Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = cigarette recycling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3743 KiB  
Article
Mechanical and Performance Characteristics of Warm Mix Asphalt Modified with Phase Change Materials and Recycled Cigarette Filters
by Zahraa Ahmed al-Mammori, Israa Mohsin Kadhim Al-Janabi, Ghadeer H. Abbas, Doaa Hazim Aziz, Fatin H. Alaaraji, Elaf Salam Abbas, Beshaer M. AL-shimmery, Tameem Mohammed Hashim, Ghanim Q. Al-Jameel, Ali Shubbar and Mohammed Salah Nasr
CivilEng 2025, 6(3), 41; https://doi.org/10.3390/civileng6030041 - 5 Aug 2025
Abstract
With rising global temperatures and increasing sustainability demands, the need for advanced pavement solutions has never been greater. This study breaks new ground by integrating phase change materials (PCMs), including paraffin-based wax (Rubitherm RT55), hydrated salt (Climator Salt S10), and fatty acid (lauric [...] Read more.
With rising global temperatures and increasing sustainability demands, the need for advanced pavement solutions has never been greater. This study breaks new ground by integrating phase change materials (PCMs), including paraffin-based wax (Rubitherm RT55), hydrated salt (Climator Salt S10), and fatty acid (lauric acid), as binder modifiers within warm mix asphalt (WMA) mixtures. Moving beyond the traditional focus on binder-only modifications, this research utilizes recycled cigarette filters (CFs) as a dual-purpose fiber additive, directly reinforcing the asphalt mixture while simultaneously transforming a major urban waste stream into valuable infrastructure. The performance of the developed WMA mixture has been evaluated in terms of stiffness behavior using an Indirect Tensile Strength Modulus (ITSM) test, permanent deformation using a static creep strain test, and rutting resistance using the Hamburg wheel-track test. Laboratory tests demonstrated that the incorporation of PCMs and recycled CFs into WMA mixtures led to remarkable improvements in stiffness, deformation resistance, and rutting performance. Modified mixes consistently outperformed the control, achieving up to 15% higher stiffness after 7 days of curing, 36% lower creep strain after 4000 s, and 64% reduction in rut depth at 20,000 passes. Cost–benefit analysis and service life prediction show that, despite costing USD 0.71 more per square meter with 5 cm thickness, the modified WMA mixture delivers much greater durability and rutting resistance, extending service life to 19–29 years compared to 10–15 years for the control. This highlights the value of these modifications for durable, sustainable pavements. Full article
Show Figures

Figure 1

15 pages, 1531 KiB  
Article
Towards a Circular Economy: Unlocking the Potentials of Cigarette Butt Recycling as a Resource for Seashore Paspalum Growth
by Thais Huarancca Reyes, Marco Volterrani, Lorenzo Guglielminetti and Andrea Scartazza
Sustainability 2025, 17(15), 6976; https://doi.org/10.3390/su17156976 - 31 Jul 2025
Viewed by 160
Abstract
The cigarette butt (CB) recycling process yields several byproducts, including cleaned filters, solid debris (mainly paper and tobacco), and wastewater. This study aimed to assess, for the first time, the long-term suitability of these recycled byproducts for turfgrass cultivation. Under controlled conditions, Paspalum [...] Read more.
The cigarette butt (CB) recycling process yields several byproducts, including cleaned filters, solid debris (mainly paper and tobacco), and wastewater. This study aimed to assess, for the first time, the long-term suitability of these recycled byproducts for turfgrass cultivation. Under controlled conditions, Paspalum vaginatum Swartz was grown in sand–peat substrate, either unmodified (control) or amended with small pieces of uncleaned CBs or solid byproducts from CB recycling at concentrations of 25% or 50% (v/v). In additional tests, turfgrass grown in unmodified substrate received wastewater instead of tap water once or twice weekly. Over 7 weeks, physiological and biometric parameters were assessed. Plants grown with solid debris showed traits comparable to the control. Those grown with intact CBs or cleaned filters had similar biomass and coverage as the control but accumulated more carotenoids and antioxidants. Wastewater significantly enhanced plant growth when applied once weekly, while becoming toxic when applied twice, reducing biomass and coverage. After scalping, turfgrass recovered well across all treatments, and in some cases biomass improved. Overall, recycled CB byproducts, particularly wastewater used at optimal concentrations, can be a sustainable resource for promoting turfgrass growth. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

18 pages, 2153 KiB  
Article
Catalytic Biorefining of Cigarette Butts Recycling Waste
by Eric Borges Ribeiro, Maria Betânia d’Heni Teixeira, Thérèse Hofmann Gatti, Romulo Davi Albuquerque Andrade and Paulo Anselmo Ziani Suarez
Chemistry 2025, 7(3), 86; https://doi.org/10.3390/chemistry7030086 - 23 May 2025
Viewed by 656
Abstract
Urban solid waste (USW) is a promising alternative source of valuable chemical compounds. It is considered an adsorbent material due to its chemical structure, porosity and electronic charge available to form chemical bonds and can be recovered or transformed for use in bioprocesses [...] Read more.
Urban solid waste (USW) is a promising alternative source of valuable chemical compounds. It is considered an adsorbent material due to its chemical structure, porosity and electronic charge available to form chemical bonds and can be recovered or transformed for use in bioprocesses and industrial applications. This is the case with cigarette butts (CBs), which consist of thousands of substances that can be chemically converted for various purposes. This work showed high efficiency in the production of cellulose mass from the recycling of CBs, a patented technology in operation at the company Poiato Recicla—SP. The lignin-like solid (LLS)—a material obtained from the recycling of cigarette butts (CBs) by catalytic transfer hydrogenation (CTH), under non-rigorous conditions—showed high efficiency in its conversion into molecules of great interest. In the bio-oil obtained, characterized by analyses such as GCMS and RMN 2D HSQC, a mixture of predominantly hydrocarbons (many of them with cyclic and/or branched chains) was identified in almost all the experiments. This method demonstrates the potential of the TCH process for SSLs and completes the recycling chain designed for CBs, promoting their complete conversion into chemical compounds of greater interest. Full article
(This article belongs to the Topic Green and Sustainable Chemical Processes)
Show Figures

Graphical abstract

17 pages, 6902 KiB  
Article
Effect of Waste Cigarette Butt Fibers on the Properties and CO2 Footprint of Bitumen
by Kai Yang, Cheng Cheng, Yong Yan, Qinglin Wu and Ru Du
Materials 2025, 18(9), 2059; https://doi.org/10.3390/ma18092059 - 30 Apr 2025
Viewed by 343
Abstract
This research utilized recycled acetate fibers from discarded cigarette butts (CBs) as reinforcing materials, reducing solid waste and enhancing the properties of bitumen. The surface properties of the fibers significantly impacted the binder characteristics. The treatment of CB fibers with anhydrous ethanol was [...] Read more.
This research utilized recycled acetate fibers from discarded cigarette butts (CBs) as reinforcing materials, reducing solid waste and enhancing the properties of bitumen. The surface properties of the fibers significantly impacted the binder characteristics. The treatment of CB fibers with anhydrous ethanol was employed to remove the plasticizer glycerol triacetate (GTA), enabling the better homogeneity of the fibers in the binder. Thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were used to assess the effectiveness of the fiber treatment. A dynamic shear rheometer (DSR) was used to explore the properties of bitumen with varying CB contents (0%, 0.25%, 0.75%, and 1.25% by weight). A whole life cycle analysis further confirmed the eco-efficiency of CB binders. The results show that the pretreatment effectively removed GTA, leading to a more homogeneous dispersion of fibers in the binder. Adding CBs can significantly improve bitumen properties, but this effect does not increase with higher dosages; when the CB content exceeded 1.25%, a reduction in fatigue resistance was observed. Among the tested dosages, the optimal amount was 0.75%, which improved the high-temperature performance of the binder by 2.7 times, the medium-temperature fatigue life by 1.78 times, and the low-temperature performance by 1.08 times. In terms of ecological benefits, the addition of CB fibers to bitumen pavement reduced carbon emissions by two-thirds compared to traditional bitumen pavement, resulting in a significant decrease in carbon emissions. This study provides valuable insights into the construction of sustainable transportation infrastructure. Full article
Show Figures

Figure 1

17 pages, 6486 KiB  
Article
Detection of Small-Sized Electronics Endangering Facilities Involved in Recycling Processes Using Deep Learning
by Zizhen Liu, Shunki Kasugaya and Nozomu Mishima
Appl. Sci. 2025, 15(5), 2835; https://doi.org/10.3390/app15052835 - 6 Mar 2025
Viewed by 804
Abstract
In Japan, local governments implore residents to remove the batteries from small-sized electronics before recycling them, but some products still contain lithium-ion batteries. These residual batteries may cause fires, resulting in serious injuries or property damage. Explosive materials such as mobile batteries (such [...] Read more.
In Japan, local governments implore residents to remove the batteries from small-sized electronics before recycling them, but some products still contain lithium-ion batteries. These residual batteries may cause fires, resulting in serious injuries or property damage. Explosive materials such as mobile batteries (such as power banks) have been identified in fire investigations. Therefore, these fire-causing items should be detected and separated regardless of whether small-sized electronics recycling or other recycling processes are in use. This study focuses on the automatic detection of fire-causing items using deep learning in recycling small-sized electronic products. Mobile batteries were chosen as the first target of this approach. In this study, MATLAB R2024b was applied to construct the You Only Look Once version 4 deep learning algorithm. The model was trained to enable the detection of mobile batteries. The results show that the model’s average precision value reached 0.996. Then, the target was expanded to three categories of fire-causing items, including mobile batteries, heated tobacco (electronic cigarettes), and smartphones. Furthermore, real-time object detection on videos using the trained detector was carried out. The trained detector was able to detect all the target products accurately. In conclusion, deep learning technologies show significant promise as a method for safe and high-quality recycling. Full article
(This article belongs to the Special Issue Application of Deep Learning and Big Data Processing)
Show Figures

Figure 1

15 pages, 3460 KiB  
Article
Enhanced Capacitive Performance of Microwave-Driven CNTs on Carbonized Cigarette Filter Waste for Sustainable Energy Storage
by Young Joong Choi, Damin Lee, Se-Hun Kwon and Kwang Ho Kim
Nanomaterials 2025, 15(4), 257; https://doi.org/10.3390/nano15040257 - 8 Feb 2025
Viewed by 767
Abstract
Microplastic pollution represents a significant global environmental issue, with cigarette filters being a major contributor due to their slow biodegradation. To address this issue while creating valuable materials, we developed a novel approach to synthesize nitrogen-doped carbon nanotubes on carbonized cigarette filter powder [...] Read more.
Microplastic pollution represents a significant global environmental issue, with cigarette filters being a major contributor due to their slow biodegradation. To address this issue while creating valuable materials, we developed a novel approach to synthesize nitrogen-doped carbon nanotubes on carbonized cigarette filter powder (NCNT@cCFP) using a microwave irradiation and nickel-catalyzed process. The successful incorporation of nitrogen (~6.6 at.%) and the enhanced graphitic structure create a hierarchical conductive network with abundant active sites for electrochemical reactions. The resulting NCNT@cCFP electrode exhibits a specific capacitance of 452 F/g at 1 A/g in a three-electrode configuration. The integrated hierarchical structure facilitates efficient electron transport and ion diffusion, leading to excellent rate capability (91.6% at 10 A/g) and cycling stability (96.5% retention after 5000 cycles). Furthermore, a symmetric supercapacitor device demonstrates promising energy storage capability with a maximum energy density of 14.0 Wh/kg at 483.1 W/kg, while maintaining 10.4 Wh/kg at a high power density of 4419.1 W/kg. This synergistic waste recycling strategy combined with microwave-driven synthesis offers a sustainable pathway for developing high-performance energy storage materials. Full article
Show Figures

Graphical abstract

13 pages, 3704 KiB  
Article
Physical Properties and Rheological Characteristics of Cigarette Butt-Modified Asphalt Binders
by Xinhe Hu, Xianglong Chen, Jie Yu, Gang Cheng, Yunxiao Yuan and Lizhou Zhang
Coatings 2025, 15(2), 170; https://doi.org/10.3390/coatings15020170 - 3 Feb 2025
Cited by 2 | Viewed by 801
Abstract
Cigarette butt (CB) waste is abundant and difficult to biodegrade, which is dangerous for both the environment and human health. The key reason CBs are littered is that people do not know much about the harm CBs pose to the environment. Recycling CBs [...] Read more.
Cigarette butt (CB) waste is abundant and difficult to biodegrade, which is dangerous for both the environment and human health. The key reason CBs are littered is that people do not know much about the harm CBs pose to the environment. Recycling CBs in infrastructure construction can help raise people’s awareness. To promote the recycling of CB waste, this paper aimed to determine the feasibility of using CBs as a modifier for asphalt binders. In this research, CBs were preprocessed and mixed with virgin asphalt binder as a fiber modifier. Comprehensive laboratory investigations, including a softening point test, viscosity test, storage stability test, and temperature sweep test, were performed, along with a frequency sweep test, to evaluate the performance of the modified samples. During this investigation, samples were prepared with 1%, 2%, 3%, and 4% CBs. The results of the CB-modified samples were compared with the sample consisting of fresh bitumen (0% fiber). The results show that the physical and rheological properties of bitumen with incorporated CBs improved significantly, and CBs could be used instead of virgin cellulose fiber as a fiber modifier. However, CB-modified asphalt reduced the storage stability and low-temperature performance of the samples. Further research should focus on improving the storage stability and low-temperature performance of CB-modified asphalt binders to facilitate their application in asphalt pavements. Full article
Show Figures

Figure 1

14 pages, 7763 KiB  
Article
Influence of Cigarette Butt Extract on the Suppression of Metal Corrosion
by Verena Šućurović, Nives Vladislavić and Ivana Škugor Rončević
Electrochem 2024, 5(4), 585-598; https://doi.org/10.3390/electrochem5040038 - 21 Dec 2024
Viewed by 1226
Abstract
Cigarette butts are an increasing environmental burden worldwide, and the quantities discarded each year could continue to rise. The chemical composition of cigarette butts, which comprises about 4000 different toxic chemicals, as well as their persistence in the environment and their potential negative [...] Read more.
Cigarette butts are an increasing environmental burden worldwide, and the quantities discarded each year could continue to rise. The chemical composition of cigarette butts, which comprises about 4000 different toxic chemicals, as well as their persistence in the environment and their potential negative effects pose a major threat to the environment as they regularly enter aquatic habitats and endanger water supplies and aquatic species. One effective way to reduce pollution is to recycle cigarette butts. The aim of this study is to evaluate the possibility of using extracts from cigarette butts (filter extract and extract from tobacco residues) as corrosion inhibitors for the Cu10Ni alloy in a 3.5% NaCl solution with a pH of 8 at different temperatures (12 °C, 20 °C and 25 °C). The determination of the electrochemical parameters, i.e., the corrosion behavior of the Cu10Ni alloy in a 3.5% NaCl solution and pH of 8, with and without modification of the alloy surface by cigarette butt extracts was tested using electrochemical measurements (electrochemical impedance spectroscopy and linear and potentiodynamic polarization methods). The surface properties of the Cu10Ni alloy modified with cigarette butt extracts were evaluated by goniometry, SEM analysis and FTIR spectrophotometry. The modification of the surface of the Cu10Ni alloy with an extract of tobacco residue and a filter extract separated from cigarette butts, whose presence on the surface was confirmed by the surface analysis methods, increased the corrosion resistance of the alloy, indicating that these substances have an inhibitory effect. The better inhibition properties (at all temperatures: 12 °C, 20 °C and 25 °C) were exhibited by the filter extract, and the highest inhibition effect was exhibited by the filter extract at 12 °C. Full article
Show Figures

Figure 1

17 pages, 731 KiB  
Review
Lipid-Laden Macrophages in Pulmonary Diseases
by Yin Zhu, Dooyoung Choi, Payaningal R. Somanath and Duo Zhang
Cells 2024, 13(11), 889; https://doi.org/10.3390/cells13110889 - 22 May 2024
Cited by 10 | Viewed by 5398
Abstract
Pulmonary surfactants play a crucial role in managing lung lipid metabolism, and dysregulation of this process is evident in various lung diseases. Alternations in lipid metabolism lead to pulmonary surfactant damage, resulting in hyperlipidemia in response to lung injury. Lung macrophages are responsible [...] Read more.
Pulmonary surfactants play a crucial role in managing lung lipid metabolism, and dysregulation of this process is evident in various lung diseases. Alternations in lipid metabolism lead to pulmonary surfactant damage, resulting in hyperlipidemia in response to lung injury. Lung macrophages are responsible for recycling damaged lipid droplets to maintain lipid homeostasis. The inflammatory response triggered by external stimuli such as cigarette smoke, bleomycin, and bacteria can interfere with this process, resulting in the formation of lipid-laden macrophages (LLMs), also known as foamy macrophages. Recent studies have highlighted the potential significance of LLM formation in a range of pulmonary diseases. Furthermore, growing evidence suggests that LLMs are present in patients suffering from various pulmonary conditions. In this review, we summarize the essential metabolic and signaling pathways driving the LLM formation in chronic obstructive pulmonary disease, pulmonary fibrosis, tuberculosis, and acute lung injury. Full article
Show Figures

Figure 1

21 pages, 7907 KiB  
Article
Transforming Zeolite Tuff and Cigarette Waste into Eco-Friendly Ceramic Bricks for Sustainable Construction
by Jamal Eldin F. M. Ibrahim, Mohamed A. Basyooni-M. Kabatas, Ferenc Móricz and István Kocserha
Buildings 2024, 14(1), 144; https://doi.org/10.3390/buildings14010144 - 6 Jan 2024
Cited by 2 | Viewed by 2826
Abstract
The use of waste materials has gained attention as a sustainable approach in various industries. Cigarette waste, which is typically discarded as a non-recyclable material, poses a significant environmental challenge due to its toxicity and slow decomposition rate. However, by incorporating this waste [...] Read more.
The use of waste materials has gained attention as a sustainable approach in various industries. Cigarette waste, which is typically discarded as a non-recyclable material, poses a significant environmental challenge due to its toxicity and slow decomposition rate. However, by incorporating this waste into ceramic bricks, new approaches for waste management and resource utilization are explored. This research work provides a detailed evaluation of the possibility of utilizing natural zeolite tuff incorporated with cigarette waste to produce sustainable ceramic bricks. Uniform powders are produced by milling various combinations of zeolitic tuff and cigarette waste using a planetary ball mill. The substitution ratios ranged from 0% to 12% by weight of the zeolitic tuff, with increments of 2%. Ceramic discs were formed by dry pressing and then subjected to sintering at different heat treatment temperatures (950–1250 °C). The impact of the inclusion of cigarette waste on the microstructural and technical features of zeolite tuff-based ceramic bricks has been thoroughly investigated. The results of the experiments demonstrate that incorporating cigarette waste into the development of ceramic bricks leads to improved thermal insulation properties, with thermal conductivity ranging from 0.33 to 0.93 W/m·K. Additionally, these bricks exhibit a lighter weight in a range of 1.45 to 1.96 g/cm3. Although the inclusion of cigarette waste slightly reduces the compressive strength, with values ranging from 6.96 to 58.6 MPa, it still falls within the acceptable range specified by standards. The inclusion of cigarette waste into zeolite tuff is an innovative approach and sustainable practice for reducing energy consumption in buildings while simultaneously addressing the issue of waste disposal and pollution mitigation. Full article
(This article belongs to the Special Issue Advanced Studies in Structure Materials)
Show Figures

Figure 1

17 pages, 2700 KiB  
Review
Review of the Policy, Social, Operational, and Technological Factors Affecting Cigarette Butt Recycling Potential in Extended Producer Responsibility Programs
by Aron Pazzaglia and Beatrice Castellani
Recycling 2023, 8(6), 95; https://doi.org/10.3390/recycling8060095 - 1 Dec 2023
Cited by 3 | Viewed by 4023
Abstract
Cigarette butts (CBs) are the most diffuse waste in the world, often abandoned into the environment without proper disposal. They are dangerous because of the numerous harmful chemicals potentially released by them into the environment. In the literature, there are several technological options [...] Read more.
Cigarette butts (CBs) are the most diffuse waste in the world, often abandoned into the environment without proper disposal. They are dangerous because of the numerous harmful chemicals potentially released by them into the environment. In the literature, there are several technological options for CB recycling, but some critical concerns could affect their effectiveness due to the quality and quantity of CB litter that is collected in the proper way. The extended producer responsibility scheme for CBs is proposed at the Europe level as an action to tackle CB litter and encourage sustainable product development. The present paper focuses on analyzing the existing literature to identify critical issues within the policy framework, social behavior, waste collection and transport, and technological processes. The collection and transport of CB waste is a major issue, being a key step for bringing CB to the recycling process. The main concern is the small quantity of CBs collected: 0.06% of the municipal waste and 0.18% of the unsorted waste in the case study’s administrative area of Perugia. Another crucial issue is the need for behavioral interventions to increase education and awareness of citizens that are smokers, addressing the discrepancy between smokers’ behaviors and beliefs. The main results, along with the critical issues related to the topics, are highlighted. Full article
(This article belongs to the Special Issue Feature Papers in Recycling 2023)
Show Figures

Figure 1

17 pages, 6468 KiB  
Article
Acetylcellulose Recovery from Waste Residual for Attenuating Reactive Dye from Aquaculture Waste as a Fascinating Synergistic Ecology Effect
by Hossam A. Nabwey, Maha A. Tony and Manasik M. Nour
Processes 2023, 11(9), 2701; https://doi.org/10.3390/pr11092701 - 9 Sep 2023
Cited by 2 | Viewed by 1085
Abstract
Waste valorization is attracting not only the scientific world but also the world. Acetylcellulose wastes from cigarette filter residuals are signified as the largest global impact of solid waste. Acetylcellulose recycling for desired products is a promising way for environmental management. In this [...] Read more.
Waste valorization is attracting not only the scientific world but also the world. Acetylcellulose wastes from cigarette filter residuals are signified as the largest global impact of solid waste. Acetylcellulose recycling for desired products is a promising way for environmental management. In this regard, the current investigation is dealing with the immersion of residual filters sequentially into aqueous solutions of alkali and ethanol before water washing, which converts them into a superhydrophobic acetylcellulose adsorbent material. The morphology and characteristics of the acetylcellulose fiber were characterized using a Scanning Electron Microscope (SEM) and Fourier-Transform infrared spectroscopy (FTIR). The adsorption tendency was checked for Levafix Blue dye compromised in an aqueous stream as a model textile polluted effluent. The experimental results exposed that the acetylcellulose fiber displayed a sensible textile dye elimination from the dying stream. Langmuir isotherm is well fitting the adsorption matrix and the reaction follows the 1st-order kinetic model. The so-obtained acetylcellulose fiber showed tremendous efficiency for dye removal from aqueous effluent. The attained maximum monolayer adsorption capacity was recorded as 4.8 mg/g at pH 3.0 and an adsorbent dose of 1 g/L through the isotherm time of 2 h. Also, temperature elevation could increase the adsorption capacity to 5.7 mg/g. Due to this excellent affinity to adsorb dye at an economic wise rate is shown as a promising candidate for textile dye elimination form aqueous effluent. Full article
(This article belongs to the Special Issue Adsorption and Photocatalysis for Wastewater Treatment)
Show Figures

Figure 1

26 pages, 5346 KiB  
Article
Research on Thermal Insulation Performance and Impact on Indoor Air Quality of Cellulose-Based Thermal Insulation Materials
by Cristian Petcu, Andreea Hegyi, Vlad Stoian, Claudiu Sorin Dragomir, Adrian Alexandru Ciobanu, Adrian-Victor Lăzărescu and Carmen Florean
Materials 2023, 16(15), 5458; https://doi.org/10.3390/ma16155458 - 3 Aug 2023
Cited by 16 | Viewed by 6155
Abstract
Worldwide, the need for thermal insulation materials used to increase the energy performance of buildings and ensure indoor thermal comfort is constantly growing. There are several traditional, well-known and frequently used thermal insulation materials on the building materials market, but there is a [...] Read more.
Worldwide, the need for thermal insulation materials used to increase the energy performance of buildings and ensure indoor thermal comfort is constantly growing. There are several traditional, well-known and frequently used thermal insulation materials on the building materials market, but there is a growing trend towards innovative materials based on agro-industrial waste. This paper analyses the performance of 10 such innovative thermal insulation materials obtained by recycling cellulosic and/or animal waste, using standardised testing methods. More precisely, thermal insulation materials based on the following raw materials were analysed: cellulose acetate, cigarette filter manufacturing waste; cellulose acetate, cigarette filter manufacturing waste and cigarette paper waste; cellulose acetate, waste from cigarette filter manufacturing, waste cigarette paper and waste aluminised paper; cellulose from waste paper (two types made by two independent manufacturers); wood fibres; cellulose from cardboard waste; cellulose from waste cardboard, poor processing, inhomogeneous product; rice husk waste and composite based on sheep wool, recycled PET fibres and cellulosic fibres for the textile industry. The analysis followed the performance in terms of thermal insulating quality, evidenced by the thermal conductivity coefficient (used as a measurable indicator) determined for both dry and conditioned material at 50% RH, in several density variants, simulating the subsidence under its own weight or under various possible stresses arising in use. The results showed in most cases that an increase in material density has beneficial effects by reducing the coefficient of thermal conductivity, but exceptions were also reported. In conjunction with this parameter, the analysis of the 10 types of materials also looked at their moisture sorption/desorption capacity (using as a measurable indicator the amount of water stored by the material), concluding that, although they have a capacity to regulate the humidity of the indoor air, under low RH conditions the water loss is not complete, leaving a residual quantity of material that could favour the development of mould. Therefore, the impact on indoor air quality was also analysed by assessing the risk of mould growth (using as a measurable indicator the class and performance category of the material in terms of nutrient content conducive to the growth of microorganisms) under high humidity conditions but also the resistance to the action of two commonly encountered moulds, Aspergillus niger and Penicillium notatum. The results showed a relative resistance to the action of microbiological factors, indicating however the need for intensified biocidal treatment. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials, Volume IV)
Show Figures

Figure 1

17 pages, 5905 KiB  
Article
Influence of Weathering on the Degradation of Cellulose Acetate Microplastics Obtained from Used Cigarette Butts
by Branka Mušič, Anita Jemec Kokalj and Andrijana Sever Škapin
Polymers 2023, 15(12), 2751; https://doi.org/10.3390/polym15122751 - 20 Jun 2023
Cited by 10 | Viewed by 3919
Abstract
Cellulose acetate is used in many applications, including for cigarette filters. Unfortunately, unlike cellulose, its (bio)degradability is under question, yet it often ends up uncontrolled in the natural environment. The main purpose of this study is to compare the effects of weathering on [...] Read more.
Cellulose acetate is used in many applications, including for cigarette filters. Unfortunately, unlike cellulose, its (bio)degradability is under question, yet it often ends up uncontrolled in the natural environment. The main purpose of this study is to compare the effects of weathering on two types of cigarette filter (classic filters and newer filters that have more recently arrived on the market) following their use and disposal in nature. Microplastics were prepared from polymer parts of used (classic and heated tobacco products—HTP) cigarettes and artificially aged. TG/DTA, FTIR, and SEM analyses were performed both before and after the aging process. Newer tobacco products contain an additional film made of a poly(lactic acid) polymer which, like cellulose acetate, burdens the environment and poses a risk to the ecosystem. Numerous studies have been conducted on the disposal and recycling of cigarette butts and cigarette butt extracts, revealing alarming data that have also influenced the decisions of the EU, who addressed the disposal of tobacco products in the EU Directive (EU) 2019/904. Despite this, there is still no systematic analysis in the literature evaluating the impact of weathering (i.e., accelerated aging) on the degradation of cellulose acetate in classic cigarettes compared with that in newer tobacco products that have recently appeared on the market. This is of particular interest given that the latter have been promoted as being healthier and environmentally friendly. The results show that in cellulose acetate cigarette filters the particle size decreased after accelerated aging. Also, the thermal analysis revealed differences in the behavior of the aged samples, while the FTIR spectra showed no shifts in the position of the peaks. Organic substances break down under UV light, which can be seen by measuring the color change. The PLA film was found to be more stable than cellulose acetate under the influence of UV light. Full article
Show Figures

Figure 1

13 pages, 1176 KiB  
Article
Exploring the Physiological Multiplicity of Native Microalgae from the Ecuadorian Highland, Italian Lowland and Indoor Locations in Response to UV-B
by Thais Huarancca Reyes, Carolina Chiellini, Emilio Barozzi, Carla Sandoval, Cristina Echeverría and Lorenzo Guglielminetti
Int. J. Mol. Sci. 2023, 24(2), 1346; https://doi.org/10.3390/ijms24021346 - 10 Jan 2023
Cited by 5 | Viewed by 2315
Abstract
The differential effects of UV-B on the inhibition or activation of protective mechanisms to maintain cells photosynthetically active were investigated in native microalgae. Four strains were used, including two Chlorella sorokiniana strains, F4 and LG1, isolated from a Mediterranean inland swamp and a [...] Read more.
The differential effects of UV-B on the inhibition or activation of protective mechanisms to maintain cells photosynthetically active were investigated in native microalgae. Four strains were used, including two Chlorella sorokiniana strains, F4 and LG1, isolated from a Mediterranean inland swamp and a recycled cigarette butt’s substrate, respectively, and two isolates from an Ecuadorian highland lake related to Pectinodesmus pectinatus (PEC) and Ettlia pseudoalveolaris (ETI). Monocultures were exposed to acute UV-B (1.7 W m−2) over 18 h under controlled conditions. UV-B-untreated microalgae were used as the control. Comparative physiological responses, including photosynthetic pigments, non-enzymatic antioxidants, and chlorophyll a fluorescence, were evaluated at specific time points. Results showed that UV-B significantly compromised all the physiological parameters in F4, thereby resulting in the most UV-B-sensitive strain. Contrarily, UV-B exposure did not lead to changes in the PEC physiological traits, resulting in the best UV-B-resistant strain. This could be attributed to the acclimation to high light habitat, where maintaining a constitutive phenotype (at the photosynthetic level) is strategically advantageous. Differently, LG1 and ETI at 12 h of UV-B exposure showed different UV-B responses, which is probably related to acclimation, where in LG1, the pigments were recovered, and the antioxidants were still functioning, while in ETI, the accumulation of pigments and antioxidants was increased to avoid further photodamage. Consequently, the prolonged exposure in LG1 and ETI resulted in species-specific metabolic regulation (e.g., non-enzymatic antioxidants) in order to constrain full photoinhibition under acute UV-B. Full article
(This article belongs to the Special Issue Advances in Research of Algae, Cyanobacteria, and Phytoplankton)
Show Figures

Figure 1

Back to TopTop