Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,090)

Search Parameters:
Keywords = co-activation index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1730 KB  
Article
Targeting Oral Pathogens with Salvia officinalis and Nigella sativa Supercritical CO2 Extracts: A Pharmacodynamic Approach and Three-Dimensional Checkerboard Synergy for Novel Dental Antimicrobials
by Luka Tucakov, Ana Tomić, Olja Šovljanski, Milica Aćimović and Ana Miljković
Antibiotics 2025, 14(11), 1100; https://doi.org/10.3390/antibiotics14111100 (registering DOI) - 2 Nov 2025
Abstract
Background: Oral infections such as dental caries and candidiasis are mediated by resilient biofilms, which are increasingly tolerant to conventional antimicrobials. This study investigated the antimicrobial and antibiofilm effects of Salvia officinalis and Nigella sativa CO2 extracts against Streptococcus mutans and [...] Read more.
Background: Oral infections such as dental caries and candidiasis are mediated by resilient biofilms, which are increasingly tolerant to conventional antimicrobials. This study investigated the antimicrobial and antibiofilm effects of Salvia officinalis and Nigella sativa CO2 extracts against Streptococcus mutans and Candida albicans, with emphasis on synergistic interactions. Methods: Extracts were analyzed using gas chromatography–mass spectrometry analysis (GC–MS) and evaluated through planktonic MIC/MBC assays, time–kill kinetics, and biofilm models (MBIC/MBEC, biomass, metabolic activity). A novel three-dimensional checkerboard (3D-CB) and fractional inhibitory concentration index (FICI) approach was applied to optimize extract ratios, concentrations, and exposure times. Results: S. officinalis extract showed greater activity against S. mutans (MIC 256 mg/L; MBC 512 mg/L), while N. sativa was more effective against C. albicans (MIC 256 mg/L; MFC 512 mg/L). Both extracts reduced biofilm biomass and metabolic activity by over 70% at higher doses. Synergy was confirmed at ratios of 70:30 (S. officinalis: N. sativa) for S. mutans (FICI 0.38) and 40:60 for C. albicans (FICI 0.42). The achieved synergistic effect further decreased MBEC values fourfold and prolonged post-antibiotic effects. Conclusions: Synergistic S. officinalisN. sativa formulations enhanced antimicrobial activity against oral pathogens in both planktonic and biofilm states, supporting their potential as next-generation dental antimicrobials. Full article
Show Figures

Figure 1

27 pages, 2335 KB  
Article
Sustained Intraocular Pressure Reduction Using Bisoprolol-Loaded PLGA Nanoparticles: A Promising Strategy for Enhanced Ocular Delivery with Reduced GFAP Expression Indicative of Lower Glial Activation
by Sammar Fathy Elhabal, Omnia Mohamed Mahfouz, Mohamed Fathi Mohamed Elrefai, Mahmoud H. Teaima, Ahmed Abdalla and Mohamed El-Nabarawi
Pharmaceutics 2025, 17(11), 1418; https://doi.org/10.3390/pharmaceutics17111418 (registering DOI) - 31 Oct 2025
Abstract
Background/Objectives: Glaucoma is a neurodegenerative optic disorder which occurs due to persistent elevation of the intraocular pressure. It leads to permanent blindness and currently affects over 75 million individuals worldwide. Nowadays, topical ocular medications are the leading therapy despite their poor ocular penetration [...] Read more.
Background/Objectives: Glaucoma is a neurodegenerative optic disorder which occurs due to persistent elevation of the intraocular pressure. It leads to permanent blindness and currently affects over 75 million individuals worldwide. Nowadays, topical ocular medications are the leading therapy despite their poor ocular penetration and short residence time. Methods: The purpose of this research is to formulate bisoprolol hemifumarate-loaded polylactic-co-glycolic acid (PLGA) nanoparticles and improve their ocular penetration and bioavailability for the treatment of glaucoma by enhancing the delivery of the drug to the posterior part of eye. By using the solvent displacement method, formulations were prepared and optimum formula was elected using Design-Expert® software. Results: In vitro characterization demonstrated that the optimum formula contained 25 mg BSP, 22.5 mg PLGA, and 60 mg Tween80, yielding high values of drug encapsulation (75%) and zeta potential (−18.7 ± 0.41 mV), with a low particle size (105 ± 0.35 nm) and polydispersity index (0.411 ± 0.71). Transmission electron microscopy and atomic force microscopy showed smooth and spherical nanosized particles. X-ray diffraction, differential scanning calorimetry, and Fourier-transform infrared spectroscopy revealed successful encapsulation of the drug inside the polymeric matrix. Ex vivo confocal laser scanning microscopy proved that there was better uptake of the drug upon using PLGA-NPs. In vitro release profiles indicated biphasic drug release from the PLGA-NPs, confirming a sustained drug release over 12 hrs. In vivo studies showed that BSP-PLGA-NPs significantly reduced the IOP compared to bisoprolol solution. Quantitative immunohistochemistry showed lower retinal GFAP expression with BSP-PLGA-NPs compared with induced controls and drug solution, which is indicative of attenuated glial activation. Conclusions: These data support improved ocular delivery and an improved pharmacodynamic effect; however, they demonstrate association rather than a direct mechanistic suppression of glial pathways. Full article
(This article belongs to the Special Issue Ocular Drug Delivery Systems and Formulations)
35 pages, 1429 KB  
Systematic Review
Transmission-Targeted Demand-Side Response for Congestion Relief: A Systematic Review
by Piotr Sidor and Sylwester Robak
Energies 2025, 18(21), 5705; https://doi.org/10.3390/en18215705 - 30 Oct 2025
Viewed by 128
Abstract
Variable renewable energy sources and cross-zonal trades stress transmission grids, pushing them toward thermal limits. This systematic review, reported in accordance with PRISMA 2020, examines how demand-side response (DSR) can provide relief at the transmission scale. We screened peer-reviewed literature and operator documentation, [...] Read more.
Variable renewable energy sources and cross-zonal trades stress transmission grids, pushing them toward thermal limits. This systematic review, reported in accordance with PRISMA 2020, examines how demand-side response (DSR) can provide relief at the transmission scale. We screened peer-reviewed literature and operator documentation, from 2010 to 2025, indexed in Web of Science, Scopus, and IEEE Xplore; organized remedial actions across supply, network, and demand/storage levers; and categorized operational attributes (time to effect, spatial targeting, activation lead times, telemetry, and measurement and verification). Few reviewed sources explicitly link DSR to transmission congestion relief, highlighting the gap between its mature use in frequency and adequacy services and its still-limited, location-specific application on the grid. We identify feasibility conditions, including assets downstream of the binding interface, minute-scale activation, and feeder-grade baselines with rebound accounting. This implies the following design requirements: TSO–DSO eligibility registries and conflict resolution, portfolio mapping to power-flow sensitivities, and co-optimization with redispatch, HVDC, topology control, and storage within a security-constrained optimal-power-flow framework. No full-text risk-of-bias assessment or meta-analysis was undertaken; the review used English-only title/abstract screening. Registration: none. Funding: none. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

30 pages, 4966 KB  
Review
Bibliometric Analysis of the Scientific Productivity on Functional Properties and Enzymatic Hydrolysis of Proteins from By-Products
by Sebastián Plaza, Suleivys M. Nuñez, Yunesky Masip and Pedro Valencia
Foods 2025, 14(21), 3693; https://doi.org/10.3390/foods14213693 - 29 Oct 2025
Viewed by 267
Abstract
The growing interest in functional foods has driven research into protein hydrolysates produced by enzymatic hydrolysis, especially from agro-industrial by-products. These compounds stand out for their antioxidant, antihypertensive, and other bioactive properties, which are relevant to the food, pharmaceutical, and nutraceutical industries. In [...] Read more.
The growing interest in functional foods has driven research into protein hydrolysates produced by enzymatic hydrolysis, especially from agro-industrial by-products. These compounds stand out for their antioxidant, antihypertensive, and other bioactive properties, which are relevant to the food, pharmaceutical, and nutraceutical industries. In this context, a bibliometric analysis of 1498 articles indexed in the Web of Science (WoS) database (2015–2025, collected up to June) was conducted to map the evolution of knowledge, identify consolidated and emerging thematic lines, and recognize the most influential actors in the field. The methodology combined an advanced search strategy with Biblioshiny (RStudio) and VOSviewer to generate co-occurrence maps, collaboration networks, and citation analyses. The results show sustained growth since 2018, with a predominance of research on functional properties, bioactive peptides, and antioxidant activity, along with a growing interest in sustainability, process optimization, and in silico methodologies. Six thematic clusters were identified, encompassing process optimization, biofunctional validation, circular economy, and non-conventional protein sources. The study concludes that the field demonstrates significant thematic maturity, with opportunities for innovation, particularly in functional validation and the integrated use of by-products through sustainable enzymatic technologies. Full article
Show Figures

Figure 1

17 pages, 1659 KB  
Article
Response of Soil Microbial Biomass and Activity to Cover Crop Incorporation Methods
by Caterina Lucia, Vito Armando Laudicina, Sara Paliaga, Luciano Gristina and Sofia Maria Muscarella
Agronomy 2025, 15(11), 2504; https://doi.org/10.3390/agronomy15112504 - 28 Oct 2025
Viewed by 133
Abstract
Cover crop management in vineyards under a semiarid Mediterranean environment needs strategies that enhance soil C and N status and microbial functioning without increasing disturbance. This study compared cover crops biomass incorporation (harrowing, HR; rotary tillage; RT) and non-incorporation (NI, residues left on [...] Read more.
Cover crop management in vineyards under a semiarid Mediterranean environment needs strategies that enhance soil C and N status and microbial functioning without increasing disturbance. This study compared cover crops biomass incorporation (harrowing, HR; rotary tillage; RT) and non-incorporation (NI, residues left on the topsoil) into the soil in a 12-year Grecanico dorato vineyard. Traditional vineyard soil management (continuously tilled for weeds control) was also used as a control. Soil samples from 0 to 20 and 20 to 40 cm were analyzed for total organic carbon (TOC), total nitrogen (TN), microbial biomass carbon (MBC) and nitrogen (MBN), and enzyme activities. NI and HR raised TOC and TN in the topsoil versus TR, with NI frequently maintaining advantages at depth. NI also maximized MBC/MBN and reduced the metabolic quotient (qCO2), indicating improved microbial C-use efficiency; RT showed intermediate chemistry but depressed subsoil MBC and altered MBC/MBN. Enzyme profiles reflected contrasting mechanisms: RT boosted β-glucosidase in the topsoil, TR peaked for urease and arylsulfatase but alongside lower biomass and higher specific enzyme activities, while NI supported greater overall functioning via larger biomass and lower per-C enzyme demand. The calculated geometric mean enzyme (GMea) index emphasized transient TR flush versus steadier conservation functioning. Strong vertical stratification occurred for all indices, yet NI transmitted some benefits to 20–40 cm. We conclude that residue retention or moderate incorporation promotes larger, more efficient microbial population and more balanced nutrient cycling, whereas repeated rotary tillage risks subsoil inefficiencies. In semi-arid Mediterranean vineyards, low-disturbance cover-crop incorporation (HR) or, preferably, residue retention at the topsoil (NI) offer a simple, scalable route to sustain soil quality and long-term fertility. Full article
(This article belongs to the Special Issue Effects of Agronomic Practices on Soil Properties and Health)
Show Figures

Figure 1

28 pages, 3637 KB  
Article
Folic Acid-Decorated Lipidic Nanocapsules Co-Loaded with Atorvastatin and Curcumin to Enhance Glioma Targeting in Mice
by Mahitab Bayoumi, John Youshia, O. A. El-Kawy, Sara A. Abdel Gaber, Mona G. Arafa, Maha Nasr and Omaima A. Sammour
Pharmaceuticals 2025, 18(11), 1623; https://doi.org/10.3390/ph18111623 - 27 Oct 2025
Viewed by 337
Abstract
Background: Glioma remains an intractable and highly aggressive brain tumor, mainly due to the daunting obstacle presented by the blood–brain barrier (BBB). To overcome this challenge and enhance therapeutic efficacy, a dual-drug delivery system was engineered. This system co-encapsulated curcumin, a nutraceutical [...] Read more.
Background: Glioma remains an intractable and highly aggressive brain tumor, mainly due to the daunting obstacle presented by the blood–brain barrier (BBB). To overcome this challenge and enhance therapeutic efficacy, a dual-drug delivery system was engineered. This system co-encapsulated curcumin, a nutraceutical with multitargeted anticancer potential, with atorvastatin calcium, a repurposed anticancer agent, within lipidic nanocapsules (LNCs). Methods: LNCs were prepared via the phase inversion temperature method and optimized using a Box–Behnken design. The optimized LNCs were subsequently functionalized with folic acid (FA) to enable active targeting. FA-LNCs were characterized using XPS, TEM, in vitro release, and MTT cytotoxicity assays. Atorvastatin and curcumin were radiolabeled separately with iodine-131 to evaluate the in vivo pharmacokinetics in a glioma-bearing mouse model. Results: The optimized LNCs and FA-LNCs displayed a mean particle size of 97.98 ± 2.27 nm and 181.60 ± 2.83 nm, a polydispersity index of 0.32 ± 0.07 and 0.40 ± 0.02, and a zeta potential of −15.85 ± 1.35 mV and −11.90 ± 2.80, respectively. XPS and FTIR analyses verified FA conjugation. Both LNCs and FA-LNCs enhanced the in vitro cytotoxicity compared to free drugs; however, the most pronounced effect of FA functionalization was observed in vivo. Most significantly, FA-LNCs achieved markedly greater glioma accumulation than non-functionalized LNCs, with AUC values 2.0-fold higher for atorvastatin and 2.6-fold higher for curcumin. When compared to the free drug solutions, this efficiency was even more pronounced, with atorvastatin and curcumin showing enhancements of 8.2 and 12.4 times, respectively. Conclusions: FA-LNCs markedly improved glioma targeting efficiency and reduced systemic clearance, which underscores the therapeutic potential of integrating nutraceuticals with repurposed agents to achieve effective glioma therapy. Full article
(This article belongs to the Special Issue New Platforms for Cancer Treatment—Emerging Advances)
Show Figures

17 pages, 9240 KB  
Article
High Fire Drives the Reorganization of Taiga Soil Fungal Communities with Ascomycota as the Dominant Phylum After Long-Term Recovery
by Siyu Jiang, Zhichao Cheng, Hong Pan, Siyuan Liu, Huijiao Qu, Mingliang Gao, Libin Yang and Jia Zhou
J. Fungi 2025, 11(11), 772; https://doi.org/10.3390/jof11110772 - 27 Oct 2025
Viewed by 304
Abstract
Forest fires are key disturbance factors in forest ecosystems, and soil fungi play an irreplaceable role in post-fire recovery. This study focused on forest areas burned in 2000 in the Daxing’anling region of China, targeting long-term recovery sites with different fire intensities. Illumina [...] Read more.
Forest fires are key disturbance factors in forest ecosystems, and soil fungi play an irreplaceable role in post-fire recovery. This study focused on forest areas burned in 2000 in the Daxing’anling region of China, targeting long-term recovery sites with different fire intensities. Illumina MiSeq sequencing was used to analyze the structural characteristics of fungal communities and their environmental drivers. Results showed that compared with the control check (CK), the Shannon index of the low fire group (L) increased significantly (p < 0.05), while moderate (M) and high (H) fire groups reduced fungal diversity significantly. PCoA indicated significant differences in community structure (R2 = 0.97, p = 0.001). In highly burned areas, the relative abundance of Ascomycota reached 94.17%, and Basidiomycota lost its dominance. Spearman analysis showed that pH, available phosphorus, available potassium, soil fluorescein diacetate hydrolase, soil dehydrogenase, and soil urease were significantly positively correlated with fungal alpha diversity. RDA revealed that total nitrogen, available phosphorus, soil water content, alkaline nitrogen, active potassium, and dissolved organic carbon had extremely significant effects on soil fungal community composition (p < 0.01). Co-occurrence network analysis indicated that symbiotic relationships dominated all groups. Networks in L and M groups were more complex, while that in H group was simplified and severely damaged. This study indicated that after long-term recovery, soil fungal communities in low fire areas returned to pre-fire levels; those in moderate and high fire areas did not recover, with high fire burns causing severe damage and community structure reorganization. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

16 pages, 2087 KB  
Article
Phytochemical Profile, Antioxidant and Antiproliferative Activity of Randia spp. Fruit Extracts Obtained by Ultrasound-Assisted Extraction
by Cecilia E. Martínez-Sánchez, Erasmo Herman-Lara, Víctor M. Fernández-López, Lilia L. Méndez-Lagunas, Adriana Moreno-Rodríguez, Liliana Argueta-Figueroa and Ivet Gallegos-Marín
Separations 2025, 12(11), 292; https://doi.org/10.3390/separations12110292 - 24 Oct 2025
Viewed by 209
Abstract
Randia spp. is a medicinal plant traditionally used to treat various diseases. In this study, the phytochemical composition and the antioxidant, antiproliferative, and cytotoxic activities of hydroalcoholic extracts from fresh and dried Randia spp. fruits were evaluated. The phytochemical profile was determined through [...] Read more.
Randia spp. is a medicinal plant traditionally used to treat various diseases. In this study, the phytochemical composition and the antioxidant, antiproliferative, and cytotoxic activities of hydroalcoholic extracts from fresh and dried Randia spp. fruits were evaluated. The phytochemical profile was determined through qualitative assays and high-performance liquid chromatography (HPLC). Antioxidant activity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. The antiproliferative effect was tested against CaCo-2 cells (human colon adenocarcinoma), the cytotoxicity was evaluated using J774.2 murine macrophages, and the selectivity index (SI) was calculated. The fresh and dried fruit extracts contained 50.27 and 47.22 mg QE/g extract of total phenols (TPC) and 27.08 and 35.53 mg QE/g extract of total flavonoids (TFC), respectively. In the fresh fruit extracts, four phenolic acids (caffeic, hydroxybenzoic, ferulic, and coumaric) and one flavonoid (kaempferol) were identified, and the dried fruit extracts contained ferulic acid, vanillic acid, and kaempferol. Kaempferol was the predominant compound in both extracts (137.55 and 42.10 mg/g dry sample in fresh and dried fruits, respectively). Both extracts displayed antioxidant activity, with IC50 values of 18.29 mg/mL (DPPH) and 8.70 mg/mL (ABTS). Among the tested samples, the dried fruit extract demonstrated the highest antiproliferative activity. Furthermore, the extract showed moderate antiproliferative effects against CaCo-2 cells (IC50 25.44 ± 0.16 µg/mL) and low cytotoxicity toward J774.2 cells (CC50 > 100 µg/mL), resulting in an SI = 3.92. Overall, the antioxidant and antiproliferative activities can be attributed mainly to kaempferol, given its high abundance in both extracts. The favorable selectivity index suggests that hydroalcoholic extracts of Randia spp. are safe and effective, highlighting their potential as candidates for further preclinical and clinical evaluation. Full article
Show Figures

Graphical abstract

26 pages, 3173 KB  
Article
Enhancement of Photosynthetic Efficiency and Antioxidant Response in Wheat Under Drought Stress by Quercetin–Copper Complex
by Marta Jańczak-Pieniążek, Dagmara Migut, Tomasz Piechowiak and Maciej Balawejder
Int. J. Mol. Sci. 2025, 26(21), 10365; https://doi.org/10.3390/ijms262110365 - 24 Oct 2025
Viewed by 157
Abstract
One way to counteract the effects of environmental stresses, including drought, is to use products with growth-promoting properties for plants. Such agents include quercetin, which is known for its antioxidant and photosynthesis-enhancing properties. In the conducted experiment, the influence of the quercetin–copper complex [...] Read more.
One way to counteract the effects of environmental stresses, including drought, is to use products with growth-promoting properties for plants. Such agents include quercetin, which is known for its antioxidant and photosynthesis-enhancing properties. In the conducted experiment, the influence of the quercetin–copper complex (Q-Cu (II)) treatment, characterized by strong high solubility in water and strong antioxidant properties, was investigated. The pot experiment demonstrated the effect of spraying with Q-Cu (II) solutions (0.01, 0.05 and 0.1%) on wheat plants growing under drought stress conditions. Two treatments of Q-Cu (II) solutions were applied, and chlorophyll content and chlorophyll fluorescence (the maximum quantum yield of photosystem II (PSII) photochemistry (Fv/Fm), the efficiency of the water-splitting complex on the donor side of PSII (Fv/Fo), and the photosynthetic efficiency index (PI)), as well as gas exchange (photosynthetic network intensity (PN), transpiration rate (E), stomatal conductance (gs) and intercellular CO2 concentration (Ci)), were measured 1 and 7 days after each treatment. In addition, antioxidant enzyme activity (catalase (CAT), peroxidase (SOD) and guaiacol peroxidase (GPOX)) and reactive oxygen species (ROS) levels were determined. Drought stress caused a decrease in chlorophyll content, and values of parameters Fv/Fm, Fv/Fo, PI and PN, E, gs, Ci, as well as an increase in ROS levels and antioxidant enzyme activity. Exogenous Q-Cu (II) improved photosynthetic indices and modulated redox status in a dose-dependent manner: 0.01–0.05% reduced ROS, whereas 0.1% increased ROS while concomitantly enhancing antioxidant enzyme activities and photosynthetic performance, consistent with ROS-mediated priming. The conducted research indicates the possibility of using Q-Cu (II) as a product to enhance the efficiency of the photosynthetic process under drought stress. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Plant Abiotic Stress Tolerance: 2nd Edition)
Show Figures

Figure 1

17 pages, 1118 KB  
Article
Phase-Specific Biomechanical Characterization of Upper Limb Movements in Stroke
by Lei Li, Wei Peng, Jingcheng Chen, Shaoming Sun and Junhong Wang
Bioengineering 2025, 12(11), 1144; https://doi.org/10.3390/bioengineering12111144 - 23 Oct 2025
Viewed by 334
Abstract
Stroke often leads to persistent upper limb dysfunction that impairs activities of daily living, yet objective biomechanical indicators for precise assessment remain limited. This study aimed to characterize phase-specific impairments in energy output, torque stability, and muscle coordination during the hand-to-mouth (HTM) task [...] Read more.
Stroke often leads to persistent upper limb dysfunction that impairs activities of daily living, yet objective biomechanical indicators for precise assessment remain limited. This study aimed to characterize phase-specific impairments in energy output, torque stability, and muscle coordination during the hand-to-mouth (HTM) task and to explore their potential for improving rehabilitation evaluation. Motion data from 20 stroke patients and 20 healthy controls were recorded using wearable surface electromyography and inertial measurement unit systems. A musculoskeletal model was applied to calculate joint torque, mechanical work, torque smoothness, and a novel torque-based co-contraction index across four movement subphases. These phase-specific metrics demonstrated significant correlations with clinical motor impairment scores, confirming their clinical validity. Significant dynamic features were then selected to construct machine learning models for group classification. Stroke patients showed reduced output capacity, increased torque fluctuations, and abnormal co-contraction patterns that varied across subphases. Among the classifiers, the quadratic support vector machine achieved the best performance, with an accuracy of 84.6% and an AUC of 0.853, surpassing models based on whole-task features. These findings demonstrate that phase-specific biomechanical features sensitively capture neuromuscular deficits in stroke survivors and highlight the potential of phase-specific biomechanics to inform future individualized rehabilitation assessment and treatment planning. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Figure 1

29 pages, 3223 KB  
Article
Injectable In Situ Thermoreversible Gel Depot System of Lidocaine Nanoemulsion for Prolonged Anesthetic Activity in Dental and Operative Procedures
by Shery Jacob, Fathima Sheik Kather, Shakta Mani Satyam, Sai H. S. Boddu, Firas Assaf, Tasnem H. Abdelfattah Allam and Anroop B. Nair
Pharmaceutics 2025, 17(10), 1355; https://doi.org/10.3390/pharmaceutics17101355 - 20 Oct 2025
Viewed by 564
Abstract
Background/Objectives: Lidocaine hydrochloride (LD-HCl) is the most commonly used local anesthetic in dentistry, often administered with epinephrine to extend its duration and reduce systemic absorption. However, its relatively short duration of action, the need for repeated injections, and the unpleasant taste may limit [...] Read more.
Background/Objectives: Lidocaine hydrochloride (LD-HCl) is the most commonly used local anesthetic in dentistry, often administered with epinephrine to extend its duration and reduce systemic absorption. However, its relatively short duration of action, the need for repeated injections, and the unpleasant taste may limit patient compliance and procedural efficiency. This study aimed to develop and evaluate a novel injectable nanoemulsion-based in situ gel depot system of LD to provide prolonged anesthetic activity. Methods: LD-loaded nanoemulsions were formulated by high-shear homogenization followed by probe sonication, employing Miglyol 812 N (oil phase), a combination of Tween 80 and soy lecithin (surfactant–co-surfactant), glycerin, and deionized water (aqueous phase). The selected nanoemulsion (S1) was dispersed in a thermoreversible poloxamer solution to form a nanoemulgel. The preparation was evaluated for globule diameter and uniformity, zeta potential, surface morphology, pH, drug content, stability, rheological behavior, injectability, and in vitro drug release. Analgesic efficacy was assessed via tail-flick and thermal paw withdrawal latency tests in Wistar rats. Cardiovascular safety was monitored using non-invasive electrocardiography and blood pressure measurements. Results: The developed nanoemulsions demonstrated a spherical shape, nanometer size (206 nm), high zeta-potential (−66.67 mV) and uniform size distribution, with a polydispersity index of approximately 0.40, while the nanoemulgel demonstrated appropriate thixotropic properties for parenteral administration. In vitro release profiles showed steady LD release (5 h), following the Higuchi model. In vivo studies showed significantly prolonged analgesic effects lasting up to 150 min (2.5 h) compared to standard LD-HCl injection (p < 0.001), with no adverse cardiovascular effects observed. Conclusions: The developed injectable LD in situ nanoemulgel offers a promising, patient-friendly alternative for prolonged anesthetic delivery in dental and operative procedures, potentially reducing the need for repeated injections and enhancing procedural comfort. Full article
Show Figures

Graphical abstract

15 pages, 3248 KB  
Article
Toxic Metals in Surface Dust in Underground Parking Garages: Pollution Status, Risk and Disease Burden Assessment, and Source Apportionment
by Yong Wang, Tong Chao, Qidi Li, Zhiqiang Jiao, Xinling Ruan, Yuguang Wang, Shiji Ge and Yangyang Wang
Toxics 2025, 13(10), 895; https://doi.org/10.3390/toxics13100895 - 19 Oct 2025
Viewed by 309
Abstract
Surface dust serves as a significant carrier and potential source of various pollutants in urban environments. However, limited attention has been paid to toxic metals in underground parking garages’ (UPGs) surface dust. In this study, thirty surface dust samples were collected from UPGs [...] Read more.
Surface dust serves as a significant carrier and potential source of various pollutants in urban environments. However, limited attention has been paid to toxic metals in underground parking garages’ (UPGs) surface dust. In this study, thirty surface dust samples were collected from UPGs to determine the toxic metals contents, their risk and disease burden to local residents, and their potential source. The mean contents of V, Cr, Co, Ni, Cu, Zn, Cd, Sb, Pb, Hg, and As were 68.06, 126.48, 8.73, 27.68, 76.25, 287.07, 0.74, 4.28, 172.67, 0.24, and 8.66 mg/kg, respectively. Accumulation index revealed that the geoaccumulation index of Cr, Cu, Cd, Zn, Sb, Pb, and Hg ranged from 0.52 to 1.85. Pollution load index verified that the surface dust was slightly (56.67%), moderately (30.00%), or heavily polluted (13.33%). Risk assessment revealed that the total non-carcinogenic risks for children all exceeded the acceptable level (HI > 1.0). Notably, the carcinogenic burden reached 12.9 disability-adjusted life years per 100,000 population, with Cr contributing 84.1%. Furthermore, these toxic metals mainly derived from vehicle-related activities, use of coal, and the aging of decoration materials, and their accumulation in UPGs’ surface dust was almost unaffected by the essential conditions of residential areas. Full article
(This article belongs to the Special Issue Assessment and Remediation of Heavy Metal Contamination in Soil)
Show Figures

Graphical abstract

34 pages, 4679 KB  
Article
Multi-Objective Optimization of Mobile Battery Energy Storage and Dynamic Feeder Reconfiguration for Enhanced Voltage Profiles in Active Distribution Systems
by Phuwanat Marksan, Krittidet Buayai, Ritthichai Ratchapan, Wutthichai Sa-nga-ngam, Krischonme Bhumkittipich, Kaan Kerdchuen, Ingo Stadler, Supapradit Marsong and Yuttana Kongjeen
Energies 2025, 18(20), 5515; https://doi.org/10.3390/en18205515 - 19 Oct 2025
Viewed by 417
Abstract
Active distribution systems (ADS) are increasingly strained by rising energy demand and the widespread deployment of distributed energy resources (DERs) and electric vehicle charging stations (EVCS), which intensify voltage deviations, power losses, and peak demand fluctuations. This study develops a coordinated optimization framework [...] Read more.
Active distribution systems (ADS) are increasingly strained by rising energy demand and the widespread deployment of distributed energy resources (DERs) and electric vehicle charging stations (EVCS), which intensify voltage deviations, power losses, and peak demand fluctuations. This study develops a coordinated optimization framework for Mobile Battery Energy Storage Systems (MBESS) and Dynamic Feeder Reconfiguration (DFR) to enhance network performance across technical, economic, and environmental dimensions. A Non-dominated Sorting Genetic Algorithm III (NSGA-III) is employed to minimize six objectives the active and reactive power losses, voltage deviation index (VDI), voltage stability index (FVSI), operating cost, and CO2 emissions while explicitly modeling the MBESS transportation constraints such as energy consumption and single-trip mobility within coupled IEEE 33-bus and 33-node transport networks, which provide realistic mobility modeling of energy storage operations. The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is applied to select compromise solutions from Pareto fronts. Simulation results across six scenarios show that the coordinated MBESS–DFR operation reduces power losses by 27.8–30.1%, improves the VDI by 40.5–43.2%, and enhances the FVSI by 2.3–2.4%, maintaining all bus voltages within 0.95–1.05 p.u. with minimal cost (0.26–0.27%) and emission variations (0.31–0.71%). The MBESS alone provided limited benefits (5–12%), confirming that coordination is essential for improving efficiency, voltage regulation, and overall system sustainability in renewable-rich distribution networks. Full article
(This article belongs to the Special Issue Advances and Optimization of Electric Energy System—2nd Edition)
Show Figures

Figure 1

34 pages, 4311 KB  
Article
Impact of Pollution on Physico-Chemical Parameters and Diatom Communities Diversity in the Main Tributaries of the Arieș River, Romania
by Mirel Glevitzky, Mihai Teopent Corcheş and Doriana Maria Popa
Environments 2025, 12(10), 389; https://doi.org/10.3390/environments12100389 - 18 Oct 2025
Viewed by 667
Abstract
Human activities in the Apuseni Mountains region, Romania, especially in the Roșia Montană mining area, have significantly impacted water quality in the Arieș River tributaries. This study assessed the main physico-chemical and salinity parameters, along with the contents of trace elements (As, Cd, [...] Read more.
Human activities in the Apuseni Mountains region, Romania, especially in the Roșia Montană mining area, have significantly impacted water quality in the Arieș River tributaries. This study assessed the main physico-chemical and salinity parameters, along with the contents of trace elements (As, Cd, Co, Cr, Cu, Fe, Mn, and Ni) dissolved in water, as well as in the Abrud, Ștefanca, Valea Seșii, and Sârtaș rivers, the main tributaries of the Arieș River. Maximum concentrations of trace elements were observed in Valea Seșii (e.g., Zn up to 716 µg/L, Fe up to 562 µg/L), while Abrud and Sartăș showed moderate contamination. Diatom analysis revealed a high prevalence of Achnanthidium minutissimum and Planothidium lanceolatum, with teratological forms of A. minutissimum being the most frequent, indicating stress from pollutants. Saprobic index values ranged from 1.21 to 1.91, reflecting water quality from good to moderately impacted. The integration of chemical and biological data highlights the cumulative effects of mining and agricultural activities, demonstrating the utility of combined monitoring for effective freshwater management. Our results showed that numerous diatom taxa are currently present in samples collected from various watercourses within the Aries River basin, reflecting both the biological diversity and the variable influence of environmental factors on aquatic communities. Full article
Show Figures

Figure 1

21 pages, 1015 KB  
Article
Combating Foodborne MRSA: Identification and Silver Nanoparticle-Based Antibacterial Strategies with Antibiotic Synergy and Resistance Evolution Assessment
by Adil Abalkhail and Eman Marzouk
Microorganisms 2025, 13(10), 2393; https://doi.org/10.3390/microorganisms13102393 - 18 Oct 2025
Viewed by 359
Abstract
Ready-to-eat (RTE) foods can carry antimicrobial-resistant pathogens; however, few studies link real-world surveillance to practical interventions. This study addressed this gap by estimating the prevalence of Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) in ready-to-eat foods from Al-Qassim and [...] Read more.
Ready-to-eat (RTE) foods can carry antimicrobial-resistant pathogens; however, few studies link real-world surveillance to practical interventions. This study addressed this gap by estimating the prevalence of Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) in ready-to-eat foods from Al-Qassim and evaluating a rapid, orthogonal confirmation workflow (culture → MALDI-TOF MS → Vitek 2 → mecA/mecC PCR). The in vitro activity of citrate-stabilized silver nanoparticles (AgNPs) against food-derived MRSA was quantified, and synergy with oxacillin (primary) and ciprofloxacin (secondary) was examined. Silver-susceptibility stability was assessed over 20 days of sub-MIC serial passage, with attention to whether β-lactam co-exposure constrained drift. We surveyed 149 RTE products and paired the confirmation workflow with mechanistic tests of AgNPs as antibiotic adjuvants. S. aureus was recovered from 24.2% of products and MRSA from 6.7%, with higher recovery from animal-source matrices and street-vendor outlets. MALDI-TOF MS provided rapid species confirmation and revealed two reproducible low-mass peaks (m/z 3990 and 4125) associated with MRSA, supporting spectral triage pending molecular confirmation. Antimicrobial susceptibility testing showed the expected β-lactam split (MRSA oxacillin/cefoxitin non-susceptible; MSSA oxacillin-susceptible but largely penicillin-resistant), with last-line agents retained. Citrate-stabilized AgNPs displayed consistent potency against food-derived MRSA (MIC 8–32 µg/mL; MIC50 16; MIC90 32) and were predominantly bactericidal (MBC/MIC ≤ 4 in 90%). Checkerboards demonstrated frequent AgNP–oxacillin synergy (median fractional inhibitory concentration index [FICI] 0.37; 4–16-fold oxacillin MIC reductions) and additive-to-synergistic effects with ciprofloxacin (median FICI 0.63), translating time–kill assays into rapid, sustained bactericidal activity without antagonism. During sub-MIC evolution, silver MICs rose modestly (median two-fold) and often regressed off drug; oxacillin co-exposure limited drift. RTE foods therefore represent credible MRSA exposure routes. Integrating MALDI-assisted triage with automated AST enables scalable surveillance, and standardized AgNP formulations emerge as promising β-lactam adjuvants—pending in situ efficacy, safety, and residue evaluation. Full article
Show Figures

Figure 1

Back to TopTop