Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = class II transposons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3294 KB  
Article
Integration of Repeatome and Cytogenetic Data on Tandem DNAs in a Medicinal Plant Polemonium caeruleum L.
by Olga V. Muravenko, Alexandra V. Amosova, Alexey R. Semenov, Julia V. Kalnyuk, Firdaus M. Khazieva, Irina N. Korotkikh, Irina V. Basalaeva, Ekaterina D. Badaeva, Svyatoslav A. Zoshchuk and Olga Yu. Yurkevich
Int. J. Mol. Sci. 2025, 26(18), 9240; https://doi.org/10.3390/ijms26189240 - 22 Sep 2025
Viewed by 492
Abstract
Polemonium caeruleum L. (Polemoniaceae) is a perennial flowering plant native to Eurasia and North America, which is used as a fodder, medicinal, and ornamental plant. Many issues related to the taxonomy and origin of this valuable species still remain unclear. The intraspecific genetic [...] Read more.
Polemonium caeruleum L. (Polemoniaceae) is a perennial flowering plant native to Eurasia and North America, which is used as a fodder, medicinal, and ornamental plant. Many issues related to the taxonomy and origin of this valuable species still remain unclear. The intraspecific genetic variability of P. caeruleum and chromosomal organization of its genome are insufficiently studied. For the first time, we analyzed NGS genomic data of P. caeruleum using ReapeatExplorer2/TAREAN/DANTE Pipelines. In its repeatome, we identified 66.08% of Class I retrotransposons; 0.57% of Class II transposons; 0.42% of ribosomal DNA; and 0.87% of satellite DNA (six high-confident and three low-confident putative satellite DNAs). FISH chromosome mapping of seven tandem DNAs was carried out in two P. caeruleum varieties and two wild populations. Our results demonstrated the effectiveness of using satDNAs Pol_C 46 and Pol_C 33 in combination with 45S rDNA and 5S rDNA for precise chromosome identification. This approach allowed us to study intraspecific chromosomal variability and detect chromosomal rearrangements in the studied accessions of P. caeruleum, which could be related to the speciation process. These novel molecular markers are important for chromosome studies within Polemonium to clarify its taxonomy and phylogeny, and also, they expand the potential of different breeding programs. Full article
(This article belongs to the Special Issue Repetitive DNA)
Show Figures

Figure 1

15 pages, 1525 KB  
Article
Cannabis sativa L. Miniature Inverted-Repeat Transposable-Element Landscapes in Wild-Type (JL) and Domesticated Genome (CBDRx)
by Mariana Quiroga, Clara Crociara, Esteban Schenfeld, Franco Daniel Fernández, Juan Crescente, Leonardo Vanzetti and Marcelo Helguera
Int. J. Plant Biol. 2025, 16(2), 40; https://doi.org/10.3390/ijpb16020040 - 25 Mar 2025
Viewed by 1078
Abstract
Cannabis sativa L. is a globally cultivated plant with significant industrial, nutritional, and medicinal value. Its genome, comprising nine autosomes and sex chromosomes (X and Y), has been extensively studied, particularly in the context of precise breeding for specific enduses. Recent advances have [...] Read more.
Cannabis sativa L. is a globally cultivated plant with significant industrial, nutritional, and medicinal value. Its genome, comprising nine autosomes and sex chromosomes (X and Y), has been extensively studied, particularly in the context of precise breeding for specific enduses. Recent advances have facilitated genome-wide analyses through platforms like the NCBI Comparative Genome Viewer (CGV) and CannabisGDB, among others, enabling comparative studies across multiple Cannabis genotypes. Despite the abundance of genomic data, a particular group of transposable elements, known as miniature inverted-repeat transposable elements (MITEs), remains underexplored in Cannabis. These elements are non-autonomous class II DNA transposons characterized by high copy numbers and insertion preference in non-coding regions, potentially affecting gene expression. In the present study, we report the sequence annotation of MITEs in wild-type and domesticated Cannabis genomes obtained using the MITE Tracker software. We also develop a simple and innovative protocol to identify genome-specific MITE families, offering valuable tools for future research on marker development focused on important genetic variation for breeding in Cannabis sativa. Full article
Show Figures

Figure 1

20 pages, 18295 KB  
Article
Metagenomic Insights into the Diverse Antibiotic Resistome of Non-Migratory Corvidae Species on the Qinghai–Tibetan Plateau
by You Wang, Quanchao Cui, Yuliang Hou, Shunfu He, Wenxin Zhao, Zhuoma Lancuo, Kirill Sharshov and Wen Wang
Vet. Sci. 2025, 12(4), 297; https://doi.org/10.3390/vetsci12040297 - 23 Mar 2025
Cited by 1 | Viewed by 1268
Abstract
Antibiotic resistance represents a global health crisis with far-reaching implications, impacting multiple domains concurrently, including human health, animal health, and the natural environment. Wild birds were identified as carriers and disseminators of antibiotic-resistant bacteria (ARB) and their associated antibiotic resistance genes (ARGs). A [...] Read more.
Antibiotic resistance represents a global health crisis with far-reaching implications, impacting multiple domains concurrently, including human health, animal health, and the natural environment. Wild birds were identified as carriers and disseminators of antibiotic-resistant bacteria (ARB) and their associated antibiotic resistance genes (ARGs). A majority of studies in this area have concentrated on migratory birds as carriers for the spread of antibiotic resistance over long distances. However, there has been scant research on the resistome of non-migratory Corvidae species that heavily overlap with human activities, which limits our understanding of antibiotic resistance in these birds and hinders the development of effective management strategies. This study employed a metagenomics approach to examine the characteristics of ARGs and mobile genetic elements (MGEs) in five common Corvidae species inhabiting the Qinghai–Tibetan Plateau. The ARGs were classified into 20 major types and 567 subtypes. Notably, ARGs associated with multidrug resistance, including to macrolide–lincosamide–streptogramins, tetracyclines, beta-lactam, and bacitracin, were particularly abundant, with the subtypes acrB, bacA, macB, class C beta-lactamase, and tetA being especially prevalent. A total of 5 types of MGEs (166 subtypes) were identified across five groups of crows, and transposase genes, which indicated the presence of transposons, were identified as the most abundant type of MGEs. Moreover, some common opportunistic pathogens were identified as potential hosts for these ARGs and MGEs. Procrustes analysis and co-occurrence network analysis showed that the composition of the gut microbiota shaped the ARGs and MGEs, indicating a substantial association between these factors. The primary resistance mechanisms of ARGs in crows were identified as multidrug efflux pumps, alteration of antibiotic targets, and enzymatic inactivation. High-risk ARGs which were found to potentially pose significant risks to public health were also analyzed and resulted in the identification of 81 Rank I and 47 Rank II ARGs. Overall, our study offers a comprehensive characterization of the resistome in wild Corvidae species, enhancing our understanding of the potential public health risks associated with these birds. Full article
Show Figures

Figure 1

25 pages, 5732 KB  
Article
SVA Regulation of Transposable Element Clustered Transcription within the Major Histocompatibility Complex Genomic Class II Region of the Parkinson’s Progression Markers Initiative
by Jerzy K. Kulski, Abigail L. Pfaff and Sulev Koks
Genes 2024, 15(9), 1185; https://doi.org/10.3390/genes15091185 - 9 Sep 2024
Cited by 4 | Viewed by 1981
Abstract
SINE-VNTR-Alu (SVA) retrotransposons can regulate expression quantitative trait loci (eQTL) of coding and noncoding genes including transposable elements (TEs) distributed throughout the human genome. Previously, we reported that expressed SVAs and human leucocyte antigen (HLA) class II genotypes on chromosome 6 were associated [...] Read more.
SINE-VNTR-Alu (SVA) retrotransposons can regulate expression quantitative trait loci (eQTL) of coding and noncoding genes including transposable elements (TEs) distributed throughout the human genome. Previously, we reported that expressed SVAs and human leucocyte antigen (HLA) class II genotypes on chromosome 6 were associated significantly with Parkinson’s disease (PD). Here, our aim was to follow-up our previous study and evaluate the SVA associations and their regulatory effects on the transcription of TEs within the HLA class II genomic region. We reanalyzed the transcriptome data of peripheral blood cells from the Parkinson’s Progression Markers Initiative (PPMI) for 1530 subjects for TE and gene RNAs with publicly available computing packages. Four structurally polymorphic SVAs regulate the transcription of 20 distinct clusters of 235 TE loci represented by LINES (37%), SINES (28%), LTR/ERVs (23%), and ancient transposon DNA elements (12%) that are located in close proximity to HLA genes. The transcribed TEs were mostly short length, with an average size of 389 nucleotides. The numbers, types and profiles of positive and negative regulation of TE transcription varied markedly between the four regulatory SVAs. The expressed SVA and TE RNAs in blood cells appear to be enhancer-like elements that are coordinated differentially in the regulation of HLA class II genes. Future work on the mechanisms underlying their regulation and potential impact is essential for elucidating their roles in normal cellular processes and disease pathogenesis. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Graphical abstract

24 pages, 3283 KB  
Article
The Landscape of the DNA Transposons in the Genome of the Horezu_LaPeri Strain of Drosophila melanogaster
by Alexandru Marian Bologa, Ileana Stoica, Nicoleta Denisa Constantin and Alexandru Al. Ecovoiu
Insects 2023, 14(6), 494; https://doi.org/10.3390/insects14060494 - 25 May 2023
Viewed by 3381
Abstract
Natural transposons (NTs) represent mobile DNA sequences found in both prokaryotic and eukaryotic genomes. Drosophila melanogaster (the fruit fly) is a eukaryotic model organism with NTs standing for about 20% of its genome and has contributed significantly to the understanding of various aspects [...] Read more.
Natural transposons (NTs) represent mobile DNA sequences found in both prokaryotic and eukaryotic genomes. Drosophila melanogaster (the fruit fly) is a eukaryotic model organism with NTs standing for about 20% of its genome and has contributed significantly to the understanding of various aspects of transposon biology. Our study describes an accurate approach designed to map class II transposons (DNA transposons) in the genome of the Horezu_LaPeri fruit fly strain, consecutive to Oxford Nanopore Technology sequencing. A whole genome bioinformatics analysis was conducted using Genome ARTIST_v2, LoRTE and RepeatMasker tools to identify DNA transposons insertions. Then, a gene ontology enrichment analysis was performed in order to evaluate the potential adaptive role of some DNA transposons insertions. Herein, we describe DNA transposon insertions specific for the Horezu_LaPeri genome and a predictive functional analysis of some insertional alleles. The PCR validation of P-element insertions specific for this fruit fly strain, along with a putative consensus sequence for the KP element, is also reported. Overall, the genome of the Horezu_LaPeri strain contains several insertions of DNA transposons associated with genes known to be involved in adaptive processes. For some of these genes, insertional alleles obtained via mobilization of the artificial transposons were previously reported. This is a very alluring aspect, as it suggests that insertional mutagenesis experiments conducting adaptive predictions for laboratory strains may be confirmed by mirroring insertions which are expected to be found at least in some natural fruit fly strains. Full article
(This article belongs to the Special Issue Transposable Elements in Insects)
Show Figures

Figure 1

19 pages, 2802 KB  
Article
Genome ARTIST_v2—An Autonomous Bioinformatics Tool for Annotation of Natural Transposons in Sequenced Genomes
by Alexandru Al. Ecovoiu, Alexandru Marian Bologa, David Ioan Mihail Chifiriuc, Andrei Mihai Ciuca, Nicoleta Denisa Constantin, Iulian Constantin Ghionoiu, Iulian Cristian Ghita and Attila Cristian Ratiu
Int. J. Mol. Sci. 2022, 23(20), 12686; https://doi.org/10.3390/ijms232012686 - 21 Oct 2022
Cited by 2 | Viewed by 3699
Abstract
The annotation of transposable elements (transposons) is a very dynamic field of genomics and various tools assigned to support this bioinformatics endeavor have been developed and described. Genome ARTIST v1.19 (GA_v1.19) software was conceived for mapping artificial transposons mobilized during insertional mutagenesis projects, [...] Read more.
The annotation of transposable elements (transposons) is a very dynamic field of genomics and various tools assigned to support this bioinformatics endeavor have been developed and described. Genome ARTIST v1.19 (GA_v1.19) software was conceived for mapping artificial transposons mobilized during insertional mutagenesis projects, but the new functions of GA_v2 qualify it as a tool for the mapping and annotation of natural transposons (NTs) in long reads, contigs and assembled genomes. The tabular export of mapping and annotation data for high-throughput data analysis, the generation of a list of flanking sequences around the coordinates of insertion or around the target site duplications and the computing of a consensus sequence for the flanking sequences are all key assets of GA_v2. Additionally, we developed a set of scripts that enable the user to annotate NTs, to harness annotations offered by FlyBase for Drosophila melanogaster genome, to convert sequence files from .fasta to .raw, and to extract junction query sequences essential for NTs mapping. Herein, we present the applicability of GA_v2 for a preliminary annotation of P-element and hobo class II NTs and copia retrotransposon in the genome of D. melanogaster strain Horezu_LaPeri (Horezu), Romania, which was sequenced with Nanopore technology in our laboratory. We used contigs assembled with Flye tool and a Q10 quality filter of the reads. Our results suggest that GA_v2 is a reliable autonomous tool able to perform mapping and annotation of NTs in genomes sequenced by long sequencing technology. GA_v2 is open-source software compatible with Linux, Mac OS and Windows and is available at GitHub repository and dedicated website. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

14 pages, 1618 KB  
Article
Mobilome of Apicomplexa Parasites
by Matias Rodriguez and Wojciech Makalowski
Genes 2022, 13(5), 887; https://doi.org/10.3390/genes13050887 - 16 May 2022
Cited by 4 | Viewed by 3946
Abstract
Transposable elements (TEs) are mobile genetic elements found in the majority of eukaryotic genomes. Genomic studies of protozoan parasites from the phylum Apicomplexa have only reported a handful of TEs in some species and a complete absence in others. Here, we studied sixty-four [...] Read more.
Transposable elements (TEs) are mobile genetic elements found in the majority of eukaryotic genomes. Genomic studies of protozoan parasites from the phylum Apicomplexa have only reported a handful of TEs in some species and a complete absence in others. Here, we studied sixty-four Apicomplexa genomes available in public databases, using a ‘de novo’ approach to build candidate TE models and multiple strategies from known TE sequence databases, pattern recognition of TEs, and protein domain databases, to identify possible TEs. We offer an insight into the distribution and the type of TEs that are present in these genomes, aiming to shed some light on the process of gains and losses of TEs in this phylum. We found that TEs comprise a very small portion in these genomes compared to other organisms, and in many cases, there are no apparent traces of TEs. We were able to build and classify 151 models from the TE consensus sequences obtained with RepeatModeler, 96 LTR TEs with LTRpred, and 44 LINE TEs with MGEScan. We found LTR Gypsy-like TEs in Eimeria, Gregarines, Haemoproteus, and Plasmodium genera. Additionally, we described LINE-like TEs in some species from the genera Babesia and Theileria. Finally, we confirmed the absence of TEs in the genus Cryptosporidium. Interestingly, Apicomplexa seem to be devoid of Class II transposons. Full article
(This article belongs to the Special Issue Mobile Elements in Phylogenomic Reconstructions)
Show Figures

Figure 1

18 pages, 8353 KB  
Article
Satellitome Analysis of Rhodnius prolixus, One of the Main Chagas Disease Vector Species
by Eugenia E. Montiel, Francisco Panzera, Teresa Palomeque, Pedro Lorite and Sebastián Pita
Int. J. Mol. Sci. 2021, 22(11), 6052; https://doi.org/10.3390/ijms22116052 - 3 Jun 2021
Cited by 28 | Viewed by 3831
Abstract
The triatomine Rhodnius prolixus is the main vector of Chagas disease in countries such as Colombia and Venezuela, and the first kissing bug whose genome has been sequenced and assembled. In the repetitive genome fraction (repeatome) of this species, the transposable elements represented [...] Read more.
The triatomine Rhodnius prolixus is the main vector of Chagas disease in countries such as Colombia and Venezuela, and the first kissing bug whose genome has been sequenced and assembled. In the repetitive genome fraction (repeatome) of this species, the transposable elements represented 19% of R. prolixus genome, being mostly DNA transposon (Class II elements). However, scarce information has been published regarding another important repeated DNA fraction, the satellite DNA (satDNA), or satellitome. Here, we offer, for the first time, extended data about satellite DNA families in the R. prolixus genome using bioinformatics pipeline based on low-coverage sequencing data. The satellitome of R. prolixus represents 8% of the total genome and it is composed by 39 satDNA families, including four satDNA families that are shared with Triatoma infestans, as well as telomeric (TTAGG)n and (GATA)n repeats, also present in the T. infestans genome. Only three of them exceed 1% of the genome. Chromosomal hybridization with these satDNA probes showed dispersed signals over the euchromatin of all chromosomes, both in autosomes and sex chromosomes. Moreover, clustering analysis revealed that most abundant satDNA families configured several superclusters, indicating that R. prolixus satellitome is complex and that the four most abundant satDNA families are composed by different subfamilies. Additionally, transcription of satDNA families was analyzed in different tissues, showing that 33 out of 39 satDNA families are transcribed in four different patterns of expression across samples. Full article
(This article belongs to the Special Issue Repetitive DNA Sequences in Eukaryotic Genomes)
Show Figures

Figure 1

13 pages, 1264 KB  
Article
DNA Modification Patterns within the Transposable Elements of the Fig (Ficus carica L.) Genome
by Gabriele Usai, Alberto Vangelisti, Samuel Simoni, Tommaso Giordani, Lucia Natali, Andrea Cavallini and Flavia Mascagni
Plants 2021, 10(3), 451; https://doi.org/10.3390/plants10030451 - 27 Feb 2021
Cited by 18 | Viewed by 3501
Abstract
Transposable element activity can be harmful to the host’s genome integrity, but it can also provide selective advantages. One strategy to cope with transposons is epigenetic control through DNA base modifications. We report the non-canonic DNA modification dynamics of fig (Ficus carica [...] Read more.
Transposable element activity can be harmful to the host’s genome integrity, but it can also provide selective advantages. One strategy to cope with transposons is epigenetic control through DNA base modifications. We report the non-canonic DNA modification dynamics of fig (Ficus carica L.) by exploiting high-quality genome reference and related N4-methylcytosine (4mC) and N6-methyladenine (6mA) data. Overall, 1.49% of transposon nucleotides showed either 4mC or 6mA modifications: the 4mC/6mA ratio was similar in Class I and Class II transposons, with a prevalence of 4mC, which is comparable to coding genes. Different percentages of 4mC or 6mA were observed among LTR-retrotransposon lineages and sub-lineages. Furthermore, both the Copia and Gypsy retroelements showed higher modification rates in the LTR and coding regions compared with their neighbour regions. Finally, the unconventional methylation of retrotransposons is unrelated to the number of close genes, suggesting that the 4mC and 6mA frequency in LTR-retrotransposons should not be related to transcriptional repression in the adjacency of the element. In conclusion, this study highlighted unconventional DNA modification patterns in fig transposable elements. Further investigations will focus on functional implications, in regards to how modified retroelements affect the expression of neighbouring genes, and whether these epigenetic markers can spread from repeats to genes, shaping the plant phenotype. Full article
(This article belongs to the Special Issue DNA Methylation in Plants)
Show Figures

Figure 1

20 pages, 2025 KB  
Article
Nanopore RNA Sequencing Revealed Long Non-Coding and LTR Retrotransposon-Related RNAs Expressed at Early Stages of Triticale SEED Development
by Ilya Kirov, Maxim Dudnikov, Pavel Merkulov, Andrey Shingaliev, Murad Omarov, Elizaveta Kolganova, Alexandra Sigaeva, Gennady Karlov and Alexander Soloviev
Plants 2020, 9(12), 1794; https://doi.org/10.3390/plants9121794 - 17 Dec 2020
Cited by 18 | Viewed by 6844
Abstract
The intergenic space of plant genomes encodes many functionally important yet unexplored RNAs. The genomic loci encoding these RNAs are often considered “junk”, DNA as they are frequently associated with repeat-rich regions of the genome. The latter makes the annotations of these loci [...] Read more.
The intergenic space of plant genomes encodes many functionally important yet unexplored RNAs. The genomic loci encoding these RNAs are often considered “junk”, DNA as they are frequently associated with repeat-rich regions of the genome. The latter makes the annotations of these loci and the assembly of the corresponding transcripts using short RNAseq reads particularly challenging. Here, using long-read Nanopore direct RNA sequencing, we aimed to identify these “junk” RNA molecules, including long non-coding RNAs (lncRNAs) and transposon-derived transcripts expressed during early stages (10 days post anthesis) of seed development of triticale (AABBRR, 2n = 6x = 42), an interspecific hybrid between wheat and rye. Altogether, we found 796 lncRNAs and 20 LTR retrotransposon-related transcripts (RTE-RNAs) expressed at this stage, with most of them being previously unannotated and located in the intergenic as well as intronic regions. Sequence analysis of the lncRNAs provide evidence for the frequent exonization of Class I (retrotransposons) and class II (DNA transposons) transposon sequences and suggest direct influence of “junk” DNA on the structure and origin of lncRNAs. We show that the expression patterns of lncRNAs and RTE-related transcripts have high stage specificity. In turn, almost half of the lncRNAs located in Genomes A and B have the highest expression levels at 10–30 days post anthesis in wheat. Detailed analysis of the protein-coding potential of the RTE-RNAs showed that 75% of them carry open reading frames (ORFs) for a diverse set of GAG proteins, the main component of virus-like particles of LTR retrotransposons. We further experimentally demonstrated that some RTE-RNAs originate from autonomous LTR retrotransposons with ongoing transposition activity during early stages of triticale seed development. Overall, our results provide a framework for further exploration of the newly discovered lncRNAs and RTE-RNAs in functional and genome-wide association studies in triticale and wheat. Our study also demonstrates that Nanopore direct RNA sequencing is an indispensable tool for the elucidation of lncRNA and retrotransposon transcripts. Full article
(This article belongs to the Special Issue Advances in Cereal Crops Breeding)
Show Figures

Figure 1

23 pages, 1021 KB  
Review
Mobile Elements in Ray-Finned Fish Genomes
by Federica Carducci, Marco Barucca, Adriana Canapa, Elisa Carotti and Maria Assunta Biscotti
Life 2020, 10(10), 221; https://doi.org/10.3390/life10100221 - 25 Sep 2020
Cited by 24 | Viewed by 5425
Abstract
Ray-finned fishes (Actinopterygii) are a very diverse group of vertebrates, encompassing species adapted to live in freshwater and marine environments, from the deep sea to high mountain streams. Genome sequencing offers a genetic resource for investigating the molecular bases of this phenotypic diversity [...] Read more.
Ray-finned fishes (Actinopterygii) are a very diverse group of vertebrates, encompassing species adapted to live in freshwater and marine environments, from the deep sea to high mountain streams. Genome sequencing offers a genetic resource for investigating the molecular bases of this phenotypic diversity and these adaptations to various habitats. The wide range of genome sizes observed in fishes is due to the role of transposable elements (TEs), which are powerful drivers of species diversity. Analyses performed to date provide evidence that class II DNA transposons are the most abundant component in most fish genomes and that compared to other vertebrate genomes, many TE superfamilies are present in actinopterygians. Moreover, specific TEs have been reported in ray-finned fishes as a possible result of an intricate relationship between TE evolution and the environment. The data summarized here underline the biological interest in Actinopterygii as a model group to investigate the mechanisms responsible for the high biodiversity observed in this taxon. Full article
(This article belongs to the Special Issue The Mobilome in Vertebrate Genomes)
Show Figures

Figure 1

15 pages, 3684 KB  
Article
On the Trail of Tetu1: Genome-Wide Discovery of CACTA Transposable Elements in Sunflower Genome
by Maria Ventimiglia, Claudio Pugliesi, Alberto Vangelisti, Gabriele Usai, Tommaso Giordani, Lucia Natali, Andrea Cavallini and Flavia Mascagni
Int. J. Mol. Sci. 2020, 21(6), 2021; https://doi.org/10.3390/ijms21062021 - 16 Mar 2020
Cited by 5 | Viewed by 4553
Abstract
Much has been said about sunflower (Helianthus annuus L.) retrotransposons, representing the majority of the sunflower’s repetitive component. By contrast, class II transposons remained poorly described within this species, as they present low sequence conservation and are mostly lacking coding domains, making [...] Read more.
Much has been said about sunflower (Helianthus annuus L.) retrotransposons, representing the majority of the sunflower’s repetitive component. By contrast, class II transposons remained poorly described within this species, as they present low sequence conservation and are mostly lacking coding domains, making the identification and characterization of these transposable elements difficult. The transposable element Tetu1, is a non-autonomous CACTA-like element that has been detected in the coding region of a CYCLOIDEA (CYC) gene of a sunflower mutant, tubular ray flower (turf). Based on our knowledge of Tetu1, the publicly available genome of sunflower was fully scanned. A combination of bioinformatics analyses led to the discovery of 707 putative CACTA sequences: 84 elements with complete ends and 623 truncated elements. A detailed characterization of the identified elements allowed further classification into three subgroups of 347 elements on the base of their terminal repeat sequences. Only 39 encode a protein similar to known transposases (TPase), with 10 TPase sequences showing signals of activation. Finally, an analysis of the proximity of CACTA transposons to sunflower genes showed that the majority of CACTA elements are close to the nearest gene, whereas a relevant fraction resides within gene-encoding sequences, likely interfering with sunflower genome functionality and organization. Full article
(This article belongs to the Special Issue Transposable Elements and Phenotypic Variation in Plants)
Show Figures

Figure 1

14 pages, 3160 KB  
Article
Homology-Free Detection of Transposable Elements Unveils Their Dynamics in Three Ecologically Distinct Rhodnius Species
by Marcelo R. J. Castro, Clément Goubert, Fernando A. Monteiro, Cristina Vieira and Claudia M. A. Carareto
Genes 2020, 11(2), 170; https://doi.org/10.3390/genes11020170 - 6 Feb 2020
Cited by 17 | Viewed by 4786
Abstract
Transposable elements (TEs) are widely distributed repetitive sequences in the genomes across the tree of life, and represent an important source of genetic variability. Their distribution among genomes is specific to each lineage. A phenomenon associated with this feature is the sudden expansion [...] Read more.
Transposable elements (TEs) are widely distributed repetitive sequences in the genomes across the tree of life, and represent an important source of genetic variability. Their distribution among genomes is specific to each lineage. A phenomenon associated with this feature is the sudden expansion of one or several TE families, called bursts of transposition. We previously proposed that bursts of the Mariner family (DNA transposons) contributed to the speciation of Rhodnius prolixus Stål, 1859. This hypothesis motivated us to study two additional species of the R. prolixus complex: Rhodnius montenegrensis da Rosa et al., 2012 and Rhodnius marabaensis Souza et al., 2016, together with a new, de novo annotation of the R. prolixus repeatome using unassembled short reads. Our analysis reveals that the total amount of TEs present in Rhodnius genomes (19% to 23.5%) is three to four times higher than that expected based on the original quantifications performed for the original genome description of R. prolixus. We confirm here that the repeatome of the three species is dominated by Class II elements of the superfamily Tc1-Mariner, as well as members of the LINE order (Class I). In addition to R. prolixus, we also identified a recent burst of transposition of the Mariner family in R. montenegrensis and R. marabaensis, suggesting that this phenomenon may not be exclusive to R. prolixus. Rather, we hypothesize that whilst the expansion of Mariner elements may have contributed to the diversification of the R. prolixus-R. robustus species complex, the distinct ecological characteristics of these new species did not drive the general evolutionary trajectories of these TEs. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
Show Figures

Figure 1

11 pages, 1444 KB  
Article
Identification of A Novel Arsenic Resistance Transposon Nested in A Mercury Resistance Transposon of Bacillus sp. MB24
by Mei-Fang Chien, Ying-Ning Ho, Hui-Erh Yang, Masaru Narita, Keisuke Miyauchi, Ginro Endo and Chieh-Chen Huang
Microorganisms 2019, 7(11), 566; https://doi.org/10.3390/microorganisms7110566 - 16 Nov 2019
Cited by 6 | Viewed by 3452
Abstract
A novel TnMERI1-like transposon designated as TnMARS1 was identified from mercury resistant Bacilli isolated from Minamata Bay sediment. Two adjacent ars operon-like gene clusters, ars1 and ars2, flanked by a pair of 78-bp inverted repeat sequences, which resulted [...] Read more.
A novel TnMERI1-like transposon designated as TnMARS1 was identified from mercury resistant Bacilli isolated from Minamata Bay sediment. Two adjacent ars operon-like gene clusters, ars1 and ars2, flanked by a pair of 78-bp inverted repeat sequences, which resulted in a 13.8-kbp transposon-like fragment, were found to be sandwiched between two transposable genes of the TnMERI1-like transposon of a mercury resistant bacterium, Bacillus sp. MB24. The presence of a single transcription start site in each cluster determined by 5′-RACE suggested that both are operons. Quantitative real time RT-PCR showed that the transcription of the arsR genes contained in each operon was induced by arsenite, while arsR2 responded to arsenite more sensitively and strikingly than arsR1 did. Further, arsenic resistance complementary experiments showed that the ars2 operon conferred arsenate and arsenite resistance to an arsB-knocked out Bacillus host, while the ars1 operon only raised arsenite resistance slightly. This transposon nested in TnMARS1 was designated as TnARS1. Multi-gene cluster blast against bacteria and Bacilli whole genome sequence databases suggested that TnMARS1 is the first case of a TnMERI1-like transposon combined with an arsenic resistance transposon. The findings of this study suggested that TnMERI1-like transposons could recruit other mobile elements into its genetic structure, and subsequently cause horizontal dissemination of both mercury and arsenic resistances among Bacilli in Minamata Bay. Full article
(This article belongs to the Special Issue Microbial Degradation of Xenobiotics)
Show Figures

Figure 1

13 pages, 3148 KB  
Article
Analysis of Transposable Elements in Coccidioides Species
by Theo N. Kirkland, Anna Muszewska and Jason E. Stajich
J. Fungi 2018, 4(1), 13; https://doi.org/10.3390/jof4010013 - 19 Jan 2018
Cited by 18 | Viewed by 5933
Abstract
Coccidioides immitis and C. posadasii are primary pathogenic fungi that cause disease in immunologically-normal animals and people. The organism is found exclusively in arid regions of the Southwestern United States, Mexico, and South America, but not in other parts of the world. This [...] Read more.
Coccidioides immitis and C. posadasii are primary pathogenic fungi that cause disease in immunologically-normal animals and people. The organism is found exclusively in arid regions of the Southwestern United States, Mexico, and South America, but not in other parts of the world. This study is a detailed analysis of the transposable elements (TE) in Coccidioides spp. As is common in most fungi, Class I and Class II transposons were identified and the LTR Gypsy superfamily is the most common. The minority of Coccidioides Gypsy transposons contained regions highly homologous to polyprotein domains. Phylogenetic analysis of the integrase and reverse transcriptase sequences revealed that many, but not all, of the Gypsy reverse transcriptase and integrase domains clustered by species suggesting extensive transposition after speciation of the two Coccidiodies spp. The TEs were clustered and the distribution is enriched for the ends on contigs. Analysis of gene expression data from C. immitis found that protein-coding genes within 1 kB of hAT or Gypsy TEs were poorly expressed. The expression of C. posadasii genes within 1 kB of Gypsy TEs was also significantly lower compared to all genes but the difference in expression was smaller than C. immitis. C. posadasii orthologs of C. immitis Gyspsy-associated genes were also likely to be TE-associated. In both C. immitis and C. posadasii the TEs were preferentially associated with genes annotated with protein kinase gene ontology terms. These observations suggest that TE may play a role in influencing gene expression in Coccidioides spp. Our hope is that these bioinformatic studies of the potential TE influence on expression and evolution of Coccidioides will prompt the development of testable hypotheses to better understand the role of TEs in the biology and gene regulation of Coccidioides spp. Full article
(This article belongs to the Special Issue Genomic Data in Pathogenic Fungi)
Show Figures

Graphical abstract

Back to TopTop