Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = coil alignment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6058 KB  
Article
An Efficient Magnetic Coupler with Tight Coupling, Precise Alignment, and Low Leakage Shielding for UAV Wireless Charging
by Yanming Cheng, Shaojie Yu, Xiaodan Zhang, Ruiyang Zhang, Pengfei Liu and Shuairan Yu
Electronics 2025, 14(22), 4358; https://doi.org/10.3390/electronics14224358 - 7 Nov 2025
Viewed by 350
Abstract
In this paper, an efficient magnetic coupler featuring tight coupling and precise alignment is proposed for unmanned aerial vehicle (UAV) wireless charging systems. The design integrates ArUco markers for accurate landing guidance, a position-limiting guide groove to facilitate mechanical alignment, and a dual-coil [...] Read more.
In this paper, an efficient magnetic coupler featuring tight coupling and precise alignment is proposed for unmanned aerial vehicle (UAV) wireless charging systems. The design integrates ArUco markers for accurate landing guidance, a position-limiting guide groove to facilitate mechanical alignment, and a dual-coil tightly coupled configuration to significantly enhance charging efficiency. Specifically, the dual-coil structure is carefully optimized to maximize magnetic coupling and energy transfer performance. Additionally, an improved electromagnetic shielding structure is implemented to reduce electromagnetic leakage and further improve system efficiency. A suitable wireless charging circuit topology is then designed and thoroughly analyzed to match the proposed magnetic coupler, enabling constant-voltage charging operation. The performance of the system is validated through both finite element simulations using ANSYS Maxwell and experimental testing on a prototype setup. Results demonstrate that the integration of ArUco-based visual guidance with the mechanical alignment mechanism achieves a landing deviation of ±12.5 mm without requiring auxiliary positioning components, thereby simplifying system architecture. Under the tightly coupled configuration, the proposed system delivers 78.8 W of charging power to a UAV with a peak efficiency of 95.93%, confirming its effectiveness and high performance. Full article
(This article belongs to the Special Issue Wireless Power Transfer Systems: Design and Implementation)
Show Figures

Figure 1

20 pages, 7147 KB  
Article
Application Potential of Lion’s Mane Mushroom in Soy-Based Meat Analogues by High Moisture Extrusion: Physicochemical, Structural and Flavor Characteristics
by Yang Gao, Song Yan, Kaixin Chen, Qing Chen, Bo Li and Jialei Li
Foods 2025, 14(19), 3402; https://doi.org/10.3390/foods14193402 - 1 Oct 2025
Viewed by 948
Abstract
The aim of this work was to systematically evaluate the effects of Lion’s Mane Mushroom powder (LMM, 0–40%) on the physicochemical properties, structural characteristics, and flavor profile of soy protein isolate-based high-moisture meat analogues (HMMAs). Optimal incorporation of 20% LMM significantly enhanced product [...] Read more.
The aim of this work was to systematically evaluate the effects of Lion’s Mane Mushroom powder (LMM, 0–40%) on the physicochemical properties, structural characteristics, and flavor profile of soy protein isolate-based high-moisture meat analogues (HMMAs). Optimal incorporation of 20% LMM significantly enhanced product quality by acting as a secondary phase that inhibited lateral protein aggregation while promoting longitudinal alignment, achieving a peak fibrous degree of 1.54 with dense, ordered fibers confirmed by scanning electron microscopy. Rheological analysis showed that LMM improved viscoelasticity (G′ > G″) through β-glucan; however, excessive addition (≥30%) compromised structural integrity due to insoluble dietary fiber disrupting protein network continuity, concurrently reducing thermal stability as denaturation enthalpy (ΔH) decreased from 1176.6 to 776.3 J/g. Flavor analysis identified 285 volatile compounds in HMMAs with 20% LMM, including 98 novel compounds, and 101 flavor metabolites were upregulated. The mushroom-characteristic compound 1-octen-3-ol exhibited a marked increase in its Relative Odor Activity Value of 18.04, intensifying mushroom notes. Furthermore, LMM polysaccharides promoted the Maillard reaction, increasing the browning index from 48.77 to 82.07, while β-glucan induced a transition in protein secondary structure from random coil to β-sheet configurations via intramolecular hydrogen bonding. In conclusion, 20% LMM incorporation synergistically improved texture, fibrous structure, and flavor complexity—particularly enhancing mushroom aroma. This research offers valuable insights and a foundation for future research for developing high-quality fungal protein-based meat analogues Full article
Show Figures

Figure 1

31 pages, 16219 KB  
Article
Design, Simulation, Construction and Experimental Validation of a Dual-Frequency Wireless Power Transfer System Based on Resonant Magnetic Coupling
by Marian-Razvan Gliga, Calin Munteanu, Adina Giurgiuman, Claudia Constantinescu, Sergiu Andreica and Claudia Pacurar
Technologies 2025, 13(10), 442; https://doi.org/10.3390/technologies13100442 - 1 Oct 2025
Viewed by 637
Abstract
Wireless power transfer (WPT) has emerged as a compelling solution for delivering electrical energy without physical connectors, particularly in applications requiring reliability, mobility, or encapsulation. This work presents the modeling, simulation, construction, and experimental validation of an optimized dual-frequency WPT system using magnetically [...] Read more.
Wireless power transfer (WPT) has emerged as a compelling solution for delivering electrical energy without physical connectors, particularly in applications requiring reliability, mobility, or encapsulation. This work presents the modeling, simulation, construction, and experimental validation of an optimized dual-frequency WPT system using magnetically coupled resonant coils. Unlike conventional single-frequency systems, the proposed architecture introduces two independently controlled excitation frequencies applied to distinct transistors, enabling improved resonance behavior and enhanced power delivery across a range of coupling conditions. The design process integrates numerical circuit simulations in PSpice and three-dimensional electromagnetic analysis in ANSYS Maxwell 3D, allowing accurate evaluation of coupling coefficient variation, mutual inductance, and magnetic flux distribution as functions of coil geometry and alignment. A sixth-degree polynomial model was derived to characterize the coupling coefficient as a function of coil separation, supporting predictive tuning. Experimental measurements were carried out using a physical prototype driven by both sinusoidal and rectangular control signals under varying load conditions. Results confirm the simulation findings, showing that specific signal periods (e.g., 8 µs, 18 µs, 20 µs, 22 µs) yield optimal induced voltage values, with strong sensitivity to the coupling coefficient. Moreover, the presence of a real load influenced system performance, underscoring the need for adaptive control strategies. The proposed approach demonstrates that dual-frequency excitation can significantly enhance system robustness and efficiency, paving the way for future implementations of self-adaptive WPT systems in embedded, mobile, or biomedical environments. Full article
Show Figures

Figure 1

14 pages, 755 KB  
Article
Comparative Analysis of AI Models in Predicting Treatment Strategies for Unruptured Intracranial Aneurysms
by Manou Overstijns, Sameer Nazeeruddin, Pierre Scheffler, Roland Roelz, Jürgen Beck and Amir El Rahal
Brain Sci. 2025, 15(10), 1061; https://doi.org/10.3390/brainsci15101061 - 29 Sep 2025
Viewed by 724
Abstract
Objectives: The increasing incidence of unruptured intracranial aneurysms (UIAs) has led to significant demands on neurovascular boards. Large language models (LLMs), such as ChatGPT-4, ChatGPT-3.5, Claude, and Atlas GPT, have emerged as tools to support clinical decision-making. This study compares treatment recommendations from [...] Read more.
Objectives: The increasing incidence of unruptured intracranial aneurysms (UIAs) has led to significant demands on neurovascular boards. Large language models (LLMs), such as ChatGPT-4, ChatGPT-3.5, Claude, and Atlas GPT, have emerged as tools to support clinical decision-making. This study compares treatment recommendations from these AI models with those of an interdisciplinary neurovascular board to evaluate their accuracy and alignment. Methods: We retrospectively included all 57 patients with UIAs discussed by the neurovascular board in 2023. The board’s consensus decision served as the reference standard. Key clinical and radiographic data, including PHASES, ELAPSS, and UIATS scores, were provided to the AI models. Each model was tasked with recommending either conservative or operative management and specifying the treatment modality (clipping, coiling, flow diverter, or WEB device/flow diverter) where appropriate. AI model recommendations were compared with the board’s decisions for management and the specific treatment modality of the UIA. Results: ChatGPT-4 achieved the highest accuracy in correctly predicting conservative or operative management (89%) and specific treatment types (73%), followed by Atlas GPT (74% accuracy in conservative/operative decisions and 55% accuracy in specific treatment types), Claude (70% accuracy in conservative/operative decisions and 50% accuracy in specific treatment types), and ChatGPT-3.5 (82% accuracy in conservative/operative decisions and 27% accuracy in specific treatment types). ChatGPT-3.5 displayed a strong preference for clipping (94.3%). ELAPSS scores significantly influenced AI recommendations and decision-making, particularly for ChatGPT-4 and ChatGPT-3.5. Follow-up recommendations for conservative management were shorter among AI models, with Claude suggesting the shortest interval (7.72 months) compared to the neurovascular board’s 13.36 months. Conclusions: AI models, particularly ChatGPT-4, align closely with expert neurovascular board decisions and offer promising support for initial clinical decision-making, particularly in resource-limited settings. However, interdisciplinary neurovascular boards remain unreplaceable for UIA management, and AI should be viewed as a complementary tool. The observed improvement from ChatGPT-3.5 to ChatGPT-4 underscores the rapid evolution of AI technology, and further advancements are expected to enhance both performance and accuracy in the future. Full article
Show Figures

Figure 1

22 pages, 6248 KB  
Article
Optimization Strategy and Evaluation of the Flow Heat Characteristics of the Cooling Plates of Electromagnetic Separators
by Jingjuan Du, Ke Li, Xiaoyuan Wang, Haiying Lv and Hongge Ren
Machines 2025, 13(10), 884; https://doi.org/10.3390/machines13100884 - 25 Sep 2025
Viewed by 509
Abstract
Electromagnetic separators are widely used in new energy battery purification, resource recycling, and mineral processing. However, coil heating can cause a decline in separation performance and damage to coil insulation. To ensure the stable operation of electromagnetic separators, cooling plates are employed to [...] Read more.
Electromagnetic separators are widely used in new energy battery purification, resource recycling, and mineral processing. However, coil heating can cause a decline in separation performance and damage to coil insulation. To ensure the stable operation of electromagnetic separators, cooling plates are employed to effectively mitigate temperature rise. To explore a high-performance and economical cooling method, this paper employs CFD finite element analysis for the structural optimization of cooling plates. First, the paper investigates the flow heat characteristics of S-shaped cooling plates. Numerical simulations are performed to analyze the variation of fluid characteristics with different numbers of water channels. Regression equations linking structural parameters to performance indicators are derived, and the optimal channel number and hydraulic diameter are determined. Furthermore, to enhance heat transfer efficiency, an innovative semicircular groove structure is introduced on the cooling plate walls. An optimization strategy based on a genetic algorithm is developed to determine the optimal groove parameters. A simulation shows that the optimized cooling plate reduces coil temperature by 12.63 °C with a decrease of 15.31% compared with the original design. Finally, a prototype with optimized parameters is manufactured after the experimental results of the two test points and the simulation results reveal errors of 0.26% and 0.96%, respectively. The experimental results align well with the simulations, confirming the reliability of the experimental results and the feasibility of the optimization strategy, and providing a reference for future cooling plate designs. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

18 pages, 6081 KB  
Article
Novel Design of Conical-Shaped Wireless Charger for Unmanned Aerial Vehicles
by Ashraf Ali, Omar Saraereh and Andrew Ware
Energies 2025, 18(18), 5015; https://doi.org/10.3390/en18185015 - 21 Sep 2025
Cited by 1 | Viewed by 703
Abstract
This work presents a novel wireless charging system for unmanned aerial vehicles (UAVs), which employs conical-shaped coils that also function as landing gear. By integrating electromagnetic simulation, circuit modeling, and system-level evaluation, we introduce an innovative coil design that enhances wireless power transfer [...] Read more.
This work presents a novel wireless charging system for unmanned aerial vehicles (UAVs), which employs conical-shaped coils that also function as landing gear. By integrating electromagnetic simulation, circuit modeling, and system-level evaluation, we introduce an innovative coil design that enhances wireless power transfer (WPT) efficiency while reducing misalignment sensitivity. The conical geometry naturally facilitates mechanical alignment upon drone landing, thereby improving inductive coupling. High-frequency simulations were carried out to optimize the coil parameters and evaluate the link efficiency at 6.78 MHz, an ISM-designated frequency. Our experimental testing confirmed that the proposed conical coil achieves high power transfer efficiency (up to 94%) under practical conditions, validating the effectiveness of the geometry. The characteristics of the designed coil make it highly suitable for use with Class EF amplifiers operating in the same frequency range; however, detailed amplifier hardware implementation and efficiency characterization were beyond the scope of this study and are reserved for future work. The results demonstrate the potential of the proposed system for deployment in UAV field applications such as surveillance, delivery, and remote sensing. Full article
Show Figures

Figure 1

28 pages, 8382 KB  
Article
Implementing Wireless Charging System for Semi-Autonomous Agricultural Robots
by Abdoulaye Bodian, Alben Cardenas, Dina Ouardani, Jaber Ouakrim and Afef Bennani-Ben Abdelghani
Energies 2025, 18(17), 4624; https://doi.org/10.3390/en18174624 - 30 Aug 2025
Viewed by 2989
Abstract
The modernization of agriculture can help humanity address major challenges such as population growth, climate change, and labor shortages. Semi-autonomous agricultural robots offer clear advantages in automating tasks and improving efficiency. However, in open-field conditions, their autonomy is limited by the size and [...] Read more.
The modernization of agriculture can help humanity address major challenges such as population growth, climate change, and labor shortages. Semi-autonomous agricultural robots offer clear advantages in automating tasks and improving efficiency. However, in open-field conditions, their autonomy is limited by the size and weight of onboard batteries. Wireless charging is a promising solution to overcome this limitation. This work proposes a methodology for the design, modeling, and experimental validation of a wireless power transfer (WPT) system for battery recharging of agricultural robots. A brief review of WPT technologies is provided, followed by key design considerations, co-simulation, and testing results. The proposed WPT system uses a resonant inductive power transfer topology with series–series (SS) compensation, a high-frequency inverter (85 kHz), and optimized spiral planar coils, enabling medium-range operation under agricultural conditions. The main contribution lies in the first experimental assessment of WPT performance under real agricultural environmental factors such as soil moisture and water presence, combined with electromagnetic safety evaluation and robust component selection for harsh conditions. Results highlight both the potential and limitations of this approach, demonstrating its feasibility and paving the way for future integration with intelligent alignment and adaptive control strategies. Full article
Show Figures

Figure 1

20 pages, 6427 KB  
Article
Comparative Study of Distributed Compensation Effects on E-Field Emissions in Conventional and Phase-Inverted Wireless Power Transfer Coils
by Zeeshan Shafiq, Siqi Li, Sizhao Lu, Jinglin Xia, Tong Li, Zhe Liu and Zhe Li
Actuators 2025, 14(8), 384; https://doi.org/10.3390/act14080384 - 4 Aug 2025
Viewed by 698
Abstract
This paper presents a comparative analysis of electric field (E-field) mitigation in inductive power transfer (IPT) systems. It focuses on how distributed capacitor placement interacts with coil topology to influence E-field emissions. The study compares traditional sequential-winding coils and the alternating voltage phase [...] Read more.
This paper presents a comparative analysis of electric field (E-field) mitigation in inductive power transfer (IPT) systems. It focuses on how distributed capacitor placement interacts with coil topology to influence E-field emissions. The study compares traditional sequential-winding coils and the alternating voltage phase coil (AVPC), which employs a sequential inversion winding (SIW) structure to enforce a 180° phase voltage opposition between adjacent turns. While capacitor segmentation is a known method for E-field reduction, this work is the first to systematically evaluate its effects across both conventional and phase-inverted coils. The findings reveal that capacitor placement serves as a topology-dependent design parameter. Finite Element Method (FEM) simulations and experimental validation show that while capacitor placement has a moderate influence on traditional coils due to in-phase voltage relationships, AVPC coils are highly sensitive to segmentation patterns. When capacitors align with the SIW phase structure, destructive interference significantly reduces E-field emissions. Improper capacitor placement disrupts phase cancellation and negates this benefit. This study resolves a critical design gap by establishing that distributed compensation acts as a tuning mechanism in conventional coils but becomes a primary constraint in phase-inverted topologies. The results demonstrate that precise capacitor placement aligned with the coil topology significantly enhances E-field mitigation up to 60% in AVPC coils, greatly outperforming traditional coil configurations and providing actionable guidance for high-power wireless charging applications. Full article
(This article belongs to the Special Issue Power Electronics and Actuators—Second Edition)
Show Figures

Figure 1

19 pages, 3080 KB  
Article
A Case Study-Based Framework Integrating Simulation, Policy, and Technology for nZEB Retrofits in Taiwan’s Office Buildings
by Ruey-Lung Hwang and Hung-Chi Chiu
Energies 2025, 18(14), 3854; https://doi.org/10.3390/en18143854 - 20 Jul 2025
Cited by 2 | Viewed by 1325
Abstract
Nearly zero-energy buildings (nZEBs) are central to global carbon reduction strategies, and Taiwan is actively promoting their adoption through building energy performance labeling, particularly in the retrofit of existing buildings. Under Taiwan’s nZEB framework, qualification requires both an A+ energy performance label [...] Read more.
Nearly zero-energy buildings (nZEBs) are central to global carbon reduction strategies, and Taiwan is actively promoting their adoption through building energy performance labeling, particularly in the retrofit of existing buildings. Under Taiwan’s nZEB framework, qualification requires both an A+ energy performance label and over 50% energy savings from retrofit technologies. This study proposes an integrated assessment framework for retrofitting small- to medium-sized office buildings into nZEBs, incorporating diagnostics, technical evaluation, policy alignment, and resource integration. A case study of a bank branch in Kaohsiung involved on-site energy monitoring and EnergyPlus V22.2 simulations to calibrate and assess the retrofit impacts. Lighting improvements and two HVAC scenarios—upgrading the existing fan coil unit (FCU) system and adopting a completely new variable refrigerant flow (VRF) system—were evaluated. The FCU and VRF scenarios reduced the energy use intensity from 141.3 to 82.9 and 72.9 kWh/m2·yr, respectively. Combined with rooftop photovoltaics and green power procurement, both scenarios met Taiwan’s nZEB criteria. The proposed framework demonstrates practical and scalable strategies for decarbonizing existing office buildings, supporting Taiwan’s 2050 net-zero target. Full article
Show Figures

Figure 1

15 pages, 3227 KB  
Article
A Symmetrical Cross Double-D Coil with Improved Misalignment Tolerance for WPT Systems
by Ashwini Rathod, Satish M. Mahajan and Taiye Owu
World Electr. Veh. J. 2025, 16(7), 405; https://doi.org/10.3390/wevj16070405 - 18 Jul 2025
Cited by 1 | Viewed by 1308
Abstract
Inductive Wireless Power Transfer (WPT) technologies are advancing significantly in the electric vehicle (EV) charging applications. Misalignment between transmitting and receiving coils can considerably affect power transmission efficiency in WPT systems. Prior research involved power electronics as well as electromagnetic couplers. This work [...] Read more.
Inductive Wireless Power Transfer (WPT) technologies are advancing significantly in the electric vehicle (EV) charging applications. Misalignment between transmitting and receiving coils can considerably affect power transmission efficiency in WPT systems. Prior research involved power electronics as well as electromagnetic couplers. This work focuses on the coil design aspect of electromagnetic couplers. A relatively new concept of Symmetrical Cross Double-D (SCDD) type of the coil design is introduced specifically to maximize tolerance to misalignment while sustaining significant amount of power transferred. Mutual inductance was determined for the perfect alignment and misalignment positions of the SCDD coils. Mutual inductance obtained from the simulation was validated from the experimental measurements. The SCDD electromagnetic coupler demonstrated almost 2.5 times superior tolerance to misalignment of coils compared to the conventional circular coupler while maintaining at least 78% of maximum power transfer even at a lateral misalignment of 40 mm. Full article
(This article belongs to the Special Issue Wireless Power Transfer Technology for Electric Vehicles)
Show Figures

Figure 1

20 pages, 3212 KB  
Article
Computationally Efficient Impact Estimation of Coil Misalignment for Magnet-Free Cochlear Implants
by Samuelle Boeckx, Pieterjan Polfliet, Lieven De Strycker and Liesbet Van der Perre
Sensors 2025, 25(14), 4379; https://doi.org/10.3390/s25144379 - 13 Jul 2025
Viewed by 793
Abstract
A cochlear implant (CI) system holds two spiral coils, one external and one implanted. These coils are used to transmit both data and power. A magnet at the center of the coils ensures proper alignment to assure the highest coupling. However, when the [...] Read more.
A cochlear implant (CI) system holds two spiral coils, one external and one implanted. These coils are used to transmit both data and power. A magnet at the center of the coils ensures proper alignment to assure the highest coupling. However, when the recipient needs a magnetic resonance imaging (MRI) scan, this magnet can cause problems due to the high magnetic field of such a scan. Therefore, a new type of implant without magnets would be beneficial and even supersede the current state of the art of hearing implants. To examine the feasibility of magnet-free cochlear implants, this research studies the impact of coil misalignment on the inductive coupling between the coils and thus the power and data transfer. Rather than using time-consuming finite element analysis (FEA), MATLAB is used to examine the impact of lateral, vertical and angular misalignment on the coupling coefficient using derivations of Neumann’s equation. The MATLAB model is verified with FEA software with a median 8% relative error on the coupling coefficient for various misalignments, ensuring that it can be used to study the feasibility of various magnet-free implants and wireless power and data transmission systems in general. In the case of cochlear implants, the results show that by taking patient and technology constraints like skinflap thickness and mechanical design dimensions into account, the mean error can even be reduced to below 5% and magnet-free cochlear implants can be feasible. Full article
Show Figures

Figure 1

21 pages, 3737 KB  
Article
Melting in Shell-and-Tube and Shell-and-Coil Thermal Energy Storage: Analytical Correlation for Melting Fraction
by Michał Rogowski, Maciej Fabrykiewicz and Rafał Andrzejczyk
Energies 2025, 18(11), 2923; https://doi.org/10.3390/en18112923 - 3 Jun 2025
Cited by 2 | Viewed by 1152
Abstract
The following study investigated the melting behavior of coconut oil as a phase-change material in shell-and-tube and shell-and-coil thermal energy storage systems. The primary objective was to deepen the understanding of PCM melting dynamics under varying boundary conditions, aiming to optimize TES designs [...] Read more.
The following study investigated the melting behavior of coconut oil as a phase-change material in shell-and-tube and shell-and-coil thermal energy storage systems. The primary objective was to deepen the understanding of PCM melting dynamics under varying boundary conditions, aiming to optimize TES designs for renewable energy applications. This research addresses a gap in understanding how different heat-transfer configurations and boundary conditions affect melting efficiency. Experimental setups included two distinct heat-transfer surfaces in a cylindrical shell—a copper tube and a copper coil—tested under constant wall temperatures (34 °C for the tube, 33 °C for the coil) and constant heat flux (597 W/m2 for the coil). Findings reveal that melting under constant heat flux takes approximately twice as long as under constant wall temperatures, underscoring the critical role of heat-transfer conditions in TES performance. The liquid fraction was estimated using two approaches: image-based analysis and the volume-averaged temperature method. The former proved less reliable due to geometric limitations, particularly when the heat-transfer surface was distant from the shell wall. Conversely, the latter yielded higher accuracy, especially in the shell-and-tube setup. Due to the scarcity of correlations for constant heat-flux conditions, the novel contribution of this work is the development of a modified semi-empirical correlation for the shell-and-coil TES system. For this purpose, an existing model, which demonstrated strong alignment with experimental data, was adapted. The findings suggest that slower melting under constant heat flux could benefit applications needing sustained heat release, like solar energy systems. Future work could investigate additional PCMs or novel geometries to further improve TES efficiency and scalability. Full article
Show Figures

Figure 1

17 pages, 3691 KB  
Article
Lamellar Orientation Analysis and Mechanical Properties of Polyethylene in Stretch-Induced Crystallization
by Mohammed Althaf Hussain, Takeshi Aoyagi, Takeshi Kikutani, Wataru Takarada, Takashi Yamamoto, Syed Farooq Adil and Shigeru Yao
Polymers 2025, 17(11), 1450; https://doi.org/10.3390/polym17111450 - 23 May 2025
Cited by 1 | Viewed by 1279
Abstract
Polyethylene films prepared from orientation-dependent methods are strong and resilient, have reduced permeability, and possess higher tensile strength. A molecular dynamics investigation is performed to reveal the emergence of chain folding and lamellar crystal axis alignment along the stretching axis (tilt angle) in [...] Read more.
Polyethylene films prepared from orientation-dependent methods are strong and resilient, have reduced permeability, and possess higher tensile strength. A molecular dynamics investigation is performed to reveal the emergence of chain folding and lamellar crystal axis alignment along the stretching axis (tilt angle) in the stretch-induced crystallization (SIC) of high-density polyethylene (HDPE), which mimics the internal structure of the fiber. The morphology in phase transition is assessed by the total density (ρ), degree of crystallinity (%χc), average number of entanglements per chain (<Z>), elastic modulus of the mechanical property, and lamellar chain tilt angle (θ) from the stretch-axis. The simulation emphasizes crystal formation by changing the total ρ from 0.85 g·cm−3 to 0.90 g·cm−3 and by tracking the gradual increase in % χc during stretching (~40%) and relaxation processes (~50%). Moreover, the primitive path analysis-based <Z> decreased during stretching and further in the subsequent relaxation process, supporting the alignment and thickening of the lamellar chain structure and chain folding from the random coil structure. The elastic modulus of ~350–400 MPa evidences the high alignment of the lamellar chains along the stretching axis. Consistent with the chain tilt angle of the HDPE in SAXS/WAXS experiments, the model estimated the lamellar chain title angle (θ) relative to the stretching axis to be ~20–35°. In conclusion, SIC is a convenient approach for simulating high stiffness, tensile strength, reduced permeability, and chain alignment in fiber film models, which can help design new fiber morphology-based polymers or composites. Full article
Show Figures

Graphical abstract

26 pages, 6532 KB  
Article
An Effective Method for Calculation of Mutual Inductance Between Rectangular Coils at Arbitrary Positions in Space
by Junlin Chen, Guofeng Yao, Min Wang, Liming Zhou, Kuiyang Gao, Peilei Zhou and Ruiyao Liu
Sensors 2025, 25(11), 3265; https://doi.org/10.3390/s25113265 - 22 May 2025
Viewed by 2325
Abstract
Electromagnetic torques generated by mutual inductance between energized coils are widely used in aerospace applications, especially for solar panel deployment. Accurate and rapid acquisition of mutual inductance between coils is essential to provide the necessary electromagnetic force. Therefore, based on the Kalantarov–Zeitlin method [...] Read more.
Electromagnetic torques generated by mutual inductance between energized coils are widely used in aerospace applications, especially for solar panel deployment. Accurate and rapid acquisition of mutual inductance between coils is essential to provide the necessary electromagnetic force. Therefore, based on the Kalantarov–Zeitlin method and the Neumann formula, this paper presents a straightforward and efficient calculation method for mutual inductance between rectangular coils positioned arbitrarily in space. Building on this foundation, we develop a calculation method for mutual inductance between rectangular multi-turn coils using the principle of superposition. The accuracy of the proposed method’s calculations is validated using data from the published literature, and the computation time is compared with that of other methods. To further validate the accuracy of the computational method proposed in this paper, a rectangular multi-turn coil mutual inductance measurement platform has been constructed. The results indicate that the computation time of the proposed method is shorter, and the calculation outcomes closely align with those obtained from other methods as well as experimental measurements. Furthermore, the calculation accuracy exceeds 95%, providing a reliable basis for determining the electromagnetic force required for the deployment of the solar array driven by electromagnetism. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Graphical abstract

20 pages, 6814 KB  
Article
Characterization, Expression Profile Analysis, and Functional Prediction of UGP Gene Family in Dendrocalamus brandisii
by He Li, Chongyang Wu, Xiangyi Li, Junlei Xu, Zhanchao Cheng and Jian Gao
Plants 2025, 14(10), 1458; https://doi.org/10.3390/plants14101458 - 14 May 2025
Viewed by 685
Abstract
UDP-glucose pyrophosphorylase (UGPase) is essential for carbohydrate metabolism, catalyzing UDP-glucose synthesis, a precursor for sucrose and cellulose biosynthesis. While UGP genes have been widely studied in plants, their functions in Dendrocalamus brandisii remain unclear. This study identified and characterized the DbUGP gene family [...] Read more.
UDP-glucose pyrophosphorylase (UGPase) is essential for carbohydrate metabolism, catalyzing UDP-glucose synthesis, a precursor for sucrose and cellulose biosynthesis. While UGP genes have been widely studied in plants, their functions in Dendrocalamus brandisii remain unclear. This study identified and characterized the DbUGP gene family using the whole genome and transcriptome data of D. brandisii, in conjunction with whole genome data from 10 additional species through sequence alignment, phylogenetic analysis, gene structure and motif exploration, protein structure prediction, and expression profiling. Phylogenetic analysis showed eight identified DbUGPs clustered with two OsUGPs in two clades. Gene structure, motif, and collinearity analyses indicate conservation with other bamboo UGPs. The gene family exhibited segmental duplications. Expression profiling revealed DbUGP1/5 were highly expressed in flowers, while others were enriched in shoots, buds, and culms. DbUGP1/4/8 were significantly downregulated during culm maturation. Protein structure prediction indicated two conformations with catalytic sites in disordered coil regions. WGCNA identified co-expression modules and protein interaction networks centered on DbUGP1/4, while KEGG enrichment indicated their functions in metabolism, signal transduction, and stress adaptation. Promoter analysis identified cis-regulatory elements responsive to light, MeJA, and ABA. This study suggests that the evolutionarily conserved DbUGPs exhibit mutual coordination and dynamic expression during D. brandisii growth, providing fresh insights into their functional roles. Full article
(This article belongs to the Special Issue Unraveling Complex Traits and Developmental Pathways of Forest Trees)
Show Figures

Figure 1

Back to TopTop