Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = cobweb disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1362 KiB  
Review
Bioprotection of the Button Mushroom from Pests and Diseases
by Dejan Marčić, Svetlana Milijašević-Marčić, Tanja Drobnjaković, Jelena Luković, Ljiljana Šantrić, Nikola Grujić and Ivana Potočnik
Agronomy 2025, 15(6), 1323; https://doi.org/10.3390/agronomy15061323 - 28 May 2025
Viewed by 557
Abstract
Commercial production of the button mushroom, Agaricus bisporus (Lange) Imbach, is threatened by various pests and mycopathogenic microorganisms. Sciarid flies (Sciaridae) of the genus Lycoriella are considered as major pests, while major pathogens include the fungi Lecanicillium fungicola (Preuss), Zare and Gams, Hypomyces perniciosus [...] Read more.
Commercial production of the button mushroom, Agaricus bisporus (Lange) Imbach, is threatened by various pests and mycopathogenic microorganisms. Sciarid flies (Sciaridae) of the genus Lycoriella are considered as major pests, while major pathogens include the fungi Lecanicillium fungicola (Preuss), Zare and Gams, Hypomyces perniciosus Magnus, Cladobotryum spp., and Trichoderma aggressivum Samuels & W. Gams, the causative agents of dry bubble, wet bubble, cobweb, and green mold diseases, respectively. Control of mushroom pests and diseases has long relied on synthetic chemical pesticides. Pesticide resistance and various health and environmental issues have created a need for sustainable and eco-friendly alternatives to the use of synthetic chemical pesticides for mushroom pest and disease control. The concept of bioprotection, which involves using biological control agents (BCAs) and biopesticide products, offers a viable alternative. The entomopathogenic nematode Steinernema feltiae (Filipjev) and predatory mite Stratiolaelaps scimitus (Womersley) are the most important invertebrate BCAs, while the bacteria Bacillus thuringiensis Berliner, B. amyloliquefaciens, and B. velezensis stand out as the most widely used microbial BCAs/biopesticides. Azadirachtin- and pyrethrum-based products are the most important biochemical biopesticides. Bioprotection agents require inclusion in the integrated pest and disease management (IPDM) programs in order to achieve their full effectiveness. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

20 pages, 5071 KiB  
Article
Genomic Insights into Cobweb Disease Resistance in Agaricus bisporus: A Comparative Analysis of Resistant and Susceptible Strains
by Guohui Cheng, Xiaoya An, Yueting Dai, Changtian Li and Yu Li
J. Fungi 2025, 11(3), 200; https://doi.org/10.3390/jof11030200 - 4 Mar 2025
Cited by 1 | Viewed by 1179
Abstract
Agaricus bisporus, a globally cultivated edible fungus, faces significant challenges from fungal diseases like cobweb disease caused by Cladobotryum mycophilum, which severely impacts yield. This study aimed to explore the genetic basis of disease resistance in A. bisporus by comparing the genomes [...] Read more.
Agaricus bisporus, a globally cultivated edible fungus, faces significant challenges from fungal diseases like cobweb disease caused by Cladobotryum mycophilum, which severely impacts yield. This study aimed to explore the genetic basis of disease resistance in A. bisporus by comparing the genomes of a susceptible strain (AB7) and a resistant strain (AB58). Whole-genome sequencing of AB7 was performed using PacBio Sequel SMRT technology, and comparative genomic analyses were conducted alongside AB58 and other fungal hosts of C. mycophilum. Comparative genomic analyses revealed distinct resistance features in AB58, including enriched regulatory elements, specific deletions in AB7 affecting carbohydrate-active enzymes (CAZymes), and unique cytochrome P450 (CYP) profiles. Notably, AB58 harbored more cytochrome P450 genes related to fatty acid metabolism and unique NI-siderophore synthetase genes, contributing to its enhanced environmental adaptability and disease resistance. Pan-genome analysis highlighted significant genetic diversity, with strain-specific genes enriched in pathways like aflatoxin biosynthesis and ether lipid metabolism, suggesting distinct evolutionary adaptations. These findings provide valuable insights into the genetic basis underlying disease resistance in A. bisporus, offering a foundation for future breeding strategies to improve fungal crop resilience. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

16 pages, 2964 KiB  
Article
Evaluating Two Fungicides, Prochloraz–Manganese Chloride Complex and Seboctylamine Acetate, to Control Cobweb Disease in White Button Mushroom Caused by Cladobotryum mycophilum
by Qiqi Chen, Yazhen Yuan, Gang Chen, Ning Li, Xinrong Li, Yufei Lan and Hongyan Wang
J. Fungi 2024, 10(10), 676; https://doi.org/10.3390/jof10100676 - 27 Sep 2024
Cited by 2 | Viewed by 1099
Abstract
Cobweb disease in white button mushroom (Agaricus bisporus) is a newly identified disease caused by Cladobotryum mycophilum in China. Currently, there are few highly effective and safe fungicides for controlling this disease in the field. This study assessed the fungicidal effect [...] Read more.
Cobweb disease in white button mushroom (Agaricus bisporus) is a newly identified disease caused by Cladobotryum mycophilum in China. Currently, there are few highly effective and safe fungicides for controlling this disease in the field. This study assessed the fungicidal effect of prochloraz–manganese chloride complex and seboctylamine acetate against C. mycophilum, as well as their ability to control cobweb disease. Additionally, the residues of these fungicides in the mycelium and the mushroom were evaluated. The extent of the fungicidal effect against the pathogen was determined based on the efficiency of crop production. The results revealed that, in addition to the potent inhibitory effect of prochloraz–manganese chloride complex on the hyphae of C. mycophilum, the domestically developed seboctylamine acetate exhibited high toxicity, inhibiting both mycelial growth and spore germination of C. mycophilum, with EC50 values of 0.990 mg/L and 0.652 mg/L, respectively. Furthermore, the application of the two chemical agents had no adverse effects on the mycelial growth and fruiting body growth of A. bisporus, and the residual amount of chemical agent was lower than the maximum residue limit standard. The field application results showed that 400 mg/L of prochloraz–manganese chloride complex and 6 mg/L of seboctylamine acetate resulted in 61.38% and 81.17% disease control respectively. This study presents efficient and safe fungicides for controlling cobweb disease in white button mushroom. Additionally, a residue determination analysis of the fungicide seboctylamine acetate in mushroom crops is described. Full article
(This article belongs to the Special Issue Plant Fungal Diseases and Crop Protection)
Show Figures

Figure 1

16 pages, 15083 KiB  
Article
Genome Sequencing of Three Pathogenic Fungi Provides Insights into the Evolution and Pathogenic Mechanisms of the Cobweb Disease on Cultivated Mushrooms
by Yufei Lan, Qianqian Cong, Qingwei Yu, Lin Liu, Xiao Cui, Xiumei Li, Qiao Wang, Shuting Yang, Hao Yu and Yi Kong
Foods 2024, 13(17), 2779; https://doi.org/10.3390/foods13172779 - 30 Aug 2024
Cited by 3 | Viewed by 1954
Abstract
Fungal diseases not only reduce the yield of edible mushrooms but also pose potential threats to the preservation and quality of harvested mushrooms. Cobweb disease, caused primarily by fungal pathogens from the Hypocreaceae family, is one of the most significant diseases affecting edible [...] Read more.
Fungal diseases not only reduce the yield of edible mushrooms but also pose potential threats to the preservation and quality of harvested mushrooms. Cobweb disease, caused primarily by fungal pathogens from the Hypocreaceae family, is one of the most significant diseases affecting edible mushrooms. Deciphering the genomes of these pathogens will help unravel the molecular basis of their evolution and identify genes responsible for pathogenicity. Here, we present high-quality genome sequences of three cobweb disease fungi: Hypomyces aurantius Cb-Fv, Cladobotryum mycophilum CB-Ab, and Cladobotryum protrusum CB-Mi, isolated from Flammulina velutipes, Agaricus bisporus, and Morchella importuna, respectively. The assembled genomes of H. aurantius, C. mycophilum, and C. protrusum are 33.19 Mb, 39.83 Mb, and 38.10 Mb, respectively. This is the first report of the genome of H. aurantius. Phylogenetic analysis revealed that cobweb disease pathogens are closely related and diverged approximately 17.51 million years ago. CAZymes (mainly chitinases, glucan endo-1,3-beta-glucosidases, and secondary metabolite synthases), proteases, KP3 killer proteins, lipases, and hydrophobins were found to be conserved and strongly associated with pathogenicity, virulence, and adaptation in the three cobweb pathogens. This study provides insights into the genome structure, genome organization, and pathogenicity of these three cobweb disease fungi, which will be a valuable resource for comparative genomics studies of cobweb pathogens and will help control this disease, thereby enhancing mushroom quality. Full article
Show Figures

Figure 1

16 pages, 4290 KiB  
Article
Characterization and Genome Analysis of Cladobotryum mycophilum, the Causal Agent of Cobweb Disease of Morchella sextelata in China
by Zhenghui Liu, Yunlong Cong, Frederick Leo Sossah, Yongzhong Lu, Jichuan Kang and Yu Li
J. Fungi 2023, 9(4), 411; https://doi.org/10.3390/jof9040411 - 27 Mar 2023
Cited by 14 | Viewed by 3503
Abstract
Cobweb disease is a fungal disease that can cause serious damage to edible mushrooms worldwide. To investigate cobweb disease in Morchella sextelata in Guizhou Province, China, we isolated and purified the pathogen responsible for the disease. Through morphological and molecular identification and pathogenicity [...] Read more.
Cobweb disease is a fungal disease that can cause serious damage to edible mushrooms worldwide. To investigate cobweb disease in Morchella sextelata in Guizhou Province, China, we isolated and purified the pathogen responsible for the disease. Through morphological and molecular identification and pathogenicity testing on infected M. sextelata, we identified Cladobotryum mycophilum as the cause of cobweb disease in this region. This is the first known occurrence of this pathogen causing cobweb disease in M. sextelata anywhere in the world. We then obtained the genome of C. mycophilum BJWN07 using the HiFi sequencing platform, resulting in a high-quality genome assembly with a size of 38.56 Mb, 10 contigs, and a GC content of 47.84%. We annotated 8428 protein-coding genes in the genome, including many secreted proteins, host interaction-related genes, and carbohydrate-active enzymes (CAZymes) related to the pathogenesis of the disease. Our findings shed new light on the pathogenesis of C. mycophilum and provide a theoretical basis for developing potential prevention and control strategies for cobweb disease. Full article
Show Figures

Figure 1

12 pages, 1091 KiB  
Article
The Role of Water Content in the Casing Layer for Mushroom Crop Production and the Occurrence of Fungal Diseases
by María J. Navarro, Jaime Carrasco and Francisco J. Gea
Agronomy 2021, 11(10), 2063; https://doi.org/10.3390/agronomy11102063 - 14 Oct 2021
Cited by 11 | Viewed by 4745
Abstract
Mushroom cultivation requires effective control of environmental cues to obtain the best yield and high quality. The impact of water content in the casing layer on mushroom yield and the incidence of two of the most important diseases in the mushroom growing farms, [...] Read more.
Mushroom cultivation requires effective control of environmental cues to obtain the best yield and high quality. The impact of water content in the casing layer on mushroom yield and the incidence of two of the most important diseases in the mushroom growing farms, dry bubble and cobweb diseases, was evaluated. Different initial water content in the casing and two alternative irrigation programs applied (light or moderate irrigation) were the agronomic parameters under study during five separate button mushroom crop trials. Higher initial humidity content in the casing layer reported a larger yield, with a fewer number of basidiomes but heavier, while no correlation to the dry matter content or the colour of the basidiomes was noted. The incidence of dry bubble disease was not conditioned by the water content of the casing layer, at the high moisture levels established in the study. In the case of Cladobotryum mycophilum, the lower moisture level of the casing layer reported more incidence of cobweb disease, and subsequently harmful yield losses. According to the results obtained, the right management of the moisture level in the casing materials could promote crop yield and preclude the significant impact of dry bubble and cobweb diseases. Full article
Show Figures

Figure 1

24 pages, 8882 KiB  
Review
Control of Fungal Diseases in Mushroom Crops while Dealing with Fungicide Resistance: A Review
by Francisco J. Gea, María J. Navarro, Milagrosa Santos, Fernando Diánez and Jaime Carrasco
Microorganisms 2021, 9(3), 585; https://doi.org/10.3390/microorganisms9030585 - 12 Mar 2021
Cited by 63 | Viewed by 13457
Abstract
Mycoparasites cause heavy losses in commercial mushroom farms worldwide. The negative impact of fungal diseases such as dry bubble (Lecanicillium fungicola), cobweb (Cladobotryum spp.), wet bubble (Mycogone perniciosa), and green mold (Trichoderma spp.) constrains yield and harvest [...] Read more.
Mycoparasites cause heavy losses in commercial mushroom farms worldwide. The negative impact of fungal diseases such as dry bubble (Lecanicillium fungicola), cobweb (Cladobotryum spp.), wet bubble (Mycogone perniciosa), and green mold (Trichoderma spp.) constrains yield and harvest quality while reducing the cropping surface or damaging basidiomes. Currently, in order to fight fungal diseases, preventive measurements consist of applying intensive cleaning during cropping and by the end of the crop cycle, together with the application of selective active substances with proved fungicidal action. Notwithstanding the foregoing, the redundant application of the same fungicides has been conducted to the occurrence of resistant strains, hence, reviewing reported evidence of resistance occurrence and introducing unconventional treatments is worthy to pave the way towards the design of integrated disease management (IDM) programs. This work reviews aspects concerning chemical control, reduced sensitivity to fungicides, and additional control methods, including genomic resources for data mining, to cope with mycoparasites in the mushroom industry. Full article
(This article belongs to the Special Issue Fungicide Resistance in Plant Pathogens)
Show Figures

Figure 1

16 pages, 2748 KiB  
Article
Genomic Features of Cladobotryum dendroides, Which Causes Cobweb Disease in Edible Mushrooms, and Identification of Genes Related to Pathogenicity and Mycoparasitism
by Rong Xu, Xiaochen Liu, Bing Peng, Peibin Liu, Zhuang Li, Yueting Dai and Shijun Xiao
Pathogens 2020, 9(3), 232; https://doi.org/10.3390/pathogens9030232 - 20 Mar 2020
Cited by 18 | Viewed by 5138
Abstract
Cladobotryum dendroides, which causes cobweb disease in edible mushrooms, is one of the major fungal pathogens. Our previous studies focused on the genetic and morphological characterization of this fungus, as well as its pathogenicity and the identification of appropriate fungicides. However, little [...] Read more.
Cladobotryum dendroides, which causes cobweb disease in edible mushrooms, is one of the major fungal pathogens. Our previous studies focused on the genetic and morphological characterization of this fungus, as well as its pathogenicity and the identification of appropriate fungicides. However, little is known about the genome characters, pathogenic genes, and molecular pathogenic mechanisms of C. dendroides. Herein, we reported a high-quality de novo genomic sequence of C. dendroides and compared it with closely-related fungi. The assembled C. dendroides genome was 36.69 Mb, consisting of eight contigs, with an N50 of 4.76 Mb. This genome was similar in size to that of C. protrusum, and shared highly conserved syntenic blocks and a few inversions with C. protrusum. Phylogenetic analysis revealed that, within the Hypocreaceae, Cladobotryum was closer to Mycogone than to Trichoderma, which is consistent with phenotypic evidence. A significant number of the predicted expanded gene families were strongly associated with pathogenicity, virulence, and adaptation. Our findings will be instrumental for the understanding of fungi–fungi interactions, and for exploring efficient management strategies to control cobweb disease. Full article
Show Figures

Figure 1

13 pages, 982 KiB  
Article
Screening and Evaluation of Essential Oils from Mediterranean Aromatic Plants against the Mushroom Cobweb Disease, Cladobotryum mycophilum
by Francisco J. Gea, María J. Navarro, Mila Santos, Fernando Diánez and David Herraiz-Peñalver
Agronomy 2019, 9(10), 656; https://doi.org/10.3390/agronomy9100656 - 18 Oct 2019
Cited by 14 | Viewed by 3715
Abstract
The main aim of this study was to evaluate the use of essential oils (EOs) as an alternative to synthetic fungicides used in the control of cobweb disease of button mushroom (Agaricus bisporus) caused by Cladobotryum mycophilum. The EOs used [...] Read more.
The main aim of this study was to evaluate the use of essential oils (EOs) as an alternative to synthetic fungicides used in the control of cobweb disease of button mushroom (Agaricus bisporus) caused by Cladobotryum mycophilum. The EOs used were obtained by hydrodistillation from five Mediterranean aromatic species (Lavandula × intermedia, Salvia lavandulifolia, Satureja montana, Thymus mastichina, and Thymus vulgaris), analyzed by gas chromatography, and tested in vitro for their antifungal activity against C. mycophilum. In vitro bioassays showed that the EOs obtained from T. vulgaris and S. montana (ED50 = 35.5 and 42.8 mg L−1, respectively) were the most effective EOs for inhibiting the mycelial growth of C. mycophilum, and were also the most selective EOs between C. mycophilum and A. bisporus. The in vivo efficacy of T. vulgaris and S. montana EOs at two different concentrations (0.5 and 1%) were evaluated in two mushroom growing trials with C. mycophilum inoculation. The treatments involving T. vulgaris and S. montana EOs at the higher dose (1% concentration) were as effective as fungicide treatment. The effect of these EOs on mushroom productivity was tested in a mushroom cropping trial without inoculation. They had a strong fungitoxic effect at the first flush. However, a compensatory effect was observed by the end of the crop cycle and no differences were observed in biological efficiency between treatments. The main compounds found were carvacrol and p-cymene for S. montana, and p-cymene and thymol for T. vulgaris. These results suggest that T. vulgaris and S. montana EOs may be useful products to manage cobweb disease if used as part of an integrated pest management (IPM) program. Full article
(This article belongs to the Special Issue Etiology and Control of Crop Diseases)
Show Figures

Figure 1

18 pages, 1879 KiB  
Article
Genome Sequencing of Cladobotryum protrusum Provides Insights into the Evolution and Pathogenic Mechanisms of the Cobweb Disease Pathogen on Cultivated Mushroom
by Frederick Leo Sossah, Zhenghui Liu, Chentao Yang, Benjamin Azu Okorley, Lei Sun, Yongping Fu and Yu Li
Genes 2019, 10(2), 124; https://doi.org/10.3390/genes10020124 - 8 Feb 2019
Cited by 23 | Viewed by 6622
Abstract
Cladobotryum protrusum is one of the mycoparasites that cause cobweb disease on cultivated edible mushrooms. However, the molecular mechanisms of evolution and pathogenesis of C. protrusum on mushrooms are largely unknown. Here, we report a high-quality genome sequence of C. protrusum using the [...] Read more.
Cladobotryum protrusum is one of the mycoparasites that cause cobweb disease on cultivated edible mushrooms. However, the molecular mechanisms of evolution and pathogenesis of C. protrusum on mushrooms are largely unknown. Here, we report a high-quality genome sequence of C. protrusum using the single-molecule, real-time sequencing platform of PacBio and perform a comparative analysis with closely related fungi in the family Hypocreaceae. The C. protrusum genome, the first complete genome to be sequenced in the genus Cladobotryum, is 39.09 Mb long, with an N50 of 4.97 Mb, encoding 11,003 proteins. The phylogenomic analysis confirmed its inclusion in Hypocreaceae, with its evolutionary divergence time estimated to be ~170.1 million years ago. The genome encodes a large and diverse set of genes involved in secreted peptidases, carbohydrate-active enzymes, cytochrome P450 enzymes, pathogen–host interactions, mycotoxins, and pigments. Moreover, C. protrusum harbors arrays of genes with the potential to produce bioactive secondary metabolites and stress response-related proteins that are significant for adaptation to hostile environments. Knowledge of the genome will foster a better understanding of the biology of C. protrusum and mycoparasitism in general, as well as help with the development of effective disease control strategies to minimize economic losses from cobweb disease in cultivated edible mushrooms. Full article
(This article belongs to the Special Issue Advances in Single Molecule, Real-Time (SMRT) Sequencing)
Show Figures

Figure 1

18 pages, 4613 KiB  
Article
Analysis of the Mitochondrial Genome in Hypomyces aurantius Reveals a Novel Twintron Complex in Fungi
by Youjin Deng, Qihui Zhang, Ray Ming, Longji Lin, Xiangzhi Lin, Yiying Lin, Xiao Li, Baogui Xie and Zhiqiang Wen
Int. J. Mol. Sci. 2016, 17(7), 1049; https://doi.org/10.3390/ijms17071049 - 30 Jun 2016
Cited by 26 | Viewed by 8085
Abstract
Hypomyces aurantius is a mycoparasite that causes cobweb disease, a most serious disease of cultivated mushrooms. Intra-species identification is vital for disease control, however the lack of genomic data makes development of molecular markers challenging. Small size, high copy number, and high mutation [...] Read more.
Hypomyces aurantius is a mycoparasite that causes cobweb disease, a most serious disease of cultivated mushrooms. Intra-species identification is vital for disease control, however the lack of genomic data makes development of molecular markers challenging. Small size, high copy number, and high mutation rate of fungal mitochondrial genome makes it a good candidate for intra and inter species differentiation. In this study, the mitochondrial genome of H. H.a0001 was determined from genomic DNA using Illumina sequencing. The roughly 72 kb genome shows all major features found in other Hypocreales: 14 common protein genes, large and small subunit rRNAs genes and 27 tRNAs genes. Gene arrangement comparison showed conserved gene orders in Hypocreales mitochondria are relatively conserved, with the exception of Acremonium chrysogenum and Acremonium implicatum. Mitochondrial genome comparison also revealed that intron length primarily contributes to mitogenome size variation. Seventeen introns were detected in six conserved genes: five in cox1, four in rnl, three in cob, two each in atp6 and cox3, and one in cox2. Four introns were found to contain two introns or open reading frames: cox3-i2 is a twintron containing two group IA type introns; cox2-i1 is a group IB intron encoding two homing endonucleases; and cox1-i4 and cox1-i3 both contain two open reading frame (ORFs). Analyses combining secondary intronic structures, insertion sites, and similarities of homing endonuclease genes reveal two group IA introns arranged side by side within cox3-i2. Mitochondrial data for H. aurantius provides the basis for further studies relating to population genetics and species identification. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop