Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,754)

Search Parameters:
Keywords = collection route

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1974 KiB  
Article
GoSS-Rec: Group-Oriented Segment Sequence Recommendation
by Marco Aguirre, Lorena Recalde and Edison Loza-Aguirre
Information 2025, 16(8), 668; https://doi.org/10.3390/info16080668 - 6 Aug 2025
Abstract
In recent years, the advancement of various applications, data mining, technologies, and socio-technical systems has led to the development of interactive platforms that enhance user experiences through personalization. In the sports domain, users can access training plans, routes and healthy habits, all in [...] Read more.
In recent years, the advancement of various applications, data mining, technologies, and socio-technical systems has led to the development of interactive platforms that enhance user experiences through personalization. In the sports domain, users can access training plans, routes and healthy habits, all in a personalized way thanks to sports recommender systems. These recommendation engines are fueled by rich datasets that are collected through continuous monitoring of users’ activities. However, their potential to address user profiling is limited to single users and not to the dynamics of groups of sportsmen. This paper introduces GoSS-Rec, a Group-oriented Segment Sequence Recommender System, which is designed for groups of cyclists who participate in fitness activities. The system analyzes collective preferences and activity records to provide personalized route recommendations that encourage exploration of diverse cycling paths and also enhance group activities. Our experiments show that GoSS-Rec, which is based on Prod2vec, consistently outperforms other models on diversity and novelty, regardless of the group size. This indicates the potential of our model to provide unique and customized suggestions, making GoSS-Rec a remarkable innovation in the field of sports recommender systems. It also expands the possibilities of personalized experiences beyond traditional areas. Full article
Show Figures

Graphical abstract

4 pages, 1714 KiB  
Proceeding Paper
A Study on High-Precision Vehicle Navigation for Autonomous Driving on an Ultra-Long Underground Expressway
by Kyoung-Soo Choi, Yui-Hwan Sa, Min-Gyeong Choi, Sung-Jin Kim and Won-Woo Lee
Eng. Proc. 2025, 102(1), 10; https://doi.org/10.3390/engproc2025102010 - 5 Aug 2025
Abstract
GPSs typically have an accuracy ranging from a few meters to several tens of meters. However, when corrected using various methods, they can achieve an accuracy of several tens of centimeters. In autonomous driving, a positioning accuracy of less than 50 cm is [...] Read more.
GPSs typically have an accuracy ranging from a few meters to several tens of meters. However, when corrected using various methods, they can achieve an accuracy of several tens of centimeters. In autonomous driving, a positioning accuracy of less than 50 cm is required for lane-level positioning, route generation, and navigation. However, in environments where GPS signals are blocked, such as tunnels and underground roads, absolute positioning is impossible. Instead, relative positioning methods integrating IMU, IVN, and cameras are used. These methods are influenced by numerous variables, however, such as vehicle speed and road conditions, resulting in lower accuracy. In this study, we conducted experiments on current vehicle navigation technologies using an autonomous driving simulation vehicle in the Suri–Suam Tunnel of the Seoul Metropolitan Area 1st Ring Expressway. To recognize objects (lane markings/2D/3D) for position correction inside the tunnel, data on tunnel and underground road infrastructure in Seoul and Gyeonggi Province was collected, processed, refined, and trained. Additionally, a Loosely Coupled-based Kalman Filter was designed and applied for the fusion of GPSs, IMUs, and IVNs. As a result, an error of 113.62 cm was observed in certain sections. This suggests that while the technology is applicable for general vehicle lane-level navigation in ultra-long tunnels spanning several kilometers for public service, it falls short of meeting the precision required for autonomous driving systems, which demand lane-level accuracy. Therefore, it was concluded that infrastructure-based absolute positioning technology is necessary to enable precise navigation inside tunnels. Full article
Show Figures

Figure 1

22 pages, 1566 KiB  
Review
Multi-Objective Evolutionary Algorithms in Waste Disposal Systems: A Comprehensive Review of Applications, Case Studies, and Future Directions
by Saad Talal Alharbi
Computers 2025, 14(8), 316; https://doi.org/10.3390/computers14080316 - 4 Aug 2025
Viewed by 59
Abstract
Multi-objective evolutionary algorithms (MOEAs) have emerged as powerful optimization tools for addressing the complex, often conflicting goals present in modern waste disposal systems. This review explores recent advances and practical applications of MOEAs in key areas, including waste collection routing, waste-to-energy (WTE) systems, [...] Read more.
Multi-objective evolutionary algorithms (MOEAs) have emerged as powerful optimization tools for addressing the complex, often conflicting goals present in modern waste disposal systems. This review explores recent advances and practical applications of MOEAs in key areas, including waste collection routing, waste-to-energy (WTE) systems, and facility location and allocation. Real-world case studies from cities like Braga, Lisbon, Uppsala, and Cyprus demonstrate how MOEAs can enhance operational efficiency, boost energy recovery, and reduce environmental impacts. While these algorithms offer significant advantages, challenges remain in computational complexity, adapting to dynamic environments, and integrating with emerging technologies. Future research directions highlight the potential of combining MOEAs with machine learning and real-time data to create more flexible and responsive waste management strategies. By leveraging these advancements, MOEAs can play a pivotal role in developing sustainable, efficient, and adaptive waste disposal systems capable of meeting the growing demands of urbanization and stricter environmental regulations. Full article
(This article belongs to the Special Issue Operations Research: Trends and Applications)
Show Figures

Graphical abstract

24 pages, 4441 KiB  
Article
Simulation of Trip Chains in a Metropolitan Area to Evaluate the Energy Needs of Electric Vehicles and Charging Demand
by Pietro Antonio Centrone, Giuseppe Brancaccio and Francesco Deflorio
World Electr. Veh. J. 2025, 16(8), 435; https://doi.org/10.3390/wevj16080435 - 4 Aug 2025
Viewed by 48
Abstract
The typical ranges available for electric vehicles (EVs) may be considered by users to be inadequate when compared to long, real-life trips, and charging operations may need to be planned along journeys. To evaluate the compatibility between vehicle features and charging options for [...] Read more.
The typical ranges available for electric vehicles (EVs) may be considered by users to be inadequate when compared to long, real-life trips, and charging operations may need to be planned along journeys. To evaluate the compatibility between vehicle features and charging options for realistic journeys performed by car, a simulation approach is proposed here, using travel data collected from real vehicles to obtain trip chains for multiple consecutive days. Car travel activities, including stops with the option of charging, were simulated by applying an agent-based approach. Charging operations can be integrated into trip chains for user activities, assuming that they remain unchanged in the event that vehicles switch to electric. The energy consumption of the analyzed trips, disaggregated by vehicle type, was estimated using the average travel speed, which is useful for capturing the main route features (ranging from urban to motorways). Data were recorded for approximately 25,000 vehicles in the Turin Metropolitan Area for six consecutive days. Market segmentation of the vehicles was introduced to take into consideration different energy consumption rates and charging times, given that the electric power, battery size, and consumption rate can be related to the vehicle category. Charging activities carried out using public infrastructure during idle time between consecutive trips, as well as those carried out at home or work, were identified in order to model different needs. Full article
Show Figures

Figure 1

25 pages, 3258 KiB  
Article
MTRSRP: Joint Design of Multi-Triangular Ring and Self-Routing Protocol for BLE Networks
by Tzuen-Wuu Hsieh, Jian-Ping Lin, Chih-Min Yu, Meng-Lin Ku and Li-Chun Wang
Sensors 2025, 25(15), 4773; https://doi.org/10.3390/s25154773 - 3 Aug 2025
Viewed by 144
Abstract
This paper presents the multi-triangular ring and self-routing protocol (MTRSRP), which is a new decentralized strategy designed to boost throughput and network efficiency in multiring scatternets. MTRSRP comprises two primary phases: leader election and scatternet formation, which collaborate to establish an effective multi-triangular [...] Read more.
This paper presents the multi-triangular ring and self-routing protocol (MTRSRP), which is a new decentralized strategy designed to boost throughput and network efficiency in multiring scatternets. MTRSRP comprises two primary phases: leader election and scatternet formation, which collaborate to establish an effective multi-triangular ring topology. In the leader election phase, nodes exchange broadcast messages to gather neighbor information and elect coordinators through a competitive process. The scatternet formation phase determines the optimal number of rings based on the coordinator’s collected node information and predefined rules. The master nodes then send unicast connection requests to establish piconets within the scatternet, following a predefined role table. Intra- and inter-bridge nodes were activated to interconnect the piconets, creating a cohesive multi-triangular ring scatternet. Additionally, MTRSRP incorporates a self-routing addressing scheme within the triangular ring architecture, optimizing packet transmission paths and reducing overhead by utilizing master/slave relationships established during scatternet formation. Simulation results indicate that MTRSRP with dual-bridge connectivity outperforms the cluster-based on-demand routing protocol and Bluetooth low-energy mesh schemes in key network transmission performance metrics such as the transmission rate, packet delay, and delivery ratio. In summary, MTRSRP significantly enhances throughput, optimizes routing paths, and improves network efficiency in multi-ring scatternets through its multi-triangular ring topology and self-routing capabilities. Full article
(This article belongs to the Special Issue Advances in Wireless Sensor and Mobile Networks)
Show Figures

Figure 1

17 pages, 5553 KiB  
Article
Effects of Interspecific Competition on Habitat Shifts of Sardinops melanostictus (Temminck et Schlegel, 1846) and Scomber japonicus (Houttuyn, 1782) in the Northwest Pacific
by Siyuan Liu, Hanji Zhu, Jianhua Wang, Famou Zhang, Shengmao Zhang and Heng Zhang
Biology 2025, 14(8), 968; https://doi.org/10.3390/biology14080968 (registering DOI) - 1 Aug 2025
Viewed by 172
Abstract
As economically important sympatric species in the Northwest Pacific, the Japanese sardine (Sardinops melanostictus) and Chub mackerel (Scomber japonicus) exhibit significant biological interactions. Understanding the impact of interspecies competition on their habitat dynamics can provide crucial insights for the [...] Read more.
As economically important sympatric species in the Northwest Pacific, the Japanese sardine (Sardinops melanostictus) and Chub mackerel (Scomber japonicus) exhibit significant biological interactions. Understanding the impact of interspecies competition on their habitat dynamics can provide crucial insights for the sustainable development and management of these interconnected species resources. This study utilizes fisheries data of S. melanostictus and S. japonicus from the Northwest Pacific, collected from June to November between 2017 and 2020. We integrated various environmental parameters, including temperature at different depths (0, 50, 100, 150, and 200 m), eddy kinetic energy (EKE), sea surface height (SSH), chlorophyll-a concentration (Chl-a), and the oceanic Niño index (ONI), to construct interspecific competition species distribution model (icSDM) for both species. We validated these models by overlaying the predicted habitats with fisheries data from 2021 and performing cross-validation to assess the models’ reliability. Furthermore, we conducted correlation analyses of the habitats of these two species to evaluate the impact of interspecies relationships on their habitat dynamics. The results indicate that, compared to single-species habitat models, the interspecific competition species distribution model (icSDM) for these two species exhibit a significantly higher explanatory power, with R2 values increasing by up to 0.29; interspecific competition significantly influences the habitat dynamics of S. melanostictus and S. japonicus, strengthening the correlation between their habitat changes. This relationship exhibits a positive correlation at specific stages, with the highest correlations observed in June, July, and October, at 0.81, 0.80, and 0.88, respectively; interspecific competition also demonstrates stage-specific differences in its impact on the habitat dynamics of S. melanostictus and S. japonicus, with the most pronounced differences occurring in August and November. Compared to S. melanostictus, interspecific competition is more beneficial for the expansion of the optimal habitat (HIS ≥ 0.6) for S. japonicus and, to some extent, inhibits the habitat expansion of S. melanostictus. The variation in migratory routes and predatory interactions (with larger individuals of S. japonicus preying on smaller individuals of S. melanostictus) likely constitutes the primary factors contributing to these observed differences. Full article
(This article belongs to the Special Issue Adaptation of Living Species to Environmental Stress)
Show Figures

Figure 1

16 pages, 9862 KiB  
Article
Analysis of Drone Flight Stability for Building a Korean Urban Air Traffic (K-UAM) Delivery System
by Sohyun Cho, Hyuncheol Kim, Jaeho Chung and Dongmin Shin
Appl. Sci. 2025, 15(15), 8492; https://doi.org/10.3390/app15158492 (registering DOI) - 31 Jul 2025
Viewed by 154
Abstract
The Ministry of Land, Infrastructure, and Transport conducted a demonstration project targeting pilot areas to commercialize drone delivery services in urban areas and to present a standard model. In this study, flight data on drone delivery routes in Ulju and drone hovering in [...] Read more.
The Ministry of Land, Infrastructure, and Transport conducted a demonstration project targeting pilot areas to commercialize drone delivery services in urban areas and to present a standard model. In this study, flight data on drone delivery routes in Ulju and drone hovering in Yeosu were collected and analyzed for flight safety. Since there are no domestic or international regulations on the stability of drone flight, we were given the task of analyzing whether drone path flight should be maintained within a 10 m error range from the planned path line by the Korea Transportation Safety Authority and whether hovering works while satisfying the left and right radius errors and altitude errors within 3 m. Accordingly, the drone flight path data analyzed in Ulju met the criteria of up to 1.07%, and the hovering data analyzed in Yeosu met the criteria of less than 3% for the entire section data. Therefore, the drone flight stability evaluation analyzed in this paper is considered to have been passed. Based on the results of this study, is the data are expected to serve as a cornerstone for establishing guidelines for drone delivery flight data analysis regulations. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

46 pages, 5039 KiB  
Review
Harnessing Insects as Novel Food Ingredients: Nutritional, Functional, and Processing Perspectives
by Hugo M. Lisboa, Rogério Andrade, Janaina Lima, Leonardo Batista, Maria Eduarda Costa, Ana Sarinho and Matheus Bittencourt Pasquali
Insects 2025, 16(8), 783; https://doi.org/10.3390/insects16080783 - 30 Jul 2025
Viewed by 537
Abstract
The rising demand for sustainable protein is driving interest in insects as a raw material for advanced food ingredients. This review collates and critically analyses over 300 studies on the conversion of crickets, mealworms, black soldier flies, and other farmed species into powders, [...] Read more.
The rising demand for sustainable protein is driving interest in insects as a raw material for advanced food ingredients. This review collates and critically analyses over 300 studies on the conversion of crickets, mealworms, black soldier flies, and other farmed species into powders, protein isolates, oils, and chitosan-rich fibers with targeted techno-functional roles. This survey maps how thermal pre-treatments, blanch–dry–mill routes, enzymatic hydrolysis, and isoelectric solubilization–precipitation preserve or enhance the water- and oil-holding capacity, emulsification, foaming, and gelation, while also mitigating off-flavors, allergenicity, and microbial risks. A meta-analysis shows insect flours can absorb up to 3.2 g of water g−1, stabilize oil-in-water emulsions for 14 days at 4 °C, and form gels with 180 kPa strength, outperforming or matching eggs, soy, or whey in specific applications. Case studies demonstrate a successful incorporation at 5–15% into bakery, meat analogs and dairy alternatives without sensory penalties, and chitin-derived chitosan films extend the bread shelf life by three days. Comparative life-cycle data indicate 45–80% lower greenhouse gas emissions and land use than equivalent animal-derived ingredients. Collectively, the evidence positions insect-based ingredients as versatile, safe, and climate-smart tools to enhance food quality and sustainability, while outlining research gaps in allergen mitigation, consumer acceptance, and regulatory harmonization. Full article
(This article belongs to the Special Issue Insects and Their Derivatives for Human Practical Uses 3rd Edition)
Show Figures

Figure 1

11 pages, 1134 KiB  
Communication
Molecular Detection and Genotyping of Enterocytozoon bieneusi in Environmental Sources near Cattle Farms in Korea
by Haeseung Lee, Myungji Jo, Hyeyeon Kim, Kaifa Nazim, Seung-Hun Lee, Min-Goo Seo, Sang-Joon Park, Man Hee Rhee and Dongmi Kwak
Int. J. Mol. Sci. 2025, 26(15), 7270; https://doi.org/10.3390/ijms26157270 - 27 Jul 2025
Viewed by 298
Abstract
Enterocytozoon bieneusi, a microsporidian protozoan parasite, infects diverse hosts, including humans and livestock. Transmission occurs primarily through the fecal–oral route or exposure to contaminated environmental sources, such as water and soil. While its prevalence in animals is well documented, data on environmental [...] Read more.
Enterocytozoon bieneusi, a microsporidian protozoan parasite, infects diverse hosts, including humans and livestock. Transmission occurs primarily through the fecal–oral route or exposure to contaminated environmental sources, such as water and soil. While its prevalence in animals is well documented, data on environmental contamination—particularly in areas surrounding livestock farms—remain limited. Therefore, this study aims to investigate the presence of E. bieneusi in environmental sources near cattle farms in Korea, evaluating potential risks for zoonotic transmission. Overall, 364 environmental samples (soil and water) were collected from areas surrounding cattle farms and analyzed using nested PCR targeting the internal transcribed spacer region of E. bieneusi. One positive sample (0.3%) was identified in surface water near a shed housing Korean native cattle during autumn. Genotyping and phylogenetic analysis identified the sequence as originating from genotype BEB1, a Group 2 genotype commonly associated with ruminants and recognized for its zoonotic potential. While the detection rate was low, this represents the first report of E. bieneusi contamination in water near cattle housing and the first identification of BEB1 in environmental water in Korea. These findings highlight the potential for environmental transmission, emphasizing the need for further research and monitoring to inform strategies for public health and livestock biosecurity. Full article
(This article belongs to the Special Issue Microorganisms in the Environment)
Show Figures

Figure 1

20 pages, 4256 KiB  
Review
Recent Progress and Future Perspectives of MNb2O6 Nanomaterials for Photocatalytic Water Splitting
by Parnapalle Ravi and Jin-Seo Noh
Materials 2025, 18(15), 3516; https://doi.org/10.3390/ma18153516 - 27 Jul 2025
Viewed by 219
Abstract
The transition to clean and renewable energy sources is critically dependent on efficient hydrogen production technologies. This review surveys recent advances in photocatalytic water splitting, focusing on MNb2O6 nanomaterials, which have emerged as promising photocatalysts due to their tunable band [...] Read more.
The transition to clean and renewable energy sources is critically dependent on efficient hydrogen production technologies. This review surveys recent advances in photocatalytic water splitting, focusing on MNb2O6 nanomaterials, which have emerged as promising photocatalysts due to their tunable band structures, chemical robustness, and tailored morphologies. The objectives of this work are to (i) encompass the current synthesis strategies for MNb2O6 compounds; (ii) assess their structural, electronic, and optical properties in relation to photocatalytic performance; and (iii) elucidate the mechanisms underpinning enhanced hydrogen evolution. Main data collection methods include a literature review of experimental studies reporting bandgap measurements, structural analyses, and hydrogen production metrics for various MNb2O6 compositions—especially those incorporating transition metals such as Mn, Cu, Ni, and Co. Novelty stems from systematically detailing the relationships between synthesis routes (hydrothermal, solvothermal, electrospinning, etc.), crystallographic features, conductivity type, and bandgap tuning in these materials, as well as by benchmarking their performance against more conventional photocatalyst systems. Key findings indicate that MnNb2O6, CuNb2O6, and certain engineered heterostructures (e.g., with g-C3N4 or TiO2) display significant visible-light-driven hydrogen evolution, achieving hydrogen production rates up to 146 mmol h−1 g−1 in composite systems. The review spotlights trends in heterojunction design, defect engineering, co-catalyst integration, and the extension of light absorption into the visible range, all contributing to improved charge separation and catalytic longevity. However, significant challenges remain in realizing the full potential of the broader MNb2O6 family, particularly regarding efficiency, scalability, and long-term stability. The insights synthesized here serve as a guide for future experimental investigations and materials design, advancing the deployment of MNb2O6-based photocatalysts for large-scale, sustainable hydrogen production. Full article
Show Figures

Figure 1

24 pages, 74760 KiB  
Article
The Application of Mobile Devices for Measuring Accelerations in Rail Vehicles: Methodology and Field Research Outcomes in Tramway Transport
by Michał Urbaniak, Jakub Myrcik, Martyna Juda and Jan Mandrysz
Sensors 2025, 25(15), 4635; https://doi.org/10.3390/s25154635 - 26 Jul 2025
Viewed by 413
Abstract
Unbalanced accelerations occurring during tram travel have a significant impact on passenger comfort and safety, as well as on the rate of wear and tear on infrastructure and rolling stock. Ideally, these dynamic forces should be monitored continuously in real-time; however, traditional systems [...] Read more.
Unbalanced accelerations occurring during tram travel have a significant impact on passenger comfort and safety, as well as on the rate of wear and tear on infrastructure and rolling stock. Ideally, these dynamic forces should be monitored continuously in real-time; however, traditional systems require high-precision accelerometers and proprietary software—investments often beyond the reach of municipally funded tram operators. To this end, as part of the research project “Accelerometer Measurements in Rail Passenger Transport Vehicles”, pilot measurement campaigns were conducted in Poland on tram lines in Gdańsk, Toruń, Bydgoszcz, and Olsztyn. Off-the-shelf smartphones equipped with MEMS accelerometers and GPS modules, running the Physics Toolbox Sensor Suite Pro app, were used. Although the research employs widely known methods, this paper addresses part of the gap in affordable real-time monitoring by demonstrating that, in the future, equipment equipped solely with consumer-grade MEMS accelerometers can deliver sufficiently accurate data in applications where high precision is not critical. This paper presents an analysis of a subset of results from the Gdańsk tram network. Lateral (x) and vertical (z) accelerations were recorded at three fixed points inside two tram models (Pesa 128NG Jazz Duo and Düwag N8C), while longitudinal accelerations were deliberately omitted at this stage due to their strong dependence on driver behavior. Raw data were exported as CSV files, processed and analyzed in R version 4.2.2, and then mapped spatially using ArcGIS cartograms. Vehicle speed was calculated both via the haversine formula—accounting for Earth’s curvature—and via a Cartesian approximation. Over the ~7 km route, both methods yielded virtually identical results, validating the simpler approach for short distances. Acceleration histograms approximated Gaussian distributions, with most values between 0.05 and 0.15 m/s2, and extreme values approaching 1 m/s2. The results demonstrate that low-cost mobile devices, after future calibration against certified accelerometers, can provide sufficiently rich data for ride-comfort assessment and show promise for cost-effective condition monitoring of both track and rolling stock. Future work will focus on optimizing the app’s data collection pipeline, refining standard-based analysis algorithms, and validating smartphone measurements against benchmark sensors. Full article
(This article belongs to the Collection Sensors and Actuators for Intelligent Vehicles)
Show Figures

Figure 1

20 pages, 2552 KiB  
Article
Environmental Dispersion of Multiresistant Enterobacteriaceae in Aquatic Ecosystems in an Area of Spain with a High Density of Pig Farming
by Javier Díez de los Ríos, Noemí Párraga-Niño, María Navarro, Judit Serra-Pladevall, Anna Vilamala, Elisenda Arqué, María Baldà, Tamar Nerea Blanco, Luisa Pedro-Botet, Óscar Mascaró and Esteban Reynaga
Antibiotics 2025, 14(8), 753; https://doi.org/10.3390/antibiotics14080753 - 25 Jul 2025
Viewed by 298
Abstract
Background: This study aimed to (a) assess the prevalence of multidrug-resistant (MDR) Enterobacteriaceae in the waters of two rivers and wastewater treatment plants (WWTPs) in a region of Catalonia, Spain; (b) genetically characterize the MDR strains; and (c) compare extended-spectrum β-lactamase (ESBL)-producing [...] Read more.
Background: This study aimed to (a) assess the prevalence of multidrug-resistant (MDR) Enterobacteriaceae in the waters of two rivers and wastewater treatment plants (WWTPs) in a region of Catalonia, Spain; (b) genetically characterize the MDR strains; and (c) compare extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates from environmental and human sources. Methods: A total of 62 samples were collected from the influent and effluent of 31 WWTPs and 29 river water samples from 11 sites. Simultaneously, 382 hospitalized patients were screened for MDR Enterobacteriaceae using rectal swabs. All isolates underwent antibiotic susceptibility testing and whole-genome sequencing. Results: MDR Enterobacteriaceae were detected in 48.4% of WWTP samples, with 18.5% ESBL-producing E. coli and 1.5% (one sample) OXA-48-producing K. pneumoniae in influents, and 12.8% ESBL-producing E. coli in effluents. In river waters, 5.6% of samples contained ESBL-producing E. coli and 1.4% (1 sample) contained VIM-producing Enterobacter cloacae complex strains. Among patients, 10.2% (39/382) carried MDR Gram-negative bacilli, of which 66.7% were ESBL-producing E. coli. In aquatic ecosystems E. coli ST131 (13.3%) and ST162 (13.3%) were the most common strains, while in humans the common were E. coli ST131 (33.3%), ST69 (11.1%) and ST410 (7.4%) in humans. The most frequent environmental antibiotic resistance genes (ARG) were blaCTX-M-15 (24%) and blaTEM-1B (20%), while the most common ARGs were blaTEM-1B (20.4%), blaCTX-M15 (18.4%) and blaCTX-M-27 (14.3%). IncF plasmids were predominant in environmental and human strains. Conclusions: ESBL-producing E. coli and carbapenemase-producing Enterobacteriaceae are present in aquatic environments in the region. Phylogenetic similarities between environmental and clinical strains suggest a possible similar origin. Further studies are necessary to clarify transmission routes and environmental impact. Full article
(This article belongs to the Special Issue A One Health Approach to Antimicrobial Resistance, 2nd Edition)
Show Figures

Graphical abstract

40 pages, 1380 KiB  
Review
Recent Advances in Donepezil Delivery Systems via the Nose-to-Brain Pathway
by Jiyoon Jon, Jieun Jeong, Joohee Jung, Hyosun Cho, Kyoung Song, Eun-Sook Kim, Sang Hyup Lee, Eunyoung Han, Woo-Hyun Chung, Aree Moon, Kyu-Tae Kang, Min-Soo Kim and Heejun Park
Pharmaceutics 2025, 17(8), 958; https://doi.org/10.3390/pharmaceutics17080958 (registering DOI) - 24 Jul 2025
Viewed by 318
Abstract
Donepezil (DPZ) is an Alzheimer’s disease (AD) drug that promotes cholinergic neurotransmission and exhibits excellent acetylcholinesterase (AChE) selectivity. The current oral formulations of DPZ demonstrate decreased bioavailability, attributed to limited drug permeability across the blood–brain barrier (BBB). In order to overcome these limitations, [...] Read more.
Donepezil (DPZ) is an Alzheimer’s disease (AD) drug that promotes cholinergic neurotransmission and exhibits excellent acetylcholinesterase (AChE) selectivity. The current oral formulations of DPZ demonstrate decreased bioavailability, attributed to limited drug permeability across the blood–brain barrier (BBB). In order to overcome these limitations, various dosage forms aimed at delivering DPZ have been explored. This discussion will focus on the nose-to-brain (N2B) delivery system, which represents the most promising approach for brain drug delivery. Intranasal (IN) drug delivery is a suitable system for directly delivering drugs to the brain, as it bypasses the BBB and avoids the first-pass effect, thereby targeting the central nervous system (CNS). Currently developed formulations include lipid-based, solid particle-based, solution-based, gel-based, and film-based types, and a systematic review of the N2B research related to these formulations has been conducted. According to the in vivo results, the brain drug concentration 15 min after IN administration was more than twice as high those from other routes of administration, and the direct delivery ratio of the N2B system improved to 80.32%. The research findings collectively suggest low toxicity and high therapeutic efficacy for AD. This review examines drug formulations and delivery methods optimized for the N2B delivery of DPZ, focusing on technologies that enhance mucosal residence time and bioavailability while discussing recent advancements in the field. Full article
(This article belongs to the Special Issue Nasal Nanotechnology: What Do We Know and What Is Yet to Come?)
Show Figures

Figure 1

23 pages, 732 KiB  
Article
Investigating the Impact of Social Marketing on Tourists’ Behavior for Attaining Sustainable Development Goals (SDGs)
by Yinuo Chu, Marios Sotiriadis and Shiwei Shen
Sustainability 2025, 17(15), 6748; https://doi.org/10.3390/su17156748 - 24 Jul 2025
Viewed by 295
Abstract
Social marketing modifies individual behavior to achieve specific outcomes, mitigating environmental pressures. While proven effective in influencing consumer behavior, empirical studies on its impact on the tourism sector remain limited. This study examines how various social marketing channels influence tourists’ consumption decisions and [...] Read more.
Social marketing modifies individual behavior to achieve specific outcomes, mitigating environmental pressures. While proven effective in influencing consumer behavior, empirical studies on its impact on the tourism sector remain limited. This study examines how various social marketing channels influence tourists’ consumption decisions and contributes to achieving SDGs 11 and 12 by reviewing the existing methods of disseminating social marketing content. A conceptual model grounded in theory was developed and empirically tested. In particular, it focuses on the establishment of direct and indirect multi-route effects between social marketing and consumer behavior and introduces different influencing factors. Given the scarcity of research on collective culture, quantitative methods were employed, with data collected through questionnaires in mainland China. Results indicate that social marketing media significantly influence tourist behavior, with three mediators—subjective norms, personal values, and communication channels—playing varying roles across media types (events, public relations, and traditional media). Subjective norms, values, and communication channels act as mediators. This study bridges social marketing, tourist behavior, and SDG attainment, offering novel insights and practical implications for tourism practitioners. Full article
(This article belongs to the Section Tourism, Culture, and Heritage)
Show Figures

Figure 1

20 pages, 5419 KiB  
Article
The Analysis of Fire Protection for Selected Historical Buildings as a Part of Crisis Management: Slovak Case Study
by Jana Jaďuďová, Linda Makovická Osvaldová, Stanislava Gašpercová and David Řehák
Sustainability 2025, 17(15), 6743; https://doi.org/10.3390/su17156743 - 24 Jul 2025
Viewed by 217
Abstract
Historical buildings are exposed to an increased risk of fire. The direct influence comes from the buildings’ structural design and the fire protection level. The fundamental principle for reducing the loss of heritage value in historical buildings due to fire is fire protection, [...] Read more.
Historical buildings are exposed to an increased risk of fire. The direct influence comes from the buildings’ structural design and the fire protection level. The fundamental principle for reducing the loss of heritage value in historical buildings due to fire is fire protection, as part of crisis management. This article focuses on selected castle buildings from Slovakia. Three castle buildings were selected based on their location in the country. All of them are currently used for museum purposes. Using an analytical form, we assessed fire hazards and fire safety measures in two parts, calculated the fire risk index, and proposed solutions. Qualitative research, which is more suitable for the issue at hand, was used to evaluate the selected objects. The main methods used in the research focused on visual assessment of the current condition of the objects and analysis of fire documentation and its comparison with currently valid legal regulations. Based on the results, we can conclude that Kežmarok Castle (part of the historical city center) has a small fire risk (fire risk index = 13 points). Trenčín Castle (situated on a rock above the city) and Stará Ľubovňa Castle (situated on a limestone hill outside the city, surrounded by forest) have an increased risk of fire (fire risk index = 50–63). Significant risk sources identified included surrounding forest areas, technical failures related to outdated electrical installations, open flames during cultural events, the concentration of highly flammable materials, and complex evacuation routes for both people and museum collections. Full article
Show Figures

Figure 1

Back to TopTop