significantly determines their sensory performance and intrinsic quality, providing a quantitative basis for commercial grading. This study utilized “Liuyuehong” soft-seeded pomegranate (Punica granatum L.) as experimental material. Fruits were classified into three size grades based [...] Read more.
The grain-level heterogeneity of fruit morphological characteristics significantly determines their sensory performance and intrinsic quality, providing a quantitative basis for commercial grading. This study utilized “Liuyuehong” soft-seeded pomegranate (Punica granatum L.) as experimental material. Fruits were classified into three size grades based on individual fresh weight: large (107–125 g), medium (74–92 g), and small (47–67 g). Fresh weights of whole fruits, exocarp, and outer seed coat were measured for each grade, followed by analysis of key quality indicators, including seed count, 100-seed weight, Brix degrees, pH, single-seed dimensions, vitamin C content, and edible fraction. Subsequently, correlation analysis, principal component analysis (PCA), and the entropy weight-TOPSIS method were employed to evaluate the integrated quality of different fruit grades comprehensively. The results indicate that the fruit morphological characteristics of “Liuyuehong” soft-seed pomegranate have a significant impact on its sensory and physicochemical qualities. (1) Large and medium fruits are superior to small fruits in terms of single fruit size, exocarp color uniformity, seed color, and mouthfeel, with large fruits having the highest comprehensive evaluation score (0.7). (2) Mouthfeel is correlated with the number of seeds in the fruit; the number of seeds in large and small fruits shows a significant negative correlation with Brix degrees (p < 0.05). (3) Small fruits exhibit greater individual variation within the group, with outliers and a tendency for late maturation. In conclusion, the fruit morphological characteristics of “Liuyuehong” soft-seed pomegranate significantly affect seed maturity and quantity, thereby determining the fruit’s sensory quality and physicochemical properties. The results indicate that fruits with a single- weight below 70 g commonly exhibit delayed development. It is therefore recommended to raise the lower threshold for commercial grading to above 75 g to enhance overall fruit quality and market consistency. Full article
(This article belongs to the Special Issue Bioactivity and Nutritional Quality of Horticultural Crops)
37 pages, 69210 KB  
Article
Integrating Electroencephalography (EEG) and Machine Learning to Reveal Nonlinear Effects of Streetscape Features on Perception in Traditional Villages
by Lanhong Ren, Jie Li and Jie Zhuang
Buildings 2025, 15(22), 4087; https://doi.org/10.3390/buildings15224087 (registering DOI) - 13 Nov 2025
Abstract
Public perception of traditional villages’ streetscape is a crucial link for unlocking their benefits in promoting physical and mental health and realizing environmental value transformation. Current studies on the influence mechanisms of rural streetscape characteristics on perception largely rely on subjective ratings and [...] Read more.
Public perception of traditional villages’ streetscape is a crucial link for unlocking their benefits in promoting physical and mental health and realizing environmental value transformation. Current studies on the influence mechanisms of rural streetscape characteristics on perception largely rely on subjective ratings and mostly depend on linear models. To address this, this study takes a traditional village in eastern China, which is rich in natural and cultural conditions, as an example and constructs an evaluation framework comprising 29 streetscape feature indicators. Based on multimodal data including electroencephalography (EEG), image segmentation, color, and spatial depth computation, XGBoost-SHAP was employed to reveal the nonlinear influence mechanisms of streetscape features on neurophysiological indicators (alpha-band power spectral density, α PSD) in the traditional rural context, which differs from the blue–green spaces and residential, campus, and urban environments in previous studies. The results indicate that (1) the dominant factors affecting α PSD in traditional villages are tree, color consistency, architectural aesthetics, spatial enclosure index, P_EBG, and road, in descending order. (2) Threshold effects and interaction effects that differ from previous studies on campuses, window views, and other contexts were identified. The positive effect of tree view index on α activity peaks at the threshold of 0.09, beyond which diminishing returns occur. Color complexity, including high color difference from the primary village scheme (i.e., low color consistency, color diversity, and visual entropy), inhibits α activity. The effect of spatial enclosure index (SEI) on α activity exhibits an inverted U-shape, peaking at 0.35. Tree–VE_nats, road–SEI, and building–SEI show antagonistic effects. Road–sky and SEI–P_FG display conditional interaction effects. (3) Based on k-means clustering analysis, the “key factor identification—threshold effect management—multi-factor synergy optimization” design can directionally regulate α PSD, promoting relaxed and calm streetscape schemes. This approach can be applied to urban and rural environment assessment and design, providing theoretical and technical support for scientific decision-making. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

17 pages, 2676 KB  
Article
Observations on the Benthic Heterobranch “Sea Slugs” (Mollusca: Gastropoda) of Lampedusa, the Southernmost Island of Italy (MPA Isole Pelagie)
by Andrea Lombardo and Giuliana Marletta
J. Mar. Sci. Eng. 2025, 13(11), 2150; https://doi.org/10.3390/jmse13112150 (registering DOI) - 13 Nov 2025
Abstract
Thanks to their striking shapes and colors, heterobranch “sea slugs” are probably the most sought-after group of marine critters by scuba divers around the world. Nevertheless, for many of the islands and coasts of Sicily, there are no specific studies on the fauna [...] Read more.
Thanks to their striking shapes and colors, heterobranch “sea slugs” are probably the most sought-after group of marine critters by scuba divers around the world. Nevertheless, for many of the islands and coasts of Sicily, there are no specific studies on the fauna of this group (formerly known as opisthobranchs). Even Lampedusa, one of the most famous islands in the Mediterranean, is no exception to this. To fill this knowledge gap, the authors conducted a faunal study dedicated to this group in July 2025. Data collection, carried out using the photographic-capture technique both during scuba diving and snorkeling, led to the finding of 22 species of heterobranch “sea slugs”. A comparison of the heterobranch “sea slugs” of Lampedusa with that of other Sicilian islands revealed a low diversity of these mollusks on this island. This scarcity of fauna is probably due to the lack of favorable environments and the considerable environmental homogeneity that characterizes the seabed and coastal areas of Lampedusa. Nevertheless, the discovery of some species of considerable biogeographical importance, together with the island’s unique geographical position, make it an important location to monitor for the study of the distribution patterns of allochthonous marine Heterobranchia species that enter into the Mediterranean Sea. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

15 pages, 839 KB  
Article
Perceptibility and Acceptability of Tooth and Gingival Shade Modifications in Digital Smile Images: A Comparative Study Among Laypeople, General Dentists, and Specialists
by Nikola Petričević, Natalija Prica, Asja Čelebić and Sanja Peršić-Kiršić
Dent. J. 2025, 13(11), 534; https://doi.org/10.3390/dj13110534 (registering DOI) - 13 Nov 2025
Abstract
Background: This study aimed to evaluate the agreement among different evaluators in assessing smile esthetics from frontal-view photographs of the lower third of the face during smiling, and afterwards to determine thresholds of perceptibility and acceptability of tooth and gingival shade changes on [...] Read more.
Background: This study aimed to evaluate the agreement among different evaluators in assessing smile esthetics from frontal-view photographs of the lower third of the face during smiling, and afterwards to determine thresholds of perceptibility and acceptability of tooth and gingival shade changes on a single modified digital photograph. Methods: Sixty photographs of the lower third of the face of individuals with pleasing smiles were obtained. Evaluator groups included laypeople, general dentists, and specialists in periodontology, orthodontics, and prosthodontics. Esthetic assessment was performed using seven items from the Orofacial Esthetic Scale (OES). One photograph was digitally manipulated by altering the shade of the first maxillary incisor and the gingiva of the right maxillary second incisor. Perceptibility thresholds and acceptability of these modifications were assessed by all evaluator groups. Results: Specialists in periodontology and prosthodontics, although rating 60 photographs as more esthetically pleasing, detected changes in tooth and gingival color earlier and judged such deviations as unacceptable sooner than general dentists and laypeople, particularly for shifts in lighter shades. Laypeople noticed color changes later but classified them as unacceptable almost immediately showing greater tolerance for lighter shades. Conclusions: The study shows that laypeople prioritize brighter tooth shades, whereas dental specialists value a more natural appearance. Specialists’ early detection of subtle shade changes and discerning judgments reflects their clinical training and awareness of the challenges in achieving perfect esthetics. In contrast, laypeople, seeking bright teeth influenced by social esthetic norms, noticed changes later but judged them as unacceptable more quickly. Full article
(This article belongs to the Special Issue Advances in Esthetic Dentistry)
Show Figures

Figure 1

24 pages, 3558 KB  
Article
GrowMore: Adaptive Tablet-Based Intervention for Education and Cognitive Rehabilitation in Children with Mild-to-Moderate Intellectual Disabilities
by Abdullah, Nida Hafeez, Kinza Sardar, Fatima Uroosa, Zulaikha Fatima, Rolando Quintero Téllez and José Luis Oropeza Rodríguez
Computers 2025, 14(11), 495; https://doi.org/10.3390/computers14110495 - 13 Nov 2025
Abstract
Providing equitable, high-quality education to all children, including those with intellectual disabilities (ID), remains a critical global challenge. Traditional learning environments often fail to address the unique cognitive needs of children with mild and moderate ID. In response, this study explores the potential [...] Read more.
Providing equitable, high-quality education to all children, including those with intellectual disabilities (ID), remains a critical global challenge. Traditional learning environments often fail to address the unique cognitive needs of children with mild and moderate ID. In response, this study explores the potential of tablet-based game applications to enhance educational outcomes through an interactive, engaging, and accessible digital platform. The proposed solution, GrowMore, is a tablet-based educational game specifically designed for children aged 8 to 12 with mild intellectual disabilities. The application integrates adaptive learning strategies, vibrant visuals, and interactive feedback mechanisms to foster improvements in object recognition, color identification, and counting skills. Additionally, the system supports cognitive rehabilitation by enhancing attention, working memory, and problem-solving abilities, which caregivers reported transferring to daily functional tasks. The system’s usability was rigorously evaluated using quality standards, focusing on effectiveness, efficiency, and user satisfaction. Experimental results demonstrate that approximately 88% of participants were able to correctly identify learning elements after engaging with the application, with notable improvements in attention span and learning retention. Informal interviews with parents further validated the positive cognitive, behavioral, and rehabilitative impact of the application. These findings underscore the value of digital game-based learning tools in special education and highlight the need for continued development of inclusive educational technologies. Full article
Show Figures

Figure 1

68 pages, 4761 KB  
Review
Advances in Molecularly Imprinted Electrochemical Platforms for Food Quality Control: Targeting Antioxidants, Sweeteners, Colorants, Contaminants and Toxicants
by Lu Zhang, Shichao Zhao, Jiangwei Zhu and Li Fu
Chemosensors 2025, 13(11), 398; https://doi.org/10.3390/chemosensors13110398 - 13 Nov 2025
Abstract
Ensuring food safety and quality has become increasingly critical due to the complexities introduced by globalization, industrialization, and extended supply chains. Traditional analytical methods for food quality control, such as chromatography and mass spectrometry, while accurate, face limitations including high costs, lengthy analysis [...] Read more.
Ensuring food safety and quality has become increasingly critical due to the complexities introduced by globalization, industrialization, and extended supply chains. Traditional analytical methods for food quality control, such as chromatography and mass spectrometry, while accurate, face limitations including high costs, lengthy analysis times, and limited suitability for on-site rapid monitoring. Electrochemical sensors integrated with molecularly imprinted polymers (MIPs) have emerged as promising alternatives, combining high selectivity and sensitivity with portability and affordability. MIPs, often termed ‘plastic antibodies,’ are synthetic receptors capable of selective molecular recognition, tailored specifically for target analytes. This review comprehensively discusses recent advancements in MIP-based electrochemical sensing platforms, highlighting their applications in detecting various food quality markers. It particularly emphasizes the detection of antioxidants—both natural (e.g., vitamins, phenolics) and synthetic (e.g., BHA, TBHQ), artificial sweeteners (e.g., aspartame, acesulfame-K), colorants (e.g., azo dyes, anthocyanins), traditional contaminants (e.g., pesticides, heavy metals), and toxicants such as mycotoxins (e.g., aflatoxins, ochratoxins). The synthesis methods, including bulk, precipitation, surface imprinting, sol–gel polymerization, and electropolymerization (EP), are critically evaluated for their effectiveness in creating highly selective binding sites. Furthermore, the integration of advanced nanomaterials, such as graphene, carbon nanotubes, and metallic nanoparticles, into these platforms to enhance sensitivity, selectivity, and stability is examined. Practical challenges, including sensor reusability, regeneration strategies, and adaptability to complex food matrices, are addressed. Finally, the review provides an outlook on future developments and practical considerations necessary to transition these innovative MIP electrochemical sensors from laboratory research to widespread adoption in industry and regulatory settings, ultimately ensuring comprehensive food safety and consumer protection. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymer (MIP) Sensors)
Show Figures

Figure 1

27 pages, 12511 KB  
Article
Can Generative AI-Generated Images Effectively Support and Enhance Real-World Construction Helmet Detection?
by Jiaqi Li, Qi Miao, Zhaobo Li, Hao Zhang, Zheng Zou and Lingjie Kong
Buildings 2025, 15(22), 4080; https://doi.org/10.3390/buildings15224080 - 13 Nov 2025
Abstract
Although computer vision methods have advanced in construction helmet detection in recent years, their performance heavily depends on large-scale, class-balanced, and diverse annotated datasets. To address the high cost and labor-intensive nature of traditional data collection and annotation, this study introduces a novel [...] Read more.
Although computer vision methods have advanced in construction helmet detection in recent years, their performance heavily depends on large-scale, class-balanced, and diverse annotated datasets. To address the high cost and labor-intensive nature of traditional data collection and annotation, this study introduces a novel helmet detection dataset named AIGC-HWD (Artificial Intelligence-Generated Content–Helmet Wearing Detection), automatically generated using generative AI tools. The dataset contains five categories of labels, supporting both helmet-wearing detection and color classification tasks. We evaluate the standalone performance of AIGC-HWD, as well as its augmentation effect when combined with the real-world dataset GDUT-HWD, using multiple algorithms, including YOLO v8, YOLO v10, YOLO 11, YOLO v11-MobileNet v4, YOLO v13, Faster R-CNN, and RT-DETR. Experimental results show that models trained solely on AIGC-generated images can achieve mAP@50 scores exceeding 0.7 and 0.8 on real-world images in two separate tests, demonstrating a certain level of generalization. When used for data augmentation alongside real-world images, the performance improves to varying degrees—by approximately 1% on the YOLO series, and by over 10% on the two-stage algorithm Faster R-CNN. These findings validate the potential of generative AI images for safety monitoring in construction scenarios and provide new insights into the integration of synthetic and real-world data. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

31 pages, 10499 KB  
Article
Enhanced Chroma-YOLO Framework for Effective Defect Detection and Fatigue Life Prediction in 3D-Printed Polylactic Acid
by Liang Wang, Zhibing Liu, Ting Lv, Xibin Wang and Tianyang Qiu
Materials 2025, 18(22), 5159; https://doi.org/10.3390/ma18225159 - 13 Nov 2025
Abstract
Internal defects commonly occur during the 3D printing process of Polylactic Acid (PLA), and significant challenges remain in detecting and extracting these defects, as well as understanding the relationship between defects and material fatigue life. This research proposes the Chroma-YOLO Enhanced Integrated Framework, [...] Read more.
Internal defects commonly occur during the 3D printing process of Polylactic Acid (PLA), and significant challenges remain in detecting and extracting these defects, as well as understanding the relationship between defects and material fatigue life. This research proposes the Chroma-YOLO Enhanced Integrated Framework, an improved YOLOv11n-based model that integrates HSV defect extraction module and a random forest prediction model. Comprehensive ablation experiments demonstrate that the Chroma-YOLO model achieves significant improvements of 6.9% and 7.3% for mAP50 and mAP50-95 metrics, respectively, compared to the baseline YOLOv11n model, confirming substantial enhancements in feature extraction capability and target localization accuracy. Furthermore, this framework establishes a comprehensive model from defect detection to fatigue life prediction by combining the HSV color space-based defect detection technique with the random forest machine learning algorithm. The random forest-based predictive model achieves a remarkable accuracy of 96.25% and 99.09%for the test and validation set, respectively, for fatigue life prediction of 3D-printed PLA, which shows significant improvement compared to the conventional prediction methodologies. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

19 pages, 8438 KB  
Article
Looking at the Possibility of Using Mushroom Mycelium for Developing Leather-like Materials Aligned with Eco-Friendly and Sustainable Fashion Trends
by Worawoot Aiduang, Thanawin Patipattanakul, Yutthaphum Keduk, Apiwit Rattanapat, Phumin Phumila, Praween Jinanukul, Phongeun Sysouphanthong, Orlavanh Xayyavong, Kritsana Jatuwong and Saisamorn Lumyong
Life 2025, 15(11), 1746; https://doi.org/10.3390/life15111746 - 13 Nov 2025
Abstract
The growing demand for sustainable alternatives to animal and synthetic leathers has accelerated interest in mycelium-based materials as an eco-friendly solution for the fashion industry. This study explores the potential of mushroom mycelium to create leather-like materials that align with circular fashion principles. [...] Read more.
The growing demand for sustainable alternatives to animal and synthetic leathers has accelerated interest in mycelium-based materials as an eco-friendly solution for the fashion industry. This study explores the potential of mushroom mycelium to create leather-like materials that align with circular fashion principles. Five species of edible and medicinal mushrooms were cultivated on sawdust substrates and evaluated for their growth performance, physical properties, and suitability as leather substitutes. Growth analysis revealed distinct species-specific behaviors: Cubamyces flavidus and Lentinus squarrosulus exhibited rapid colonization, achieving full substrate coverage within five days and forming dense mycelial networks at 14 days. In contrast, despite growing more slowly, Sanghuangporus vaninii and Ganoderma gibbosum formed thicker, more compact mats that might be suitable for strong leather-like materials. Visual and structural assessments showed diverse textures, colors, and hyphal architectures resembling natural leather. Physical characterization revealed shrinkage ranging from 13.17% to 24.09%, higher than for cow tanned leather (>5%) and PU microfiber (0.1–1.2%), suggesting a need for stabilization treatments. Apparent densities ranged from 0.13 g/cm3 to 0.30 g/cm3, lower than those of cow leather (0.49 g/cm3) and PU leather (0.38 g/cm3), highlighting species-specific hyphal structures that influence flexibility, porosity, and strength. SEM imaging confirmed the presence of interwoven hyphal mats resembling the fibrous architecture of natural leather, with S. vaninii showing the most uniform and continuous structure. Water absorption was significantly higher in mycelium sheets, consistent with their microporous nature, though S. vaninii showed the lowest uptake, reflecting possible natural water absorption. Thermogravimetric analysis revealed three-stage degradation profiles, with S. vaninii and G. gibbosum retaining >35% mass at 400 °C, indicating strong thermal stability for processing techniques such as hot pressing and finishing. Overall, the results demonstrate mycelium-based leathers as a biodegradable, low-impact alternative that can replicate the visual and functional characteristics of traditional leather, with opportunities for further improvement in substrate optimization, eco-tanning, surface coating, and scalable production toward a sustainable fashion future. Full article
(This article belongs to the Special Issue Trends in Microbiology 2025)
Show Figures

Figure 1

Back to TopTop