Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = coherent terahertz source

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 4923 KB  
Review
Recent Developments and Applications of Terahertz Spectroscopy in Food Analysis
by Pengpeng Yu, Chaoping Shen, Wenhui Zhu, Wenya Zhang, Junhui Cheng and Jinxiu Song
Biosensors 2025, 15(10), 677; https://doi.org/10.3390/bios15100677 - 8 Oct 2025
Cited by 1 | Viewed by 1843
Abstract
The terahertz waves are electromagnetic waves with frequencies ranging from 0.1 to 10 THz, exhibiting characteristics of both microwave and infrared, including fingerprint characteristics, coherence, and safety. Due to the weak interactions among most organic macromolecules in substances, the vibrational modes of molecular [...] Read more.
The terahertz waves are electromagnetic waves with frequencies ranging from 0.1 to 10 THz, exhibiting characteristics of both microwave and infrared, including fingerprint characteristics, coherence, and safety. Due to the weak interactions among most organic macromolecules in substances, the vibrational modes of molecular frameworks, as well as dipole rotation and vibration transitions, often correspond to the terahertz spectral region. Consequently, there has been growing interest in applying terahertz technology within the food industry. This review summarizes the fundamental principles of terahertz spectroscopy for substance detection and highlights recent advances and applications in food analysis. Key applications include harmful contaminant detection, component analysis, quality assessment, and adulteration identification. Additionally, this review discusses current challenges in applying terahertz spectroscopy to food analysis, such as strong water absorption, matrix interference, and the lack of comprehensive spectral databases. Finally, the paper outlines future prospects, including the development of lightweight and cost-effective terahertz sources and detectors for on-site analysis, as well as the integration of terahertz spectroscopy with other modern detection technologies to enhance analytical performance. This work aims to serve as a reference for further research and development of terahertz spectroscopy in the food sector. Full article
Show Figures

Figure 1

19 pages, 4708 KB  
Article
Physical-Layer Encryption for Terahertz Wireless Communication via Logical AND Operation of Dual Beams
by Yoshiki Kamiura, Shinji Iwamoto, Yuya Mikami and Kazutoshi Kato
Electronics 2025, 14(19), 3762; https://doi.org/10.3390/electronics14193762 - 23 Sep 2025
Viewed by 498
Abstract
This paper proposes and experimentally demonstrates a novel physical-layer encryption scheme for terahertz (THz) wireless communication based on a logical AND operation between dual THz beams transmitted from spatially separated sources. Unlike previous studies, confined to chip-scale or waveguide configurations, our approach validates [...] Read more.
This paper proposes and experimentally demonstrates a novel physical-layer encryption scheme for terahertz (THz) wireless communication based on a logical AND operation between dual THz beams transmitted from spatially separated sources. Unlike previous studies, confined to chip-scale or waveguide configurations, our approach validates the concept under free-space transmission, thereby highlighting its applicability to real wireless environments. The system utilizes uni-traveling carrier photodiodes (UTC-PDs) to generate independent THz carriers, and coherent detection combined with envelope extraction enables analog-domain realization of the AND operation. Experimental results confirm successful decryption at data rates up to 1.5 Gbit/s, achieving bit error rates (BERs) below the forward error correction threshold (e.g., 3.13 × 10−10 at 500 Mbit/s). Furthermore, spatial mapping and simulation show strong agreement with measurements, yielding a predictive accuracy of approximately 84% and validating spatial selectivity as a security feature. These findings establish the novelty of applying dual-beam logical operations for secure THz transmission and provide a foundation for scalable, low-complexity physical-layer security in next-generation wireless networks. Full article
Show Figures

Figure 1

8 pages, 576 KB  
Article
Coherent Grating Transition Radiation of a Hollow Relativistic Electron Beam from a Flat 2D Photonic Crystal
by Daria Yu. Sergeeva and Alexey A. Tishchenko
Particles 2025, 8(2), 62; https://doi.org/10.3390/particles8020062 - 12 Jun 2025
Viewed by 850
Abstract
Hollow electron beams are a promising tool for generating coherent radiation in various frequency ranges. Hollow beams have unique properties, including increased stability and the ability to achieve high current densities without significant deterioration of beam quality. This paper presents the results of [...] Read more.
Hollow electron beams are a promising tool for generating coherent radiation in various frequency ranges. Hollow beams have unique properties, including increased stability and the ability to achieve high current densities without significant deterioration of beam quality. This paper presents the results of a theoretical study on coherent grating transition radiation arising during the interaction between a relativistic hollow electron beam and a flat two-dimensional photonic crystal. The radiation field is calculated using the dipole approximation. Theoretical analysis has shown that, under certain conditions, a high degree of radiation coherence can be achieved. The results open up new possibilities for the creation of new sources of coherent terahertz radiation. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources 2025)
Show Figures

Figure 1

10 pages, 2792 KB  
Article
Enhancement of Spin Wave Transmission Through Antiferromagnet in Pt/NiO/CoFeB Heterostructure
by Wei Shi, Yangkai Wang, Zhixin Liu, Yilin Pei, Qiuping Huang, Zhengping Fu, Jianlin Wang and Yalin Lu
Magnetochemistry 2025, 11(2), 7; https://doi.org/10.3390/magnetochemistry11020007 - 22 Jan 2025
Cited by 2 | Viewed by 1927
Abstract
A significant enhancement of the spin current transmission through the antiferromagnetic insulating material NiO in Pt/NiO/CoFeB heterostructures was observed in this work. The ultrafast spin currents excited by laser pulses were injected into the Pt layers after passing through the NiO layers, and [...] Read more.
A significant enhancement of the spin current transmission through the antiferromagnetic insulating material NiO in Pt/NiO/CoFeB heterostructures was observed in this work. The ultrafast spin currents excited by laser pulses were injected into the Pt layers after passing through the NiO layers, and then transient charge currents were generated via the inverse spin Hall effect (ISHE), leading to a terahertz (THz) emission from the structure. The emitted THz signals were measured using electro-optic sampling with a ZnTe crystal. Thin NiO layers remarkably enhanced the THz signal amplitude, suggesting high spin transfer efficiency in NiO, and lighting a direction to ameliorate the spintronic THz emitter. The variable temperature measurements showed the amplitude had a maximum near the Néel temperature (TN) of the NiO layer with a specific thickness. The results of phase difference suggested that the coherent evanescent spin wave-mediated transmission had a contribution below the TN of the NiO layer, while the thermal magnon-mediated transmission existed at all temperatures. Our results not only achieve an enhancement in the spintronic THz source but also provide a THz spectroscopic method to investigate the dynamics of the ultrafast spintronic phenomenon. Full article
(This article belongs to the Special Issue Spin Waves in Magnonic Crystals and Hybrid Ferromagnetic Structures)
Show Figures

Figure 1

17 pages, 1729 KB  
Review
Recent Advances in Tunable External Cavity Diode Lasers
by Yan Wang and Yue Song
Appl. Sci. 2025, 15(1), 206; https://doi.org/10.3390/app15010206 - 29 Dec 2024
Cited by 3 | Viewed by 4851
Abstract
A narrow linewidth tunable laser source is a critical component in various fields, including laser radar, quantum information, coherent communication, and precise measurement. Tunable external cavity diode lasers (ECDLs) demonstrate excellent performance, such as narrow linewidth, wide tunable range, and low threshold current, [...] Read more.
A narrow linewidth tunable laser source is a critical component in various fields, including laser radar, quantum information, coherent communication, and precise measurement. Tunable external cavity diode lasers (ECDLs) demonstrate excellent performance, such as narrow linewidth, wide tunable range, and low threshold current, making them increasingly versatile and widely applicable. This article provides an overview of the fundamental structures and recent advancements in external cavity semiconductor lasers. In particular, we discuss external cavity semiconductor lasers based on quantum well and quantum dot gain chips. The structure of the gain chip significantly influences laser’s performance. External cavity quantum well laser has a narrower linewidth, higher power, and better mode stability. Conversely, external cavity quantum dot laser provides a wider tunable range and a remarkably lower threshold current. Furthermore, dual-wavelength external cavity tunable diode lasers are gaining importance in applications such as optical switching and terahertz radiation generation. With the continuous optimization of chips and external cavity structures, external cavity diode lasers are increasingly recognized as promising light sources with narrow linewidth and wide tunability, opening up broader application prospects. Full article
(This article belongs to the Special Issue Optical Sensors: Applications, Performance and Challenges)
Show Figures

Figure 1

7 pages, 3985 KB  
Communication
Amplitude and Phase Control of RF Pulse Using IQ Modulator to Improve Electron Beam Quality
by Shimon Yamada, Shigeru Kashiwagi, Ikuro Nagasawa, Ken-ichi Nanbu, Toshiya Muto, Ken Takahashi, Ken Kanomata, Kotaro Shibata, Fujio Hinode, Sadao Miura, Hiroki Yamada, Kohei Kumagai and Hiroyuki Hama
Particles 2023, 6(3), 739-745; https://doi.org/10.3390/particles6030046 - 18 Jul 2023
Viewed by 2828
Abstract
A test-Accelerator as Coherent Terahertz Source (t-ACTS) has been under development at Tohoku University, in which an intense coherent terahertz radiation is generated from the short electron bunches. Velocity bunching scheme in a traveling wave accelerating structure is employed to generate the short [...] Read more.
A test-Accelerator as Coherent Terahertz Source (t-ACTS) has been under development at Tohoku University, in which an intense coherent terahertz radiation is generated from the short electron bunches. Velocity bunching scheme in a traveling wave accelerating structure is employed to generate the short electron bunches. The in-phase and quadrature (IQ) modulator and demodulator were installed to the low-level RF systems of t-ACTS linac to control and measure the amplitude and phase of RF power. The amplitude and phase of the RF power applied to an RF electron gun cavities and the accelerating structure are controlled to produce the electron bunches with a uniform and small momentum spread suitable for the velocity bunching. By installing the feed-forward control system using IQ modulators for the beam conditioning, we have successfully generated flat RF pulses and improved beam quality, including the energy spectrum of the beam. The details of feed-forward control system of the amplitude and phase using the IQ modulator and the beam experiments are presented in this paper. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources)
Show Figures

Figure 1

10 pages, 1784 KB  
Article
Study of Coherent Smith–Purcell Radiation in the Terahertz Region Using Ultra-Short Electron Bunches
by Hiroki Yamada, Toshiya Muto, Fujio Hinode, Shigeru Kashiwagi, Ken-ichi Nanbu, Ken Kanomata, Ikuro Nagasawa, Ken Takahashi, Koutaro Shibata and Hiroyuki Hama
Particles 2023, 6(3), 693-702; https://doi.org/10.3390/particles6030042 - 3 Jul 2023
Cited by 1 | Viewed by 2307
Abstract
Smith–Purcell radiation (SPR) can be generated nondestructively, providing valuable applications in light sources and beam monitors. Coherent SPR is expected to enable single-shot measurements of very short bunch lengths on the fs scale. Since the reconstruction of the longitudinal bunch shape from the [...] Read more.
Smith–Purcell radiation (SPR) can be generated nondestructively, providing valuable applications in light sources and beam monitors. Coherent SPR is expected to enable single-shot measurements of very short bunch lengths on the fs scale. Since the reconstruction of the longitudinal bunch shape from the coherent SPR is based on the reliable SPR spectrum, a more detailed understanding of the properties of the radiation is important in this context. Employing a 100 fs ultrashort electron bunch at the t-ACTS test accelerator, the spectrum, angular distribution, and polarization of the produced coherent SPR were measured in the terahertz frequency region and compared with a model calculation. In addition to the widely known surface current model evaluation, the effect of the geometrical shading effect on induced currents on metal surfaces was evaluated using 3D numerical calculations. The obtained SPR characteristics are also presented. In the evaluation of the grating with a shallow blaze angle, it was found that the shading effect has a non-negligible effect on the generated SPR intensity; the measured angular distribution and polarization results were in good agreement with this result. Full article
(This article belongs to the Special Issue Generation and Application of High-Power Radiation Sources)
Show Figures

Figure 1

12 pages, 10218 KB  
Article
Generating High-Power, Frequency Tunable Coherent THz Pulse in an X-ray Free-Electron Laser for THz Pump and X-ray Probe Experiments
by Yin Kang, Zhen Wang, Kaiqing Zhang and Chao Feng
Photonics 2023, 10(2), 133; https://doi.org/10.3390/photonics10020133 - 28 Jan 2023
Cited by 11 | Viewed by 3474
Abstract
Precisely synchronized X-ray and strong-field coherent terahertz (THz) enable the coherent THz excitation of many fundamental modes (THz pump) and the capturing of X-ray dynamic images of matter (X-ray probe), while the generation of such a light source is still a challenge for [...] Read more.
Precisely synchronized X-ray and strong-field coherent terahertz (THz) enable the coherent THz excitation of many fundamental modes (THz pump) and the capturing of X-ray dynamic images of matter (X-ray probe), while the generation of such a light source is still a challenge for most existing techniques. In this paper, a novel X-ray free-electron laser based light source is proposed to produce a synchronized high-powered X-ray pulse and strong field, widely frequency tunable coherent THz pulse simultaneously. The technique adopts a frequency beating laser modulated electron bunch with a Giga-electron-volt beam energy to generate an X-ray pulse and a THz pulse sequentially by passing two individual undulator sections with different magnetic periods. Theoretical analysis and numerical simulations are carried out using the beam parameters of the Shanghai soft X-ray free-electron laser facility. The results show that the technique can generate synchronized 4 nm X-ray radiation with a peak power of 1.89 GW, and narrow-band THz radiation with a pulse energy of 1.62 mJ, and the frequency of THz radiation can be continuously tuned from 0.1 to 40 THz. The proposed technique can be used for THz pump and X-ray probe experiments for dynamic research on the interaction between THz pulse and matter at a femtosecond time scale. Full article
(This article belongs to the Special Issue XUV and X-ray Free-Electron Lasers and Applications)
Show Figures

Figure 1

11 pages, 3223 KB  
Article
Full-Field Super-Resolution Terahertz Imaging Based on Rotating Coherent Scattering Microscopy
by Duoxuan Ma, Jie Zhao, Dayong Wang, Hao Lin, Lu Rong, Yunxin Wang and Shufeng Lin
Appl. Sci. 2023, 13(2), 982; https://doi.org/10.3390/app13020982 - 11 Jan 2023
Cited by 4 | Viewed by 2967
Abstract
For decades, terahertz (THz) microscopic imaging has been limited by the resolution of the system due to the larger wavelength, the power of the source, and the equivalent noise power of the detector, so a lot of research has focused on single-point scanning [...] Read more.
For decades, terahertz (THz) microscopic imaging has been limited by the resolution of the system due to the larger wavelength, the power of the source, and the equivalent noise power of the detector, so a lot of research has focused on single-point scanning imaging. With the development of hardware, full-field THz imaging based on high-power continuous-wave THz sources have been developed such as the direct intensity imaging method and lensless coherent imaging. In particular, the THz direct intensity imaging method requires no complicated computational reconstruction, while the high resolution, as a key issue, still needs to be improved. In this paper, the rotating coherent scattering microscopy was applied to THz imaging for the first time. Here, we designed and fabricated a hemisphere lens with high-resistance silicon. The tilted hemisphere lens transformed the incident divergent beam into a plane wave, and the total internal reflection occurred in the planar surface within the hemispherical lens, and generated evanescent waves in the rare medium. At the same time, the sample was placed very close to the plane of the hemispherical lens, so that the sample was illuminated by the evanescent waves. The scattered waves carried high frequency information to the far field, and thus through an objective, the super-resolution imaging was achieved along a single direction. Then, the hemispherical lens was rotated to obtain coherent scattering microscopic images under different evanescent wave illumination angles. Finally, the full-field super-resolution imaging results were obtained through incoherent superposition. Full article
Show Figures

Figure 1

17 pages, 6064 KB  
Review
Terahertz Kerr Effect of Liquids
by Minghao Zhang, Wen Xiao, Cunlin Zhang and Liangliang Zhang
Sensors 2022, 22(23), 9424; https://doi.org/10.3390/s22239424 - 2 Dec 2022
Cited by 6 | Viewed by 3886
Abstract
In recent years, tremendous advancements have been made in various technologies such as far-infrared, low-frequency Raman, and two-dimensional (2D) Raman terahertz (THz) spectroscopies. A coherent method has emerged from numerous experimental and theoretical investigations of molecular dynamics in liquids by comparing linear and [...] Read more.
In recent years, tremendous advancements have been made in various technologies such as far-infrared, low-frequency Raman, and two-dimensional (2D) Raman terahertz (THz) spectroscopies. A coherent method has emerged from numerous experimental and theoretical investigations of molecular dynamics in liquids by comparing linear and non-linear spectroscopic techniques. Intermolecular hydrogen bond vibration, molecular reorientation motion, and interaction between molecule/ionic solute and hydrogen bonds have been demonstrated to occur in the THz region, which are closely related to their physical/chemical properties and structural dynamics. However, precise probing of various modes of motion is difficult because of the complexity of the collective and cooperative motion of molecules and spectral overlap of related modes. With the development of THz science and technology, current state-of-the-art THz sources can generate pulsed electric fields with peak intensities of the order of microvolts per centimeter (MV/cm). Such strong fields enable the use of THz waves as the light source for non-linear polarization of the medium and in turn leads to the development of the emerging THz Kerr effect (TKE) technique. Many low-frequency molecular motions, such as the collective directional motion of molecules and cooperative motion under the constraint of weak intermolecular interactions, are resonantly excited by an intense THz electric field. Thus, the TKE technique provides an interesting prospect for investigating low-frequency dynamics of different media. In view of this, this paper first summarizes the research work on TKE spectroscopy by taking a solid material without low-frequency molecular motions as an example. Starting from the principle of TKE technology and its application in investigating the properties of solid matter, we have explored the low-frequency molecular dynamics of liquid water and aqueous solutions using TKE. Liquid water is a core of life and possesses many extraordinary physical and biochemical properties. The hydrogen bond network plays a crucial role in these properties and is the main reason for its various kinetic and thermodynamic properties, which differ from those of other liquids. However, the structure of the hydrogen bond network between water and solutes is not well known. Therefore, evaluating the hydrogen bond-related kinetic properties of liquid water is important. Full article
(This article belongs to the Special Issue Terahertz Imaging, Sensing and Communications Technologies)
Show Figures

Figure 1

15 pages, 1535 KB  
Review
Phase-Matching in Nonlinear Crystal-Based Monochromatic Terahertz-Wave Generation
by Pengxiang Liu, Chuncao Niu, Feng Qi, Wei Li, Weifan Li, Qiaoqiao Fu, Liyuan Guo and Zhongyang Li
Crystals 2022, 12(9), 1231; https://doi.org/10.3390/cryst12091231 - 1 Sep 2022
Cited by 7 | Viewed by 4354
Abstract
Optically pumped nonlinear frequency down conversion is a proven approach for monochromatic terahertz (THz)-wave generation that provides superior properties such as continuous and wide tunability as well as laser-like linewidth and beam quality. Phase-matching (PM) is an important connection between the pump sources [...] Read more.
Optically pumped nonlinear frequency down conversion is a proven approach for monochromatic terahertz (THz)-wave generation that provides superior properties such as continuous and wide tunability as well as laser-like linewidth and beam quality. Phase-matching (PM) is an important connection between the pump sources and nonlinear crystals and determines the direction of energy flow (as well as the output power). In past decades, a variety of peculiar PM configurations in the THz region have been invented and are different from the traditional ones in the optical region. We summarize the configurations that have been applied in nonlinear THz-wave generation, which mainly fall in two categories: scalar (collinear) PM and vector PM (including macroscopic noncollinear PM and microscopic vector PM). The development of this technique could relax the matching conditions in a wide range of nonlinear crystals and pump wavelengths and could finally promote the improvement of coherent THz sources. Full article
(This article belongs to the Special Issue Nonlinear Crystals for Terahertz Generation)
Show Figures

Figure 1

8 pages, 2588 KB  
Article
Investigating Coherent Magnetization Control with Ultrashort THz Pulses
by Xuan Liu, Emmanuelle Jal, Renaud Delaunay, Romain Jarrier, Gheorghe Sorin Chiuzbaian, Grégory Malinowski, Torsten Golz, Ekaterina Zapolnova, Rui Pan, Nikola Stojanovic, Jan Lüning and Boris Vodungbo
Appl. Sci. 2022, 12(3), 1323; https://doi.org/10.3390/app12031323 - 26 Jan 2022
Cited by 7 | Viewed by 3303
Abstract
Coherent terahertz control of magnetization dynamics is an area of current interest due to its great potential for the realization of magnetization control on ultrafast timescales in commercial devices. Here we report on an experiment realized at the THz beamline of the free [...] Read more.
Coherent terahertz control of magnetization dynamics is an area of current interest due to its great potential for the realization of magnetization control on ultrafast timescales in commercial devices. Here we report on an experiment realized at the THz beamline of the free electron laser FLASH at DESY which offers a tunable terahertz radiation source and spontaneously synchronized free-electron laser X-ray pulses to resonantly probe the magnetization state of a ferromagnetic film. In this proof-of-principle experiment, we have excited a thin Permalloy film at different THz wavelengths and recorded the induced magnetization dynamics with photons resonantly tuned to the Ni M2,3 absorption edge. For THz pump pulses including higher orders of the undulator source we observed demagnetization dynamics, which precise shape depended on the employed fundamental wavelength of the undulator source. Analyzing the shape in detail, we can reconstruct the temporal profile of the electric field of the THz pump pulse. This offers a new method for the realization of an in-situ terahertz beamline diagnostic which will help researchers to adjust the pulse characteristics as needed, for example, for future studies of THz induced coherent control of magnetization dynamics. Full article
(This article belongs to the Special Issue Latest Trends in Free Electron Lasers)
Show Figures

Figure 1

15 pages, 3548 KB  
Article
A Compact Accelerator-Based Light Source for High-Power, Full-Bandwidth Tunable Coherent THz Generation
by Kaiqing Zhang, Yin Kang, Tao Liu, Zhen Wang, Chao Feng, Wencheng Fang and Zhentang Zhao
Appl. Sci. 2021, 11(24), 11850; https://doi.org/10.3390/app112411850 - 13 Dec 2021
Cited by 9 | Viewed by 3683
Abstract
Terahertz (THz) radiation sources are increasingly significant for many scientific frontiers, while the generation of THz radiation with high-power at wide-tunable frequencies is still a limitation for most existing methods. In this paper, a compact accelerator-based light source is proposed to produce coherent [...] Read more.
Terahertz (THz) radiation sources are increasingly significant for many scientific frontiers, while the generation of THz radiation with high-power at wide-tunable frequencies is still a limitation for most existing methods. In this paper, a compact accelerator-based light source is proposed to produce coherent THz radiation with high pulse energy and tunable frequency from 0.1 THz to 60 THz. By using a frequency beating laser-modulated electron beam and undulator taper, intense coherent THz radiation can be generated through undulators. Theoretical analysis and numerical simulations demonstrate that the proposed technique can generate narrow-bandwidth THz radiation with a pulse energy up to 6.3 millijoule (mJ) and the three-dimensional effects of beam has limited influence on its performance. The proposed technique will open up new opportunities for THz spectroscopic and time-resolved experiments. Full article
Show Figures

Figure 1

9 pages, 1755 KB  
Article
Potential of Sub-THz-Wave Generation in Li2B4O7 Nonlinear Crystal at Room and Cryogenic Temperatures
by Dmitry Ezhov, Snezhana Turgeneva, Nazar Nikolaev, Alexander Mamrashev, Sergei Mikerin, Fedor Minakov, Andrey Simanchuk, Valery Antsygin, Valery Svetlichnyi, Valery Losev and Yury Andreev
Crystals 2021, 11(11), 1321; https://doi.org/10.3390/cryst11111321 - 29 Oct 2021
Cited by 3 | Viewed by 2896
Abstract
Due to their high optical damage threshold, borate crystals can be used for the efficient nonlinear down-conversion of terawatt laser radiation into the terahertz (THz) frequency range of the electromagnetic spectrum. In this work, we carried out a thorough study of the terahertz [...] Read more.
Due to their high optical damage threshold, borate crystals can be used for the efficient nonlinear down-conversion of terawatt laser radiation into the terahertz (THz) frequency range of the electromagnetic spectrum. In this work, we carried out a thorough study of the terahertz optical properties of the lithium tetraborate crystal (Li2B4O7; LB4) at 295 and 77 K. Approximating the terahertz refractive index in the form of Sellmeier’s equations, we assessed the possibility of converting the radiation of widespread high-power laser sources with wavelengths of 1064 and 800 nm, as well as their second and third harmonics, into the THz range. It was found that four out of eight types of three-wave mixing processes are possible. The conditions for collinear phase matching were fulfilled only for the oeo type of interaction, while cooling the crystal to 77 K did not practically affect the phase-matching curves. However, a noticeable increase of birefringence in the THz range with cooling (from 0.12 to 0.16) led to an increase in the coherence length for o − oe and eee types of interaction, which are potentially attractive for the down-conversion of ultrashort laser pulses. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Graphical abstract

14 pages, 1893 KB  
Article
Discrete Fourier Transform Radar in the Terahertz-Wave Range Based on a Resonant-Tunneling-Diode Oscillator
by Hiroki Konno, Adrian Dobroiu, Safumi Suzuki, Masahiro Asada and Hiroshi Ito
Sensors 2021, 21(13), 4367; https://doi.org/10.3390/s21134367 - 25 Jun 2021
Cited by 14 | Viewed by 2986
Abstract
We used a resonant-tunneling-diode (RTD) oscillator as the source of a terahertz-wave radar based on the principle of the swept-source optical coherence tomography (SS-OCT). Unlike similar reports in the terahertz range, we apply the stepwise frequency modulation to a subcarrier obtained by amplitude [...] Read more.
We used a resonant-tunneling-diode (RTD) oscillator as the source of a terahertz-wave radar based on the principle of the swept-source optical coherence tomography (SS-OCT). Unlike similar reports in the terahertz range, we apply the stepwise frequency modulation to a subcarrier obtained by amplitude modulation instead of tuning the terahertz carrier frequency. Additionally, we replace the usual optical interference with electrical mixing and, by using a quadrature mixer, we can discriminate between negative and positive optical path differences, which doubles the measurement range without increasing the measurement time. To measure the distance to multiple targets simultaneously, the terahertz wave is modulated in amplitude at a series of frequencies; the signal returning from the target is detected and homodyne mixed with the original modulation signal. A series of voltages is obtained; by Fourier transformation the distance to each target is retrieved. Experimental results on one and two targets are shown. Full article
(This article belongs to the Special Issue Terahertz and Millimeter Wave Sensing and Applications)
Show Figures

Figure 1

Back to TopTop