Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = cobalt–gold

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 17243 KB  
Article
Colors and Brilliance in the Wall Mosaic Assemblage of the Rotunda in Thessaloniki: A Physicochemical Investigation of the Glass Tesserae
by Maria Kyranoudi, Lamprini Malletzidou, Eleni Pavlidou, George Vourlias and Konstantinos Chrissafis
Heritage 2025, 8(9), 393; https://doi.org/10.3390/heritage8090393 - 19 Sep 2025
Viewed by 905
Abstract
The Rotunda in Thessaloniki, Greece, preserves in its interior a magnificent wall mosaic assemblage of unique inspiration and beauty. Thirty-six (36) glass tesserae, blue, green, yellow, brown, black, gold and silver in color, were examined for the first time via UV-Vis reflectance spectroscopy, [...] Read more.
The Rotunda in Thessaloniki, Greece, preserves in its interior a magnificent wall mosaic assemblage of unique inspiration and beauty. Thirty-six (36) glass tesserae, blue, green, yellow, brown, black, gold and silver in color, were examined for the first time via UV-Vis reflectance spectroscopy, scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction (XRD) analysis, in order to investigate the base glass composition, and their technological and morphological features. Despite the heterogeneity observed in the glass composition, the results indicated similarities with other Early Christian and Byzantine wall mosaics in the use of colorants, opacifiers and decolorizers. Cobalt, copper, iron and manganese along with lead and tin compounds are responsible for the blue, green, yellow, brown and black colors. Tin-based opacifiers and bone ash contribute to the glass opacity. The use of different glass recipes and opacifiers in the Rotunda’s assemblage reflects the transition from the Roman glass tradition to the Byzantine glass production of the fourth and the fifth century in the eastern Mediterranean. Full article
(This article belongs to the Special Issue Recent Progress in Cultural Heritage Diagnostics)
Show Figures

Figure 1

40 pages, 2388 KB  
Review
A Review on Sulfonamide Complexes with Metals: Their Pharmacological Potential as Anticancer Drugs
by Przemysław Rozbicki and Danuta Branowska
Pharmaceuticals 2025, 18(9), 1414; https://doi.org/10.3390/ph18091414 - 19 Sep 2025
Viewed by 668
Abstract
Sulfonamides represent a versatile class of biologically active compounds, best known for their antibacterial activity, but increasingly investigated for their potential in oncology. Free sulfonamides themselves display cytotoxic properties; however, coordination with metal ions often enhances both selectivity and potency, while also introducing [...] Read more.
Sulfonamides represent a versatile class of biologically active compounds, best known for their antibacterial activity, but increasingly investigated for their potential in oncology. Free sulfonamides themselves display cytotoxic properties; however, coordination with metal ions often enhances both selectivity and potency, while also introducing new mechanisms of action. Although numerous studies have reported sulfonamide–metal complexes with anticancer activity, a systematic overview linking biological properties to the central metal atom has been lacking. This review summarizes current research on sulfonamide complexes with transition metals and selected main-group elements, focusing on their pharmacological potential as anticancer agents. The compounds discussed include complexes of titanium, chromium, manganese, rhenium, ruthenium, osmium, iridium, palladium, platinum, copper, silver, gold, iron, cobalt, nickel, uranium, calcium, magnesium and bismuth. For each group, representative structures are presented along with cytotoxicity data against cancer cell lines, comparisons with reference drugs such as for example cisplatin, and where relevant, studies on carbonic anhydrase inhibition. The survey of available data demonstrates that many sulfonamide–metal complexes show cytotoxic activity comparable to or greater than existing chemotherapeutic agents, while in some cases exhibiting reduced toxicity toward non-cancerous cells. These findings highlight the promise of sulfonamide–metal complexes as a fertile area for anticancer drug development and provide a framework for future design strategies. This review covers the research on anti-cancer activity of sulfonamide complexes during the years 2007–2025. Full article
(This article belongs to the Special Issue Advances in the Synthesis and Application of Heterocyclic Compounds)
Show Figures

Graphical abstract

14 pages, 1849 KB  
Article
Isolation, Testing, and Adaptation of Bacteria to Bioleach Metals from Pyrite
by Anna Choińska-Pulit, Justyna Sobolczyk-Bednarek and Marcin Kania
Minerals 2025, 15(9), 946; https://doi.org/10.3390/min15090946 - 4 Sep 2025
Viewed by 597
Abstract
Bioleaching, mediated by selected microflora, offers a more environmentally friendly and cost-effective alternative to traditional mining techniques by transforming metals from sulfide ores into water-soluble forms. Pyrite ores often contain valuable rare or noble metals, such as gold (Au), silver (Ag), nickel (Ni), [...] Read more.
Bioleaching, mediated by selected microflora, offers a more environmentally friendly and cost-effective alternative to traditional mining techniques by transforming metals from sulfide ores into water-soluble forms. Pyrite ores often contain valuable rare or noble metals, such as gold (Au), silver (Ag), nickel (Ni), and cobalt (Co), which can be leached through the metabolic activity of specific chemoautotrophic microorganisms. This study investigates the adaptation process of the Acidithiobacillus ferriphilus bacterial strain, originally isolated from acid mine drainage (AMD), for the bioleaching of pyrite. The progress of the bioleaching process was evidenced by the release of iron (3.6 mg/mL) and significant quantities of gold (0.21 mg/L, equivalent to 3 g/t) into the post-culture liquid. The results indicate that the most effective bioleaching was achieved during the final adaptation stage, utilizing a medium with 7% pyrite content and a 0.75% supplement of an easily accessible energy source in the form of iron sulfate. These findings confirm the potential of the A. ferriphilus strain for pyrite bioleaching. Full article
(This article belongs to the Special Issue Advances in the Theory and Technology of Biohydrometallurgy)
Show Figures

Figure 1

31 pages, 6393 KB  
Review
Electrochemical Sensors for Chloramphenicol: Advances in Food Safety and Environmental Monitoring
by Matiar M. R. Howlader, Wei-Ting Ting and Md Younus Ali
Pharmaceuticals 2025, 18(9), 1257; https://doi.org/10.3390/ph18091257 - 24 Aug 2025
Cited by 1 | Viewed by 1191
Abstract
Excessive use of antibiotics can lead to antibiotic resistance, posing a significant threat to human health and the environment. Chloramphenicol (CAP), once widely used, has been banned in many regions for over 20 years due to its toxicity. Detecting CAP residues in food [...] Read more.
Excessive use of antibiotics can lead to antibiotic resistance, posing a significant threat to human health and the environment. Chloramphenicol (CAP), once widely used, has been banned in many regions for over 20 years due to its toxicity. Detecting CAP residues in food products is crucial for regulating safe use and preventing unnecessary antibiotic exposure. Electrochemical sensors are low-cost, sensitive, and easily detect CAP. This paper reviews recent research on electrochemical sensors for CAP detection, with a focus on the materials and fabrication techniques employed. The sensors are evaluated based on key performance parameters, including limit of detection, sensitivity, linear range, selectivity, and the ability to perform simultaneous detection. Specifically, we highlight the use of metal and carbon-based electrode modifications, including gold nanoparticles (AuNPs), nickel–cobalt (Ni-Co) hollow nano boxes, platinum–palladium (Pt-Pd), graphene (Gr), and covalent organic frameworks (COFs), as well as molecularly imprinted polymers (MIPs) such as polyaniline (PANI) and poly(o-phenylenediamine) (P(o-PD)). The mechanisms by which these modifications enhance CAP detection are discussed, including improved conductivity, increased surface-to-volume ratio, and enhanced binding site availability. The reviewed sensors demonstrated promising results, with some exhibiting high selectivity and sensitivity, and the effective detection of CAP in complex sample matrices. This review aims to support the development of next-generation sensors for antibiotic monitoring and contribute to global efforts to combat antibiotic resistance. Full article
(This article belongs to the Special Issue Application of Biosensors in Pharmaceutical Research)
Show Figures

Graphical abstract

16 pages, 2520 KB  
Article
Infrared Spectroscopic Determination of Strongly Bound Cyanides in Water
by Rihab Masmoudi and Carl P. Tripp
Spectrosc. J. 2025, 3(3), 21; https://doi.org/10.3390/spectroscj3030021 - 17 Jul 2025
Viewed by 572
Abstract
Cyanide species pose an environmental concern as they inhibit important biological processes in humans and aquatic systems. There is more focus on free-CN and weak acid dissociables cyanide as hazardous species compared to strong acid dissociables due to their higher reactivity and toxicity. [...] Read more.
Cyanide species pose an environmental concern as they inhibit important biological processes in humans and aquatic systems. There is more focus on free-CN and weak acid dissociables cyanide as hazardous species compared to strong acid dissociables due to their higher reactivity and toxicity. However, the strong acid dissociables cyanide also poses health concerns as it liberates free-CN under ultraviolet irradiation or when present in acidic solutions. Detection of strongly acid dissociables cyanide typically requires its digestion in acidic solutions and measurement of the gaseous HCN produced. A simple infrared spectroscopic method is described here to speciate and quantify three strong acid dissociables cyanide: [Fe(CN)6]3−, [Co(CN)6]3−, and [Au(CN)2]. The strategy involves precipitating the strongly acid dissociables cyanide using cetyltrimethylethylammonium bromide, capturing the precipitate on a polyethylene membrane, and quantifying the individual strongly acid dissociables cyanide from the IR spectrum recorded in transmission mode through the membrane. Controlling the particle diameter to be in the range of 0.2–2 µm is important. Particles less than 0.2 µm pass through the membrane, whereas particles larger than about 2 µm lead to nonlinearity in quantification. The average %recoveries for [Fe(CN)6]3−, [Co(CN)6]3−, and [Au(CN)2] were 100% (%RSD = 7), 91% (%RSD = 7), and 101% (%RSD = 8), respectively. The detection limit for [Fe(CN)6]3− and [Co(CN)6]3− were both 20 ppb CN, whereas [Au(CN)2] was 100 ppb CN. The detection range was 20–750 ppb CN for [Fe(CN)6]3− and [Co(CN)6]3− and 100–750 ppb CN for [Au(CN)2] with a linear regression of R2 = 0.999–1.000. Full article
Show Figures

Figure 1

20 pages, 3729 KB  
Article
Au-Co Alloy Nanoparticles Supported on ZrO2 as an Efficient Photocatalyst for the Deoxygenation of Styrene Oxide
by Hashini T. Abeyrathna, Chamodi L. Fernando Thibiripalage, Huai Yong Zhu and Eric R. Waclawik
Nanomaterials 2025, 15(13), 957; https://doi.org/10.3390/nano15130957 - 20 Jun 2025
Viewed by 749
Abstract
Epoxide deoxygenation by photocatalysis was explored using Au-Co alloy nanoparticles supported on ZrO2 under visible light irradiation. The active metals were deposited on commercial monoclinic ZrO2 by chemical impregnation to achieve controlled mass ratios of gold and cobalt in the alloy [...] Read more.
Epoxide deoxygenation by photocatalysis was explored using Au-Co alloy nanoparticles supported on ZrO2 under visible light irradiation. The active metals were deposited on commercial monoclinic ZrO2 by chemical impregnation to achieve controlled mass ratios of gold and cobalt in the alloy nanoparticles. The characterisation of the alloy nanoparticles confirmed the technique produced an average particle size of 4.50 ± 0.29 nm. Catalysts containing pure 3% Au and different Au-Co metal ratios attached to the ZrO2 induced the deoxygenation of styrene oxide in an isopropanol solvent medium. Only 20 mg of pure Au/ZrO2 catalyst gave a 99% yield of styrene at an 80 °C temperature within 16 h under visible light irradiation (400–800 nm). Au-Co/ZrO2 catalysts generally induced conversion to styrene under the same conditions below 60 °C. Above 60 °C, a new reaction pathway was observed to favour a different product over Au-Co/ZrO2, which was identified as styrene glycol. This study developed a new approach to the synthesis of styrene glycol, a molecule that has many useful applications in the chemical and polymer industries. Surface-enhanced Raman spectroscopic (SERS) studies and electron paramagnetic resonance spectroscopic (EPR) studies identified changes in the reaction mechanism and pathway upon increasing the cobalt molar ratio in the Au-Co alloy catalysts. Full article
Show Figures

Graphical abstract

20 pages, 10850 KB  
Article
Microminerals as Complimentary Guides into Metallogeny and the Ore-Forming Potential of Igneous Rocks: Evidence from the Stanovoy Superterrane (Russian Far East)
by Valeria Krutikova, Nikolai Berdnikov and Pavel Kepezhinskas
Minerals 2025, 15(5), 504; https://doi.org/10.3390/min15050504 - 9 May 2025
Viewed by 609
Abstract
Numerous mineral microinclusions discovered in the Triassic Ildeus mafic–ultramafic intrusion are dominated by base metal sulfides, gold, silver, and their alloys, as well as rare earth element (REE) minerals. These mineral microinclusions were formed through both the magmatic differentiation of the Ildeus intrusion [...] Read more.
Numerous mineral microinclusions discovered in the Triassic Ildeus mafic–ultramafic intrusion are dominated by base metal sulfides, gold, silver, and their alloys, as well as rare earth element (REE) minerals. These mineral microinclusions were formed through both the magmatic differentiation of the Ildeus intrusion and the multi-stage interaction of intrusive rocks with late-magmatic, post-magmatic and post-collisional fluids. A comparison of the results of our microinclusions study with ore mineralization discovered within the Ildeus intrusion suggests that microinclusion assemblages in igneous rocks are, in some cases, precursors of potentially economic mineralization. In the case of the Ildeus rocks, sulfide microinclusions correspond to potentially economic disseminated nickel–cobalt sulfide ores, while microinclusions of gold and its alloys correlate with intrusion-hosted, erratic gold mineralization. The occurrence of silver and rare earth element minerals in Ildeus plutonic rocks indicates the possible presence of silver and REE mineralization, which is supported by sub-economic whole-rock silver and REE grades in parts of the Ildeus intrusion. The results of our investigation suggest that studies of mineral microinclusions in magmatic rocks may be useful in the evaluation of their metallogenic specialization and ore-forming potential and could possibly be utilized as an additional prospecting tool in the regional exploration for precious, base, and rare metals. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Graphical abstract

21 pages, 2681 KB  
Review
Exploring Metal- and Porphyrin-Modified TiO2-Based Photocatalysts for Efficient and Sustainable Hydrogen Production
by Dimitrios Rafail Bitsos, Apostolos Salepis, Emmanouil Orfanos, Athanassios G. Coutsolelos, Ramonna I. Kosheleva, Athanassios C. Mitropoulos and Kalliopi Ladomenou
Inorganics 2025, 13(4), 121; https://doi.org/10.3390/inorganics13040121 - 11 Apr 2025
Cited by 4 | Viewed by 3453
Abstract
Photocatalytic H2 production is one of the most promising approaches for sustainable energy. The literature presents a plethora of carefully designed systems aimed at harnessing solar energy and converting it into chemical energy. However, the main drawback of the reported photocatalysts is [...] Read more.
Photocatalytic H2 production is one of the most promising approaches for sustainable energy. The literature presents a plethora of carefully designed systems aimed at harnessing solar energy and converting it into chemical energy. However, the main drawback of the reported photocatalysts is their stability. Thus, the development of a cost-effective and stable photocatalyst, suitable for real-world applications remains a challenge. An ideal photocatalyst for H2 production must possess appropriate band-edge energy positions, an effective sacrificial agent, and a suitable cocatalyst. Among the various photocatalysts studied, TiO2 stands out due to its stability, abundance, and non-toxicity. However, its efficiency in the visible spectrum is limited by its wide bandgap. Metal doping is an effective strategy to enhance electron–hole separation and improve light absorption efficiency, thereby boosting H2 synthesis. Common metal cocatalysts used as TiO2 dopants include platinum (Pt), gold (Au), copper (Cu), nickel (Ni), cobalt (Co), ruthenium (Ru), iron (Fe), and silver (Ag), as well as bimetallic combinations such as Ni-Fe, Ni-Cu, Nb-Ta, and Ni-Pt. In all cases, doped TiO2 exhibits higher H2 production performance compared to undoped TiO2, as metals provide additional reaction sites and enhance charge separation. The use of bimetallic dopants further optimizes the hydrogen evolution reaction. Additionally, porphyrins, with their strong visible light absorption and efficient electron transfer properties, have demonstrated potential in TiO2 photocatalysis. Their incorporation expands the photocatalyst’s light absorption range into the visible spectrum, enhancing H2 production efficiency. This review paper explores the principles and advancements in metal- and porphyrin-doped TiO2 photocatalysts, highlighting their potential for sustainable hydrogen production. Full article
(This article belongs to the Special Issue Featured Papers in Inorganic Materials 2025)
Show Figures

Graphical abstract

23 pages, 5906 KB  
Article
Design and Performance Assessment of Biocompatible Capacitive Pressure Sensors with Circular and Square Geometries Using ANSYS Workbench
by Md Shams Tabraiz Alam, Shabana Urooj, Abdul Quaiyum Ansari and Areiba Arif
Sensors 2025, 25(8), 2423; https://doi.org/10.3390/s25082423 - 11 Apr 2025
Cited by 1 | Viewed by 2950
Abstract
This research outlines the design of capacitive pressure sensors fabricated from three biocompatible materials, featuring both circular and square geometries. The sensors were structured with a dielectric layer positioned between gold-plated electrodes at the top and bottom. Their performance was assessed through simulations [...] Read more.
This research outlines the design of capacitive pressure sensors fabricated from three biocompatible materials, featuring both circular and square geometries. The sensors were structured with a dielectric layer positioned between gold-plated electrodes at the top and bottom. Their performance was assessed through simulations conducted with ANSYS Workbench. Of the various sensor configurations tested, the circular design that included two crescent-shaped slots and a 20 µm thick PDMS dielectric material demonstrated the highest sensitivity of 10.68 fF/mmHg. This study further investigated the relationship between resonant frequency shifts and arterial blood pressure, revealing an exceptionally linear response, as evidenced by a Pearson’s correlation coefficient of −0.99986 and an R-squared value of 0.99972. This confirmed the sensor’s applicability for obtaining precise blood pressure measurements. Additionally, a 3 × 30 mm cobalt–chromium (Co-Cr) stent was obtained, and its inductance was measured using an impedance analyzer. Full article
(This article belongs to the Special Issue Advances in E-health, Biomedical Sensing, Biosensing Applications)
Show Figures

Figure 1

25 pages, 11855 KB  
Review
Effective Factors for Optimizing Metallophthalocyanine-Based Optoelectronic Devices: Surface—Molecule Interactions
by Sakineh Akbari Nia, Aleksandra Tomaszowska, Paulina Powroźnik and Maciej Krzywiecki
Molecules 2025, 30(3), 471; https://doi.org/10.3390/molecules30030471 - 22 Jan 2025
Cited by 1 | Viewed by 1534
Abstract
As a promising structure for fabricating inorganic—organic-based optoelectronic devices, metal—metallophthalocyanine (MPc) hybrid layers are highly important to be considered. The efficient charge injection and transport across the metal/MPc interface are strictly dependent on the precise molecular orientation of the MPcs. Therefore, the efficiency [...] Read more.
As a promising structure for fabricating inorganic—organic-based optoelectronic devices, metal—metallophthalocyanine (MPc) hybrid layers are highly important to be considered. The efficient charge injection and transport across the metal/MPc interface are strictly dependent on the precise molecular orientation of the MPcs. Therefore, the efficiency of MPc-based optoelectronic devices strictly depends on the adsorption and orientation of the organic MPc on the inorganic metal substrate. The current review aims to explore the effect of the terminated atoms or surface atoms as an internal stimulus on molecular adsorption and orientation. Here, we investigate the adsorption of five different phthalocyanine molecules—free-based phthalocyanine (H2Pc), copper phthalocyanine (CuPc), iron phthalocyanine (FePc), cobalt phthalocyanine (CoPc), vanadyl phthalocyanine (VOPc)—on three metallic substrates: gold (Au), silver (Ag), and copper (Cu). This topic can guide new researchers to find out how molecular adsorbance and orientation determine the electronic structure by considering the surface–molecule interactions. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Graphical abstract

25 pages, 13909 KB  
Article
Chemical and Vibrational Criteria for Identifying Early Sèvres Factory Porcelain Productions
by Philippe Colomban, Gulsu Simsek Franci, Mareike Gerken, Michele Gironda and Viviane Mesqui
Ceramics 2024, 7(4), 1905-1927; https://doi.org/10.3390/ceramics7040120 - 11 Dec 2024
Cited by 2 | Viewed by 1830
Abstract
Thirteen porcelains assigned to Sèvres factory productions and a few references to the other contemporary factories (Chantilly, Limoges, and Venice) have been studied on-site with a portable X-ray fluorescence (pXRF) spectrometer in order to control the provenance attribution. Characteristic XRF signals of major [...] Read more.
Thirteen porcelains assigned to Sèvres factory productions and a few references to the other contemporary factories (Chantilly, Limoges, and Venice) have been studied on-site with a portable X-ray fluorescence (pXRF) spectrometer in order to control the provenance attribution. Characteristic XRF signals of major elements (Si, Ca, K, Pb) and minor/trace (Au, Bi, As, Ti, Co, Cu, Zn, Ni, Y, Zr, Rb, and Sr) elements are compared for the paste, blue mark, various glazed (colored) areas, and gilding. The comparison of peak intensities clearly distinguishes different types of hard- and soft-paste porcelain, made from either similar or distinct raw materials. The analysis of transition elements associated with cobalt identifies three types of cobalt blue and reveals that du Barry-style decoration on certain artifacts was typical of 19th-century production. On-site comprehensive studies of the two famous Etruscan-style breast bowls from Rambouillet Castle dairy, using pXRF and Raman spectroscopy, confirm the use of soft-paste porcelain for the cup and hard-paste for its support, providing detailed information on the use of gold nanoparticles in the burgundy-colored decoration. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Figure 1

8 pages, 422 KB  
Proceeding Paper
Advancing Circular Supply Chain Management for Mobile Phones: Investigating the Minimization of E-Waste and Its Environmental Consequences
by Vyapil S. Patel, Apurv M. Vasani, Ammar N. Patel, Gaurav A. Viradiya and Sharfuddin Ahmed Khan
Eng. Proc. 2024, 76(1), 35; https://doi.org/10.3390/engproc2024076035 - 22 Oct 2024
Viewed by 1985
Abstract
Electronic waste is a global problem in our tech-driven age and is becoming more and more so as new devices are released and tonnes of electronics are thrown away. The objective of this study is to determine which materials are essential in electronic [...] Read more.
Electronic waste is a global problem in our tech-driven age and is becoming more and more so as new devices are released and tonnes of electronics are thrown away. The objective of this study is to determine which materials are essential in electronic waste, to evaluate the environmental impact of those materials, and to investigate the ways in which implementing a circular supply chain and circular economy principles can support economic expansion. This study identifies valuable materials like gold, silver, copper, palladium, cobalt, mercury, and lithium using the Prisma approach and a quantitative method. Mercury is found to have a significant environmental impact. With its special insights into material disposal and environmental consequences, the practical application highlights profitability and material waste reduction in multinational cell phone manufacturing companies. Full article
Show Figures

Figure 1

16 pages, 1048 KB  
Review
Analytical Insights into Methods for Measuring Ischemia-Modified Albumin
by Stefano Zoroddu, Angelo Zinellu, Ciriaco Carru and Salvatore Sotgia
Molecules 2024, 29(19), 4636; https://doi.org/10.3390/molecules29194636 - 29 Sep 2024
Cited by 5 | Viewed by 2383
Abstract
Ischemia-modified albumin (IMA) has emerged as a pivotal biomarker for the early detection of ischemic conditions, particularly myocardial ischemia, where timely diagnosis is crucial for effective intervention. This review provides an overview of the analytical methods for assessment of IMA, including Albumin Cobalt [...] Read more.
Ischemia-modified albumin (IMA) has emerged as a pivotal biomarker for the early detection of ischemic conditions, particularly myocardial ischemia, where timely diagnosis is crucial for effective intervention. This review provides an overview of the analytical methods for assessment of IMA, including Albumin Cobalt Binding (ACB), Albumin Copper Binding (ACuB), Enzyme-Linked Immunosorbent Assay (ELISA), new techniques such as liquid crystal biosensors (LCB), quantum dot coupled X-ray fluorescence spectroscopy (Q-XRF), mass spectrometry (MS), and electron paramagnetic resonance (EPR) spectroscopy. Each method was thoroughly examined for its analytical performance in terms of sensitivity, specificity, and feasibility. The ACB assay is the most readily implementable method in clinical laboratories for its cost-effectiveness and operational simplicity. On the other hand, the ACuB assay exhibits enhanced sensitivity and specificity, driven by the superior binding affinity of copper to IMA. Furthermore, nanoparticle-enhanced immunoassays and liquid crystal biosensors, while more resource-intensive, significantly improve the analytical sensitivity and specificity of IMA detection, enabling earlier and more accurate identification of ischemic events. Additionally, different biological matrices, such as serum, saliva, and urine, were reviewed to identify the most suitable for accurate measurements in clinical application. Although serum was considered the gold standard, non-invasive matrices such as saliva and urine are becoming increasingly feasible due to advances in technology. This review underscores the role of IMA in clinical diagnostics and suggests how advanced analytical techniques have the potential to significantly enhance patient outcomes in ischemic disease management. Full article
(This article belongs to the Special Issue Review Papers in Analytical Chemistry)
Show Figures

Figure 1

33 pages, 40497 KB  
Article
Non-Invasive Mobile Raman and pXRF Analysis of Armorial Porcelain with the Coat of Arms of Louis XV and Others Enamelled in Canton: Analytical Criteria for Authentication
by Philippe Colomban, Gulsu Simsek Franci and Xavier Gallet
Heritage 2024, 7(9), 4881-4913; https://doi.org/10.3390/heritage7090231 - 6 Sep 2024
Cited by 3 | Viewed by 1783
Abstract
Nine glazed porcelain artifacts bearing the coat of arms of France, from King Louis XV tableware orders, were analysed at the laboratory or in their conservation secure room. Based on the experience acquired in the study of 18th century European and Chinese porcelain [...] Read more.
Nine glazed porcelain artifacts bearing the coat of arms of France, from King Louis XV tableware orders, were analysed at the laboratory or in their conservation secure room. Based on the experience acquired in the study of 18th century European and Chinese porcelain using mobile XRF (pXRF) and Raman microspectroscopy, a comparison of the impurities in the paste (Y, Rb, and Sr), the elements associated with cobalt in the blue overglaze (Bi, Mn, Zn, and As) and those present in the tin yellow and Naples yellow pigments (Sn, Sb, and Zn) highlights the use of different raw materials for some of these objects. Differences regarding the Ag content in the gold decorations also provide information. Raman identification of the different types of yellow pigment confirms the categorization. The results obtained on the Louis XV tableware are compared to those of “Chine de commande”, attributed to the same places and periods of production or recognized copies. The clustering of the quantitative comparison pXRF signals of the abovementioned elements and a consideration of the Raman parameters of the yellow pigments appear to be effective tools for object categorization to confirm or refute questions about the authenticity of objects. Full article
(This article belongs to the Section Materials and Heritage)
Show Figures

Figure 1

20 pages, 2332 KB  
Article
Source to Receptor: Assessing Health Risks from Heavy Metal Exposure in Mining Soils
by Gladys Nyoh Belle, Yolandi Schoeman and Paul Johan Oberholster
Minerals 2024, 14(9), 858; https://doi.org/10.3390/min14090858 - 24 Aug 2024
Cited by 4 | Viewed by 2533
Abstract
This research quantifies the health risks associated with exposure to heavy metals in the Matjhabeng Local Municipality, a gold mining region in South Africa, utilising a deterministic source–pathway–receptor approach. This study uniquely integrates both non-carcinogenic and carcinogenic risk assessments across multiple heavy metals, [...] Read more.
This research quantifies the health risks associated with exposure to heavy metals in the Matjhabeng Local Municipality, a gold mining region in South Africa, utilising a deterministic source–pathway–receptor approach. This study uniquely integrates both non-carcinogenic and carcinogenic risk assessments across multiple heavy metals, providing a comprehensive perspective on health impacts in mining-impacted communities. The study measured concentrations of arsenic (As), cadmium (Cd), lead (Pb), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), selenium (Se), and zinc (Zn) in soil samples, with mean values found to be 3.2 mg/kg, 2.5 mg/kg, 45 mg/kg, 17 mg/kg, and 25 mg/kg for As, Cd, Pb, Co, and Cr, respectively. The deterministic assessment revealed minimal non-carcinogenic risks for ingestion across all demographics (HQ < 1), while significant dermal risks were identified for Cd, Pb, Co, and Cr (HQ > 1), particularly for the adult group. The inhalation pathway emerged as a critical exposure route, with HQ values ranging from 5 to 15 and chronic hazard index values significantly exceeding safe limits (CHI > 5). The carcinogenic risk through inhalation notably surpassed the acceptable thresholds set by the United States Environmental Protection Agency (1 × 10−4 to 1 × 10−6), with a calculated lifetime cancer risk far exceeding the limit for As, Cd, Cr, Co, and Ni for both adults and juveniles. These findings underscore the urgent need for targeted risk mitigation strategies in the community to address the significant health risks posed by airborne heavy metal exposure. Full article
Show Figures

Figure 1

Back to TopTop