Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = coffee substitute

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 369 KB  
Article
Development of an Environmentally Friendly Phenol–Formaldehyde Resin Modified with Spent Coffee Grounds Protein for Plywood Manufacturing
by Dimitrios Moutousidis, Konstantina Karidi, Eleftheria Athanassiadou, Katiana Filippi, Nikos Giannakis, Apostolos Koutinas and Eleni Stylianou
Adhesives 2025, 1(4), 13; https://doi.org/10.3390/adhesives1040013 - 1 Nov 2025
Viewed by 333
Abstract
Bio-based phenolic resins were developed with phenol substitution levels of 20% and 40% with crude extracts obtained from spent coffee grounds. The experimental resins were characterized in terms of their physical, chemical and bonding properties and exhibited the typical property levels of Phenol-Formaldehyde-type [...] Read more.
Bio-based phenolic resins were developed with phenol substitution levels of 20% and 40% with crude extracts obtained from spent coffee grounds. The experimental resins were characterized in terms of their physical, chemical and bonding properties and exhibited the typical property levels of Phenol-Formaldehyde-type resins. Plywood panels were produced bonded with the novel experimental resins, exhibiting satisfactory performance, comparable to the reference panels in terms of both shear strength and wood failure, based on the requirements of the European standards. The results demonstrate the potential of using biomass-derived compounds as substitutes for petrochemical phenol in the production of wood adhesives, thereby increasing the bio-based content of the wood panel composites produced with them and improving their sustainability. Full article
(This article belongs to the Special Issue Advances in Bio-Based Wood Adhesives)
Show Figures

Figure 1

16 pages, 2913 KB  
Article
OGS-YOLOv8: Coffee Bean Maturity Detection Algorithm Based on Improved YOLOv8
by Nannan Zhao and Yongsheng Wen
Appl. Sci. 2025, 15(21), 11632; https://doi.org/10.3390/app152111632 - 31 Oct 2025
Viewed by 327
Abstract
This study presents the OGS-YOLOv8 model for coffee bean maturity identification, designed to enhance accuracy in identifying coffee beans at different maturity stages in complicated contexts, utilizing an upgraded version of YOLOv8. Initially, the ODConv (full-dimensional dynamic convolution) substitutes the convolutional layers in [...] Read more.
This study presents the OGS-YOLOv8 model for coffee bean maturity identification, designed to enhance accuracy in identifying coffee beans at different maturity stages in complicated contexts, utilizing an upgraded version of YOLOv8. Initially, the ODConv (full-dimensional dynamic convolution) substitutes the convolutional layers in the backbone and neck networks to augment the network’s capacity to capture attributes of coffee bean images. Second, we replace the C2f layer in the neck networks with the CSGSPC (Convolutional Split Group-Shuffle Partial Convolution) module to reduce the computational load of the model. Lastly, to improve bounding box regression accuracy by concentrating on challenging samples, we substitute the Inner-FocalerIoU function for the CIoU loss function. According to experimental results, OGS-YOLO v8 outperforms the original model by 7.4%, achieving a detection accuracy of 73.7% for coffee bean maturity. Reaching 76% at mAP@0.5, it represents a 3.2% increase over the initial model. Furthermore, GFLOPs dropped 26.8%, from 8.2 to 6.0. For applications like coffee bean maturity monitoring and intelligent harvesting, OGS-YOLOv8 offers strong technical support and reference by striking a good balance between high detection accuracy and low computational cost. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

27 pages, 4553 KB  
Article
Cellulose Carriers from Spent Coffee Grounds for Lipase Immobilization and Evaluation of Biocatalyst Performance
by Marta Ostojčić, Mirna Brekalo, Marija Stjepanović, Blanka Bilić Rajs, Natalija Velić, Stjepan Šarić, Igor Djerdj, Sandra Budžaki and Ivica Strelec
Sustainability 2025, 17(21), 9633; https://doi.org/10.3390/su17219633 - 29 Oct 2025
Viewed by 591
Abstract
In line with the circular economy approach and the pursuit of sustainable solutions for spent coffee grounds, this study investigates the valorization of spent coffee grounds as a source of cellulose-based enzyme immobilization carriers. Considering that global coffee consumption generates approximately 6.9 million [...] Read more.
In line with the circular economy approach and the pursuit of sustainable solutions for spent coffee grounds, this study investigates the valorization of spent coffee grounds as a source of cellulose-based enzyme immobilization carriers. Considering that global coffee consumption generates approximately 6.9 million tonnes of spent coffee grounds annually, their disposal represents both an environmental challenge and an opportunity for value-added applications. A multistep extraction process, including Soxhlet extraction followed by sequential subcritical extraction with ethanol and water, and alkaline treatment, led to the production of cellulose-enriched carriers. The carriers obtained were characterized by their morphology, porosity and surface properties and subsequently used for the two lipases immobilization, Burkholderia cepacia (BCL) and Pseudomonas fluorescens (PFL), using three techniques: adsorption and covalent binding via direct and indirect methods. The immobilized lipases were analyzed for key biochemical and operational properties and compared with each other and with their free enzymes. Based on their stability, catalytic activity, and reusability, the lipases immobilized by adsorption were identified as the most efficient biocatalysts. These immobilized enzymes were then used in two selected reactions to demonstrate their practical utility: cocoa butter substitute synthesis using PFL and the enzymatic pretreatment of wastewater from the oil processing industry using BCL. Both immobilized lipases showed excellent catalytic performance and maintained their high activity over four consecutive reuse cycles. Full article
(This article belongs to the Special Issue Sustainable Research on Food Science and Food Technology)
Show Figures

Figure 1

28 pages, 3121 KB  
Article
A Technology Roadmap for the Açaí Value-Chain Valorization
by Fernanda Cardoso, Silvio Vaz Junior, Mariana Doria and Suzana Borschiver
Sustainability 2025, 17(21), 9448; https://doi.org/10.3390/su17219448 - 24 Oct 2025
Viewed by 476
Abstract
Açaí, a berry emblematic of Amazonian biodiversity, is a major Brazilian product whose market value is largely concentrated in its pulp, leaving the residual biomass—particularly the fibrous seed—underexploited and typically discarded in landfills, with negative environmental and social consequences. To address this gap, [...] Read more.
Açaí, a berry emblematic of Amazonian biodiversity, is a major Brazilian product whose market value is largely concentrated in its pulp, leaving the residual biomass—particularly the fibrous seed—underexploited and typically discarded in landfills, with negative environmental and social consequences. To address this gap, this study employs a systematic technology roadmapping approach, integrating bibliometric analysis, patent landscaping, and expert consultations to consolidate fragmented data. This methodology enables the mapping of innovation trajectories across technology readiness levels, product categories, market segments, and key stakeholders. The roadmap identifies emerging trends and opportunity windows for valorizing açaí biomass via integrated biorefinery approaches, moving beyond traditional low-complexity uses such as thermal energy and seed-derived coffee substitutes. The highlighted products include pharmaceutical extracts, cosmetic ingredients, nanopapers, and cellulose nanocrystals, leveraging the biomass’s biochemical composition, notably antioxidants, mannose, and inulin. This methodological framework facilitates a dynamic analysis of technological maturation and market evolution, offering strategic insights to guide industrial investments and policy development. Findings indicate that biorefinery integration enhances resource efficiency and product diversification, situating açaí biomass valorization within broader bioeconomy strategies. The study demonstrates the efficacy of technology roadmapping in structuring prospective innovation pathways and in supporting the sustainable utilization of the Amazonian biomass. Full article
Show Figures

Figure 1

22 pages, 5536 KB  
Article
α-Glucosidase Inhibition-Guided Network Pharmacology and Molecular Docking Reveal the Antidiabetic Potential of Cichorium intybus as a Functional Food
by Abdul Bari Shah, Aizhamal Baiseitova, Ulpan Amzeyeva, Xiaofei Shang and Janar Jenis
Int. J. Mol. Sci. 2025, 26(19), 9497; https://doi.org/10.3390/ijms26199497 - 28 Sep 2025
Cited by 1 | Viewed by 792
Abstract
Cichorium intybus, commonly known as chicory, is acknowledged as a substitute for coffee and is widely utilized in medicinal applications to treat various ailments. Chicory extract is commonly used in the management of diabetes; however, the specific bioactive components remain unidentified. The [...] Read more.
Cichorium intybus, commonly known as chicory, is acknowledged as a substitute for coffee and is widely utilized in medicinal applications to treat various ailments. Chicory extract is commonly used in the management of diabetes; however, the specific bioactive components remain unidentified. The present study displayed the antidiabetic potential of chicory using a comprehensive approach integrating in vitro, network pharmacology, and in silico techniques. The methanolic extract demonstrated significant α-glucosidase inhibitory activity in the initial experiment, indicating potential for the management of postprandial hyperglycemia. Based on this, chicory’s major metabolites were identified and examined for their interactions with (type 2 diabetes) T2D targets using network pharmacology. The core genes and pathways involved in the disease were mapped to understand the multitarget mechanisms of the extract. A molecular docking study validated the binding affinity and interactions of leading bioactive compounds with T2D protein targets. The findings indicate that chicory metabolites may serve as promising candidates for the development of natural antidiabetic agents. Full article
Show Figures

Graphical abstract

22 pages, 1053 KB  
Review
Edible Pouch Packaging for Food Applications—A Review
by Azin Omid Jeivan and Sabina Galus
Processes 2025, 13(9), 2910; https://doi.org/10.3390/pr13092910 - 12 Sep 2025
Viewed by 2863
Abstract
Current food packaging, primarily made of non-biodegradable plastics, significantly contributes to environmental pollution. New packaging systems for food applications from biopolymers and/or with multifunctional properties are being developed as substitutes for synthetic polymers. The increasing concern over the environmental effects of packaging waste [...] Read more.
Current food packaging, primarily made of non-biodegradable plastics, significantly contributes to environmental pollution. New packaging systems for food applications from biopolymers and/or with multifunctional properties are being developed as substitutes for synthetic polymers. The increasing concern over the environmental effects of packaging waste is driving a transition toward renewable packaging materials. Edible films and coatings play a vital role in maintaining food quality by preventing the loss of aroma, flavour, and important components, while also extending shelf life. Biopolymers, including polysaccharides, proteins, and lipids, are gaining attention as the future of packaging due to the environmental issues linked to petrochemical-based plastics. Modern packaging should not only protect products but also be biodegradable, recyclable, and have a minimal ecological impact. This review comprehensively summarises edible packaging in the form of single-use, fast-dissolving pouches for food applications as a circular approach and a sustainable solution in food technology. Innovations have resulted in the development of a unique packaging solution made from renewable sources. This packaging utilises plant and animal by-products to create edible films and pouches that are easy to seal. Edible packaging is emerging as a sustainable alternative, designed to simplify food packaging while minimising waste. Fast-dissolving scalable packaging, particularly edible films that dissolve in water, is used for individual servings of dry foods and instant beverages. This includes items like breakfast cereals, instant coffee or tea, and various powdered products. Additionally, there is an innovative approach to single-use packaging for oils and powders, leveraging the convenience and efficiency of these fast-dissolving films. Edible pouch packaging, made from safe and edible materials, provides a biodegradable option that decomposes naturally, thereby reducing pollution and the need for disposal. Full article
Show Figures

Graphical abstract

17 pages, 747 KB  
Article
Factors Affecting China’s Tea Exports to Malaysia: An ARDL Analysis
by Yanqi Hu and Chin-Hong Puah
Agriculture 2025, 15(17), 1897; https://doi.org/10.3390/agriculture15171897 - 7 Sep 2025
Viewed by 1016
Abstract
This study employed quarterly data spanning from 2005 to 2024 to investigate the factors affecting China’s tea exports to Malaysia using demand theory. The Autoregressive Distributed Lag (ARDL) approach and Granger causality test were applied to examine the long-run and short-run impacts of [...] Read more.
This study employed quarterly data spanning from 2005 to 2024 to investigate the factors affecting China’s tea exports to Malaysia using demand theory. The Autoregressive Distributed Lag (ARDL) approach and Granger causality test were applied to examine the long-run and short-run impacts of key variables, including the prices of China’s tea and coffee imported by Malaysia, Malaysia’s GDP, Malaysia’s tea production, and the international oil price. The ARDL bounds testing confirmed the existence of a long-run equilibrium among these variables. The empirical findings revealed that an increase in the price of China’s tea significantly reduced export volumes, whereas Malaysia’s GDP exerted a strong positive influence. The price of coffee exhibited a significantly negative effect, suggesting an unconventional substitution relationship with tea. Both Malaysia’s domestic tea production and the international oil price imposed downward pressures on China’s tea exports. Furthermore, the Granger causality analysis indicated that the price of China’s tea, the price of coffee, and Malaysia’s GDP all exerted short-run effects on China’s tea exports to Malaysia. These findings contribute to the export demand literature and offer implications for policies aiming to enhance bilateral tea trade between China and Malaysia. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

29 pages, 7913 KB  
Article
Synthesis, Characterization, and Screening Anticancer—Antibiofilm Activities of Theophylline Derivatives Containing CF3/OCF3 Moiety
by Serpil Demir Düşünceli, Kübra Açıkalın Coşkun, Murat Kaloğlu, Elvan Üstün, Reyhan Çalışkan and Yusuf Tutar
Biology 2025, 14(9), 1180; https://doi.org/10.3390/biology14091180 - 2 Sep 2025
Viewed by 845
Abstract
Background: Theophylline, which is biologically important and found in tea, coffee, and cocoa beans, can be synthesized chemically or by direct extraction and concentration from natural sources. Theophylline derivatives have garnered attention in recent years for their potential therapeutic effects on Mycobacterium tuberculosis [...] Read more.
Background: Theophylline, which is biologically important and found in tea, coffee, and cocoa beans, can be synthesized chemically or by direct extraction and concentration from natural sources. Theophylline derivatives have garnered attention in recent years for their potential therapeutic effects on Mycobacterium tuberculosis, antihistaminic, anti-inflammatory, and anticancer. Also, trifluoromethyl (CF3) group has also been widely used in drug and agrochemical design. Methods: In this study, a series of new theophylline derivatives containing substituted trifluoromethyl and trifluoromethoxy groups were synthesized. The structures of these new compounds were confirmed by NMR, FT-IR, and elemental analyses. Additionally, the anticancer activities of the molecules were analyzed against VEGFR-2, CYP P450, and estrogen receptor by molecular docking method. Furthermore, in vitro biological effects of the compounds were comprehensively evaluated in cancer (A549 and HeLa) and normal (BEAS-2B) cells. Cell viability was assessed by MTT assay, and selectivity index (SI) values were calculated to determine tumor-specific toxicity. Results: N(7)-substituted theophyllines were prepared by the reaction of 1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione (theophylline) and trifluoromethyl substituted benzyl halide compounds. The synthesized N(7)-substituted theophyllines were obtained as white powder in high yield. The structure of synthesized compounds was confirmed by various spectroscopic techniques such as 1H, 13C, 19F NMR, and FT-IR spectroscopy, and elemental analysis. The highest interaction was recorded as −5.69 kcal/mol for 3-CF3 substituted against VEGFR-2 structure while the best binding affinity was determined for 4-OCF3 substituted with −6.69 kcal/mol against Human Cytochrome P450 with in silico analysis. The in vitro anticancer activities of the molecules were also evaluated against A549 and HeLa cells, and displayed considerably higher cytotoxicity with 2-CF3, 3-CF3, and 4-CF3 substituted molecules in Hela and A549 cell line. To elucidate the molecular mechanism, apoptosis-related gene expression changes were analyzed by RT-qPCR in A549 and HeLa cells treated with compound 2-CF3. Significant upregulation of pro-apoptotic markers and downregulation of anti-apoptotic genes were observed. Consistently, ELISA-based quantification confirmed increased protein levels of Caspase-3, BAX, and Cytochrome C, and decreased BCL-2, validating the apoptotic mechanism at the protein level. Also, the antibacterial and antibiofilm activity details of the molecules were evaluated against DNA Gyrase, and SarA crystal structures by molecular docking method. The highest interaction was recorded as −5.56 kcal/mol for 2-CF3 substituted with H-bonds with Asn46, Val71, Asp73, and Thr165 against DNA Gyrase crystal structure while 3-CF3 substituted has the best binding affinity against SarA. The in vitro antimicrobial effects of the molecules were also evaluated. Conclusions: The synthesized molecules may provide insight into the development of potential therapeutic agents to the increasing antimicrobial resistance and biofilm-forming capacity of microorganisms. Additionally, compound 2-CF3 substituted exhibited promising and selective anticancer activity through apoptosis induction, supported by gene and protein level evidence. Full article
(This article belongs to the Topic Advances in Anti-Cancer Drugs: 2nd Edition)
Show Figures

Graphical abstract

21 pages, 2081 KB  
Article
Oil Extraction from the Spent Coffee Grounds and Its Conversion into Biodiesel
by Rita Harb and Lara Salloum Abou Jaoudeh
Energies 2025, 18(17), 4603; https://doi.org/10.3390/en18174603 - 29 Aug 2025
Viewed by 1395
Abstract
The depletion of fossil fuel reserves and their environmental impact have driven the search for sustainable energy alternatives. Biodiesel has emerged as a promising substitute. Being a major byproduct of the coffee industry, spent coffee grounds (SCGs) offer a viable feedstock due to [...] Read more.
The depletion of fossil fuel reserves and their environmental impact have driven the search for sustainable energy alternatives. Biodiesel has emerged as a promising substitute. Being a major byproduct of the coffee industry, spent coffee grounds (SCGs) offer a viable feedstock due to their abundance, high fatty acid content, and calorific value. This study explores biodiesel production from SCGs. First, oil was experimentally extracted from SCGs using Soxhlet extraction with hexane as the solvent. The oil yield varied between 12 and 13.4% with a density of 0.9 g/mL. Reactor modeling and kinetic analysis were performed, showing that CSTRs in series are favorable for the esterification and transesterification reactions. Furthermore, Aspen Plus was used to simulate the extracted oil conversion into biodiesel through a two-step esterification and purification process. The simulation results are verified against previous experimental research. Sensitivity analyses were performed to evaluate the influence of key process parameters, including methanol-to-oil ratio, reactor residence time, and transesterification temperature. The simulation results indicate an optimal biodiesel mass yield of 90.31%, with a purity of 99.63 wt%, at a methanol-to-oil ratio of 12:1 and a transesterification temperature of 60 °C. Full article
Show Figures

Figure 1

18 pages, 1283 KB  
Article
A Systemic View of Biodegradable Materials: Analyzing the Environmental Performance of Compostable Coffee Capsules in Real Infrastructural Contexts
by Ana-Maria Nicolau and Petruţa Petcu
Sustainability 2025, 17(17), 7736; https://doi.org/10.3390/su17177736 - 28 Aug 2025
Cited by 1 | Viewed by 1115
Abstract
In the pursuit of a circular economy, the substitution of conventional polymers with compostable materials such as polylactic acid (PLA) has emerged as a primary strategy. However, the environmental performance of these materials is highly dependent on the post-consumer system. Based on a [...] Read more.
In the pursuit of a circular economy, the substitution of conventional polymers with compostable materials such as polylactic acid (PLA) has emerged as a primary strategy. However, the environmental performance of these materials is highly dependent on the post-consumer system. Based on a systemic analysis methodology, this paper investigates this performance paradox. Using a compostable coffee capsule made from PLA as a case study, the research compares its designed, ideal end-of-life (EoL) pathway (industrial composting) with its probable real-world fate within existing waste management infrastructures (landfilling and recycling stream contamination). The analysis of these scenarios reveals a significant gap between the product’s intended function and its actual environmental impact, showing that in realistic contexts, intended benefits are often unrealized and negative outcomes may occur. This study yields results that can inform more robust and systemic sustainable design strategies, highlighting the need to align product design with real-world infrastructural capabilities. Full article
Show Figures

Figure 1

29 pages, 12570 KB  
Article
Sustainable Zinc-Ion Battery Separators Based on Silica and Cellulose Fibers Derived from Coffee Parchment Waste
by Vorrada Loryuenyong, Buntita Plongmai, Nitikorn Pajantorn, Prasit Pattananuwat and Achanai Buasri
J. Compos. Sci. 2025, 9(8), 452; https://doi.org/10.3390/jcs9080452 - 21 Aug 2025
Viewed by 1592
Abstract
Currently, electrochemical devices and portable electronic equipment play a significant role in people’s daily lives. Zinc-ion batteries (ZIBs) are growing rapidly due to their excellent safety, eco-friendliness, abundance of resources, and cost-effectiveness. The application of biomass as a polymer separator is gradually expanding [...] Read more.
Currently, electrochemical devices and portable electronic equipment play a significant role in people’s daily lives. Zinc-ion batteries (ZIBs) are growing rapidly due to their excellent safety, eco-friendliness, abundance of resources, and cost-effectiveness. The application of biomass as a polymer separator is gradually expanding in order to promote a circular economy and sustainable materials. This research focuses on the usage of cellulose fibers obtained from coffee parchment (CP) waste. The extracted cellulose fibers are produced via both mechanical and chemical methods. The sustainable separators are fabricated through vacuum filtration using a polymer filter membrane. The impact of incorporating silica particles and varying silica content on the physical and electrochemical properties of a cellulose-based separator is examined. The optimum amount of silica integrated into the cellulose separator is determined to be 5 wt%. This content led to an effective distribution of the silica particles, enhanced wettability, and improved fire resistance. The ZIBs incorporating cellulose/recycled silica at 5 wt% demonstrate exceptional cycle stability and the highest capacity retention (190% after 400 cycles). This study emphasizes the promise of sustainable polymers as a clean energy resource, owing to their adaptability and simplicity of processing, serving as a substitute for synthetic polymers sourced from fossil fuels. Full article
(This article belongs to the Special Issue Sustainable Polymer Composites: Waste Reutilization and Valorization)
Show Figures

Graphical abstract

12 pages, 1465 KB  
Article
Development and Characterization of Emulsion-Templated Oleogels from Whey Protein and Spent Coffee Grounds Oil
by Aikaterini Papadaki, Ioanna Mandala and Nikolaos Kopsahelis
Foods 2025, 14(15), 2697; https://doi.org/10.3390/foods14152697 - 31 Jul 2025
Viewed by 818
Abstract
This study aimed to develop novel oleogels using whey protein (WP) and bacterial cellulose nanowhiskers (BCNW) to expand the potential applications of spent coffee grounds oil (SCGO). An emulsion-templated approach was employed to structure SCGO with varying WP:SCGO ratios, while the incorporation of [...] Read more.
This study aimed to develop novel oleogels using whey protein (WP) and bacterial cellulose nanowhiskers (BCNW) to expand the potential applications of spent coffee grounds oil (SCGO). An emulsion-templated approach was employed to structure SCGO with varying WP:SCGO ratios, while the incorporation of BCNW was evaluated as a potential stabilizing and reinforcing agent. All oleogels behaved as “true” gels (tan δ < 0.1). Rheological analysis revealed that higher WP content significantly increased gel strength, indicating enhanced structural integrity and deformation resistance. The addition of BCNW had a significant reinforcing effect in oleogels with a higher oil content (WP:SCGO 1:5), while its influence was less evident in formulations with lower oil content (WP:SCGO 1:2.5). Notably, depending on the WP:SCGO ratio, the storage modulus (G′) data showed that the oleogels resembled both hard (WP:SCGO 1:2.5) and soft (WP:SCGO 1:5) solid fats, highlighting their potential as fat replacers in a wide range of food applications. Consequently, this study presents a sustainable approach to structuring SCGO while tailoring its rheological behavior, aligning with global efforts to reduce food waste and develop sustainable food products. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

21 pages, 932 KB  
Article
Investigating Roasted Açaí (Euterpe oleracea) Seed Powder as a Coffee Substitute: Effects of Water Temperature, Milk Addition, and In Vitro Digestion on Phenolic Content and Antioxidant Capacity
by Rayssa Cruz Lima, Carini Aparecida Lelis, Jelmir Craveiro de Andrade and Carlos Adam Conte-Junior
Foods 2025, 14(15), 2696; https://doi.org/10.3390/foods14152696 - 31 Jul 2025
Viewed by 1552
Abstract
Açaí (Euterpe oleracea) seeds account for up to 95% of the fruit’s weight and are commonly discarded during pulp processing. Roasted açaí seed extract (RASE) has recently emerged as a caffeine-free coffee substitute, although its composition and functionality remain underexplored. This [...] Read more.
Açaí (Euterpe oleracea) seeds account for up to 95% of the fruit’s weight and are commonly discarded during pulp processing. Roasted açaí seed extract (RASE) has recently emerged as a caffeine-free coffee substitute, although its composition and functionality remain underexplored. This study characterized commercial açaí seed powder and evaluated the effect of temperature on the recovery of total phenolic content (TPC) in the aqueous extract using a Central Composite Rotatable Design (CCRD). An intermediate extraction condition (6.0 ± 0.5 g 100 mL−1 at 100 °C) was selected, resulting in 21.78 mg GAE/g TPC, 36.23 mg QE/g total flavonoids, and notable antioxidant capacity (FRAP: 183.33 µmol TE/g; DPPH: 23.06 mg TE/g; ABTS: 51.63 mg TE/g; ORAC: 31.46 µmol TE/g). Proton Nuclear Magnetic Resonance (1H NMR) analysis suggested the presence of amino acids, carbohydrates, and organic acids. During in vitro digestion, TPC decreased from 54.31 to 17.48 mg GAE 100 mL−1 when RASE was combined with goat milk. However, higher bioaccessibility was observed with skimmed (33%) and semi-skimmed (35%) cow milk. These findings highlight RASE as a phenolic-rich, antioxidant beverage with functional stability when prepared with boiling water. This is the first study to report the phytochemical profile of RASE and its interactions with different milk types, supporting its potential as a coffee alternative. Full article
(This article belongs to the Special Issue Fruit By-Products and Their Applications in Food Industry)
Show Figures

Graphical abstract

17 pages, 983 KB  
Article
Oak Acorns as Functional Foods: Antioxidant Potential and Safety Assessment
by Vesna Stankov Jovanović, Vladan Djurić, Violeta Mitić, Ana Barjaktarević, Snežana Cupara, Marija Ilić and Jelena Nikolić
Foods 2025, 14(14), 2486; https://doi.org/10.3390/foods14142486 - 16 Jul 2025
Viewed by 1129
Abstract
With the growing interest in natural and health-supporting foods, oak acorns (Quercus robur) are gaining renewed attention for their nutritional and antioxidant potential. This study explored how different processing methods affect bioactive compounds in three acorn-based products: raw acorn flour, roasted [...] Read more.
With the growing interest in natural and health-supporting foods, oak acorns (Quercus robur) are gaining renewed attention for their nutritional and antioxidant potential. This study explored how different processing methods affect bioactive compounds in three acorn-based products: raw acorn flour, roasted “coffee,” and washed-and-roasted “super coffee.” Extracts were obtained using methanol, acetone, and hexane to evaluate total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity via ABTS, DPPH, CUPRAC, FRAP, and TRP assays. Methanol proved to be the most effective solvent, extracting up to 66.53 mg GAE/g dw of phenolics in raw flour and 76.50 mg GAE/g dw in roasted “coffee,” reflecting a 15% increase in TPC after thermal treatment. However, the same treatment resulted in a 17% decrease in flavonoid content, from 181.5 mg RE/g dw in raw flour to 150.67 mg RE/g dw in “super coffee.” Antioxidant activity followed a similar pattern, with methanol extracts showing the highest values, up to 584 mg TE/g dw in the CUPRAC assay and 126.7 mg TE/g dw in ABTS. Safety was also assessed through the quantification of 16 priority polycyclic aromatic hydrocarbons (PAHs). The total PAH levels in the roasted “coffee” and “super coffee” samples were 222 ng/g dw and 290 ng/g dw, respectively. Importantly, PAH4 compounds, used as key safety indicators in EU regulations, were present in low concentrations, primarily as benzo[a]anthracene (34.3–39.8 ng/g), and none exceeded the maximum limits established for cocoa-based products. Benzo[a]pyrene, a major carcinogen, was not detected. The results confirm that acorns of Quercus robur, especially in their native flour form, are rich in antioxidants, naturally gluten-free, and safe when thermally processed, making them a strong candidate for use in functional foods. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

23 pages, 1821 KB  
Review
Beyond Peat: Wood Fiber and Two Novel Organic Byproducts as Growing Media—A Systematic Review
by Anna Elisa Sdao, Nazim S. Gruda and Barbara De Lucia
Plants 2025, 14(13), 1945; https://doi.org/10.3390/plants14131945 - 25 Jun 2025
Cited by 2 | Viewed by 1934
Abstract
Environmental concerns drive the search for sustainable organic alternatives in horticultural substrates. This review critically examines three agro-industry renewable byproducts—wood fiber, coffee silverskin, and brewer’s spent grain—as partial peat substitutes. We aimed to comprehensively analyze their origin, processing methods, current applications, and key [...] Read more.
Environmental concerns drive the search for sustainable organic alternatives in horticultural substrates. This review critically examines three agro-industry renewable byproducts—wood fiber, coffee silverskin, and brewer’s spent grain—as partial peat substitutes. We aimed to comprehensively analyze their origin, processing methods, current applications, and key physical, hydrological, and chemical properties relevant to horticultural use. In soilless culture, wood fiber can be used as a stand-alone substrate. When incorporated at 30–50% (v/v) in peat mixtures, it supports plant growth comparable to peat; however, higher proportions may restrict water and nutrient availability. Coffee silverskin demonstrates high water retention and nutrient content, but its inherent phytotoxicity requires pre-treatment (e.g., co-composting); at concentrations up to 20%, it shows promise for potted ornamental crops. Brewer’s spent grain is nutrient-rich but demands careful management due to its rapid decomposition and potential salinity issues; inclusion rates around 10% have shown beneficial effects. In conclusion, when used appropriately in blends, these bio-based byproducts represent viable alternatives to reduce peat dependence in vegetable and ornamental cultivation, contributing to more sustainable horticultural practices. Future research should optimize pre-treatment methods for coffee silverskin and brewer’s spent grain, investigate long-term stability in diverse cropping systems, and explore novel combinations with other organic waste streams to develop circular horticultural substrates. Full article
Show Figures

Graphical abstract

Back to TopTop